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The Simplest Situation for Adiab

atic Quantum Mechanics

Rescale time by £ = €s to rewrite this as
dv> : -
— = H{(t) v f
di :

Or —T‘El"ﬁ_'T

Assume H(t) is self-adj

oint, depends Smoothly on ¢, and has a
multiplicity 1 eigenvalye E(t) that depends continug

usly on ¢

Further assume H(t) satisfies the g£ap condition
dist { E(¢), a(H(t))\ E(¢t) }

= g(t) > ¢




The Simplest Situation for Adiabatic Quantum Mechanics

Rescale time by ¢ = €s to rewrite this as

. _di =
te— = HIt) ¥, for T <t<T.
at }

Assume H(t) is self-adjoint. depends smoothly on ¢, and has a
multiplicity 1 eigenvalue E(t) that depends continuously on £.

Further assume H(t) satisfies the gap condition

dist { B(t), o(H(t)\E(t)} = g(t) = gp > 0 for —T<t<T.




The Adiabatic Connection. We can choose a normalized
eigenvector $(¢) that corresponds to E(t), depends smoothly on t.
and satisfies

®(t), B(t)) = 0.

In this sense, there are no Berry Phase issues when the eigenvector
depends on only 1 parameter.
However, we might have H(t;) = H(ts), but &(t;) £ B(ta).

Proof: By standard perturbation theory there exists a smooth.
normalized choice 9 (t) of eigenvector corresponding to E(t).

: d . oy . - sl e .
Since 0 = = IB1@)° = (®1(2). 21(8)) + (Da(t), D1(2)),

(®1(t), ®1(t)) is purely imaginary.

So, A(t) = /h :'{EPI{I‘}.*E’H:":I_ dr is real.
0

Simply verify that ®(t) = e*%*) $,(¢) satisfies the requirements.
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The Adiabatic Connection. We can choose a normalized
eigenvector $(£) that corresponds to E(t), depends smoothly on ¢,
and satisfies

B(t), B(t)) = 0.

In this sense, there are no Berrv Phase issues when the eigenvector
depends on only 1 parameter.
However, we might have H(ty) = H(t;), but &(t;) = $(¢s).

Proof: By standard perturbation theory there exists a smooth.
normalized choice P (t) of eigenvector corresponding to E(t).

Since 0 = — |®1(0)I> = (®1(2). ®1()) + (2(e), B1(2)),

{B4(t), B1(2)) is purely Imaginary.

So, @(t) = / I'-::fﬁl{r‘_].*iilt'_rj_ dr is real
0

Simply verify that ®(¢) = 9t P, (t) satisfies the requirements.













The Adiabatic Connection. We ean choose a normalized
eigenvector P(¢) that corresponds to E(t), depends smoothly on t,
and satisfies

(B(t), B(t)) = 0.

In this sense. there are no Berry Phase issues when the eigenvector
depends on only 1 parameter.
However, we might have H(t;) = H(t;), but ®(t;) = B(ta).

Proof: By standard perturbation theory there exists a smooth.
normalized choice P4 (t) of eigenvector corresponding to E(t).

: bl . : : : _
Since 0 = = l21()I° = (®1(t), 21(8)) + (D1(t), By(E)),

{®1(t), ©1(t) ) is purely imaginary.

So, 6(t) =/ ;'{fbl{r'z.*i:l:_rj dr is real
l..:'

Simply verify that ®(t) = 79t Pq(t) satisfies the requirements.




Thecrem 1. The Schrodinger equation has a soluti

el 8 asfe

where the error term denotes the norm of the error.

]
H
g

This can be improved to th

Theorem 2. For any positive integer N, the Schrodinger equation
has a solution of the form
. b - 3
- E{s)ds/ \ > " F e
e Jrﬂ a e ['IHI,I + ewy(t) + € a(t) + --- + £ r:_-._.-i_r}l

- GI:E'\‘_'-I‘:!_

There are two standard approaches for proving these results:

1. An integration by parts technique, due originally to Kato in
1949,

2. An asymptotic expansions technique. due originally to Born
and Fock in 1928,

Remark If H(t) is analytic in a complex neighborhood of the real

interval [ —T, T'], then optimal truncation of the asymptotic series
F I,-'—r L

yields an approximation with errors of order EXp ( — — )

