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Abstract: | ook at the information-processing involved in a quantum computation, in terms of the difference between the Boolean logic underlying a
classical computation and the non-Boolean logic represented by the projective geometry of Hilbert space, in which the subspace structure of Hilbert
space replaces the set-theoretic structure of classical logic. | show that the original Deutsch XOR algorithm, Simon'’s algorithm, and Shor's algorithm
al involve a similar geometric formulation. In terms of this picture, | consider the question of where the speedup relative to classical algorithms
comes from.
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Outline

o Deutsch's XOR Alegorithm and Variations
© Simon's Algorithm
© Shor’s Algorithm
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General strategy

@ All three algorithms involve the determination of a global
property of a function. i.e.. a disjunctive property.
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General strategy

@ All three algorithms involve the determination of a global
property of a function. i.e.. a disjunctive property.

e The disjunction is represented as a subspace in an
appropriate Hilbert space. and alternative possible
disjunctions turn out to be represented as orthogonal
subspaces, except for intersections or overlaps.

@ The true disjunction is determined as the subspace
containing the state vector via a measurement.

Pirsa: 06020011 Page 5/133



General strategy

o All three all}_{nl‘ithlllh involve the determination of a f_?;l: ybal
property of a function. i.e.. a disjunctive property.

e The disjunction is represented as a subspace in an
appropriate Hilbert space. and alternative possible
disjunctions turn out to be represented as orthogonal
sl ISpaces, except for intersections or {R’PI‘IHI}:-\.

e The true disjunction is determined as the subspace
containing the state vector via a measurement.

@ The algorithm generally has to be run several times
because the state might be found in the overlap region.
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General strategy

@ The essential feature of these quantum computations is
that the true disjunction is distinguished from alternative
disjunctions without determining the truth values of the
disjuncts.
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General strategy

@ The essential feature of these quantum computations is
that the true disjunction is distinguished from alternative
disjunctions without determining the truth values of the
disjuncts.

e In a classical computation. distinguishing the true
disjunction would be impossible without the prior
determination of the truth values of the disjuncts.
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Deutsch’'s XOR Algorithm and Variations

Deutsch’s XOR algorithm

e B={0.1} a Boolean algebra (or the additive group ot
integers mod 2).
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Deutsch’'s XOR Algorithm and Variations

Deutsch’s XOR algorithm

e B={0.1} a Boolean algebra (or the additive group ot
integers mod 2).

@ Given a ‘black box™ or oracle that computes a function
f: B — B.
Rt'tli_lil‘v{_[ to determine whether the function is ‘constant’
(takes the same value for both inputs) or “"balanced’ (takes
a different value for each input).
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Deutsch’'s XOR Algorithm and Variations

Deutsch’s XOR algorithm

e B=1{0.1} a Boolean algebra (or the additive group ot
integers mod 2).

@ Given a ‘black box™ or oracle that computes a function
f: B— B.
Required to determine whether the function is ‘constant’
(takes the same value for both inputs) or “"balanced’ (takes
a different value for each input).

e Classically. the only way to do this would be to consult the
oracle twice. for the input values 0 and 1. and compare the
outputs.
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Deutsch’s XOR Algorithm and Variations

Deutsch’s XOR algorithm: quantum computation

e Quantum computation: input and output registers are
l-qubit registers initialized to the state |0)|0) in a standard
basis.
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Deutsch's XOR Algorithm and Variations

Deutsch’s XOR algorithm: quantum computation

o Quantum computation: input and output registers are
1-qubit registers initialized to the state |0)|0) in a standard
basis.

e Apply Hadamard transformation to the input register —
linear superposition of states corresponding to the two
possible input values 0 and 1.
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Deutsch's XOR Algorithm and Variations

Deutsch’s XOR algorithm: quantum computation

e Quantum computation: input and output registers are
1-qubit registers initialized to the state |0)|0) in a standard
basis.

e Apply Hadamard transformation to the input register —
linear superposition of states corresponding to the two
possible input values 0 and 1.

e Unitary transformation Uy : |x)|v) — |x)|v & f(x))
corresponding to the ‘black box™ correlates input values
with corresponding output values.
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Deutsch's XOR Algorithm and Variations

Deutsch’s XOR Algorithm: quantum computation

1 |
0)]0) = —(|0) +|1))|0) (1)
V2
: xﬁ(\u;\t(u); + |[1)[f(1))) (2)
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Deutsch's XOR Algorithm and Variations