L = I




Lemma. Suppose () is a smooth. vector-valued function
Define :
Ce(l) = i e —(t) — H £)
at
If [[G(t)]] < ule. t). then w.(2) agrees with an exact solution of

the Schriodin Zer equation up to an error whose norm is bounded by

1 '
- / ple, 8) ds.
£ 0

Proof: Let Ue(t, s) denote the propagator for the Sc hrodinger
equation. The norm of the error is then

L'E [t_:' = L':.: :_!-- l]] [2F [I[}_.I

= | Ue(0, L) we(t) — e(0) ||

= / — Ue(0, s) o9 (s) ds ‘

t ) |
f U.(0, s) (:'H[_'s] Vels) /e — d—L-E:_'aj) ds ||

ds
¢
f ple, s) ds.
0

1A
mo| =




Proofs of the Theorems: Make the Ansatz that the Schrodinger
equation has a solution of the form
b o - : -
+— .,I'thr_'r ol g 1f _FfTr':Ij o

Substitute this into the Schrodinger equation to obtain

L€ ('!:L. E) + r:*;'lll',l + eun(t) + -+~ )

y,

= [H(t) — E(t)] f volt) + ew(t) + € wa(t) + --- J

Then simply equate terms of the same orders on the two sides of
this equation.

Order 0. The order €? terms require

[H(t) — E(t)] volt) = 0.

volt) = folt) 2(t),

where we do not vet have any information about fg(t).

Order 1. The order €! terms require

i j‘[],r't'} O(t) + i fplt) b(t) = [H(t) — E(t)] ¥1(¢)-




The components of the two sides in the direction of ®(f) must be

equal. and the components orthogonal to $#(¢) must be equal.

Using our choice of phase for ®(t), we obtain the two equations:

[H(t) — E(t)] v1(t) = i folt) B(¢).

From the first equation, f3(t) is a constant (which we take to be 1).

To solve the second equation, we note that [H(t) — E(t)] is invert-
ible on the subspace orthogonal to ®(t). Applying this restricted
resolvent operator [H(t) — E(t)]-L, we obtain

vilt) = fi(t) () + ¥ (1),

where v5-(t) = i [H(t) — E(t)];1 ®(t), and fy(t) is not yet deter-
mined.

Completing the Proof of Theorem 1
Arbitrarily choose f;(t) = 0. The lemma then shows that

. pt s
— Els) ds/
Ge(t) = |_,'-‘] E(s)ds/e f dn .+ € LI._)
agrees with an exact solution up to an O(€) error.

The theorem follows since

= P j ; rt —
= (s)d { . .
e ¥ Jg Els)ds/e ( Wb et = — Jo Els ds/e B(t) + DI,_E!.

uniformly for —T <t < T.




Order 0. The order ¢ terms require

Thus,
volt) = folt) B(t).

where we do not yet have any information about fo(t)-

Order 1. The order ¢! terms require

i fo(t) B(2) + i fio(t) d(2) = [H(t) — E(t)] ¥1(2).

The components of the two sides in the direction of ©(#) must be
equal, and the components orthogonal to ©(t) must be equal.

Using our choice of phase for &(t). we obtain the two equations:
i folt) = O.

[H(t) — E(t)] ¥1(t) = i fia(t) $(2).
From the first equation. fo(t) is a constant (which we take to be L).

To solve the second equation, we note that [H(t) — E(#)] is invert-
ible on the subspace orthogonal to $(¢). Applying this restricted
resolvent operator [H(t) — E| t)]-1. we obtain




The components of the two sides in the direction of (¢} must be

equal. and the components orthogonal to ¥(¢t) must be equal.

Using our choice of phase for $&(t), we obtain the two equations:

[H(t) — E(t)] vi(t) = i fo(t) B(2).
From the first equation, f3(t) is a constant (which we take to be 1).
ible on the subspace orthogonal to $(t). Applying this restricted

resolvent operator [H(t) — E(t)]-1, we obtain

vi(t) = fi(t) () + ¥i(6),

To solve the second equation, we note that [H(t) — E(t)] is invert-

where ¥5-(t) = i [H(t) — E(t)]7! ®(t), and f(t) is not yet deter-
mined.

Completing the Proof of Theorem 1
Arbitrarily choose f;(t) = 0. The lemma then shows that
o f[; E(s)ds/e {

Ye(t) = Yp + € L'l_)

agrees with an exact solution up to an O(e) error.

The theorem follows since

e " —'rD Sls) dafe f{ o+ €Yy . = -,_:..Ir_'- E(s) ds/e $(t) + Ofe),

uniformly for - T <t < T.




Order n > 2. Write

wi(t) = fi(t) (t) + vi(t
Assume inductively that we have determined fifor j <n—2and
b

for j<n-—1.

Terms of order n require

: 4'Iaz“—-r.'—l r ey
= = [H(t) — E(t)] ¥n(t).

This implies

- a -_ . . - Ejtl) a.!_,'_-_ :
] _J:;f_l[t| ‘:'{Ii -— I ﬁ..__l[_['j -:tfl - '_:1—1[:}

= [H(t) — E(t)] wn(t)-

Once again, we split this into two conditions-

_ 8fn1 _ 7 :f
——— &+ (D) —=—)) —0 '
e (L) i (B(2) 5t (L) 0

_ ., OB i s St <o
i fn—1(t) E(z} + i P, (&) —E;‘t—l{z; = [H(t) — E(t)] ¢m(t),

where P, (t) = I — |B(¢)) (&(2)

We obtain

t =
) = ~f B(s), m=L(5)} ds.
0




Theorem 2 now follows when we apply the lemma to

t_—.’ Jl_l' E(s)ids/e P _f + €1 Lf § __..'-" usm(t) +
AT : =
—_— 'I'I.‘\-"fl —_ U:{'-—I_'-t.' k.
Comment about the error From this proof with N > 2. we

see that the solution is a scalar times ®(t) plus a phase times
e [H(t) — B(t)]-! &(t) plus a term of order e-.

S0, the exact solution is a scalar times ®(t) plus an error whose
precise leading order behavior is

e || B(2) || /g(t)-




(1)
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Improvements from the past 20 years or so.

1. As mentioned earlier. under analyticity hypotheses. optimal
truncation yields exponentially accurate approximations.

2. Suppose H(t) is smooth and that H(t) = H_ for t < —T and
H(t) = H; fort > T. Then one gets estimates that are uniform
for all time. Furthermore. for t| > T, the expansion becomes quite
trivial. At every order. the ¥5(¢) terms vanish for [¢] > T Generi-

cally, they do not vanish for [t! < T

3. The same phenomenon occurs in Scattering situations if H(¢)
and its derivatives approach limits sufficiently rapidly as £ — 4o
This generalizes to the exponential estimates if H(¢) is analytic in a
strip around the real axis with appropriate uniformity assumptions.

4. By WKB techniques for complex £, one can obtain exponentially
small transition amplitudes in scattering theory. In an appropriate
sense, this justifies Landan’s version of the Landau-Zener formula

For generic avoided crossings, the gaps behave like 2222 + & for

b
0 . 5 =
some a and c. The transition amplitude behaves like exp ( - ——)

S. “Superadiabatic” approximations of Sir Michael Berry have re-
cently been made rigorous in some circumstances. The underlying
idea is first to do the optimal truncation (or something equivalent)
to obtain a basis of very accurate approximate solutions. One then
does a second perturbation expansion using that basis as the set of
unperturbed states. In this way, In some cases, one can obtain the
leading order exponentially small corrections. Under appropriate
hypotheses. there is a universal time behavior for these corrections
that roughly has the form of Cr e/ erf(C3(t — tg) /\/e)




6. One can also generalize in other ways. For example, there are
various results concerning Hamiltonians that do not have gaps.

7. One can allow the gap to go to zero at a finitely many points
and still get estimates. Generically, the first correction to the main
- ¥ 1 y - -
adiabatic term is O(e'/=). Also, ope generically obtains powers of ¢

times powers of log(e) at higher order.

A few other comments.

1. There is a non—generic, but slightly non—trivial explicitly sow-
able model.

Let H(t) be the orthogonal projection onto the vector (2?;::; .
. cos=(t) cos(t) sin(t)
Hg) = cos(t) sin(¢) sin’(t)

== ISR cos(t)y , . — sin(t) -
Write ¥(t) = () (ginc'_t} + cot) ( cos(t) ) , and rewrite the
Schrodinger equation in terms of the vector (;{EH) - This leads to
a Schrodinger equation with time-independent Hamiltonian
1 e
{—3= () fa
which can clearly be solved explicitly:

2. By changing the time variable. one can move difficulties back
and forth between the gap to the eigenvector for two-level sys-
tems. In particular, as long as there is a gap, one can replace ¢
by _j: (E1(s) — Ea(s)) ds to obtain a new system whose the gap is
constant. However, a small gap at some time for the original sys-
tem translates into a larpe derivative for the eigenvector in the new
system. (An example of the principle of Conservation of Difficulty:)
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