Final state
the final composite state of both registers is one of

I constant:
the two orthogonal states:

lc1) = —(|0)|0) +|1)]0)) (3)
/9
V 4
Y 2

f balanced: the final composite state is one of the two

orthe VO mnal states:

. 1
b)) = —=(10)|0) +[1)]1)) (5)
Vv 2
_, 1 -~
V2
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Deutsch's XOR Algorithm and Variations

Possible final states lie in planes

e States |cq).

co) and |by), |be) span two planes P.. Py in
F o e - -
H= @ H", represented by the projection operators:

Pe = Piey) +Pley) (7)
Po = Pp,) +Pp,y) (8)

o Planes are orthogonal. except for an intersection. so their
projection operators commute. The intersection is the line
(rav) Hpaluuv{l h_’u' the vector:

1 1 1
—(l”“:*—-l”l‘I-‘l“n—Flll) = i(‘{'ll:i'-Fl('j ) — —_(“l]_ ‘-‘-l[H )
2 ! \‘I:z i / w-?"

(9)



Deutsch’s XOR Algorithm and Variations

Planes in prime basis

o In "prime’ basis spanned by the states
|0/) = H|0). [1") = H|1) intersection is the state |0")|0").
‘constant’ plane is spanned by [0/)[0"). |0")]|1"), and
‘balanced’” plane is spanned by |0) |i'l":',':-. 137} [¥’).
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Deutsch’'s XOR Algorithm and Variations

Possible final states lie in planes

@ States |cq).

ca) and |byq). “J_‘g" span two planes P..Py in
o, _ _
H= @ H=. represented by the projection operators:

-~

Fe = P|C1} & P|f:§' "I
Pb P|b1_‘.| =+ P|bj:;.

-.j_

e Planes are orthogonal. except for an intersection. so their
projection operators commute. The intersection is the line
(ray) Hpauuwl bv the vector:

1 . 1 , 1 .
—(ll_]{i:}——ll_}l?-I—‘l[_}:}—l-lll:}) — —_(‘t'lﬁl-l—l('gf‘-) — i(“"ll;}-'-lhg 'If)
2 ' | vV 2 | | V2

(9)



Deutsch's XOR Algorithm and Variations

Planes in prime basis
am

e In ‘prime’ basis spanned by the states
|0/) = H|0). [1") = H|1) intersection is the state |0")|0").
‘constant’ plane is spanned by |0")|0%). |0"}|1"), and
‘balanced’ plane is spanned by [0)|0/).|17)|17).
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Deutsch’'s XOR Algorithm and Variations

Planes in prime basis

e In "‘prime’ basis spanned by the states
10°) = H\l}" 11"y = H|1) intersection is the state |0/)]|0").
‘constant’ plane is spanned by [0/)[0%). |0")]|1"), and
‘balanced’ plane is spanned by |0/)|0/). |17)[17).

@ Note that:

ks

<
I

|“!::-|1'F::- — (‘{'l_f — ‘{'-3:1) (10)

‘ b

|l!::-|lf:?- (“"1 — “]1.) (11)

tx.ﬂ
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Deutsch's XOR Algorithm and Variations

Planes in prime basis

“ 0"

balanced
constant 1Y)
—
| 0’1"
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Deutsch's XOR Algorithm and Variations

Planes in prime basis

e In "prime’ basis spanned by the states
) = H\H“ 11"y = H|1) intersection is the state |0')]|0).
‘constant’ plane is spanned by [0/)[0%). |0")]|1"), and
‘balanced’ plane is spanned by [07)[0/). |17)[17).

@ Note that:

| _‘

001 = —=(le1) — |e2)) (10)

\

‘ b
I x.ar

|lfj:-|1f:"a (“11 — |ba)) (11)

lx.ﬂ
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Deutsch’'s XOR Algorithm and Variations

Planes in prime basis

“ 0"

balanced
; 1714\
constant Iy
>
|l_}’l’::|
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Deutsch’'s XOR Algorithm and Variations

Usual formulation of algorithm

@ Usnal formulation of the algorithm: to decide whether the
flllli'tillll i l“'t constant or IJE'IIHIU'*'“I nmeasiire tlll"‘ ullf]}lll‘
register in prime basis.

o If outcome is (¥ (obtained with probability 1/2. whether
the state ends up in the constant plane or the balanced
plane). the computation is inconclusive, vielding no
information about the function f.

o If outcome is 1’. measure the input register. If the outcome
of the measurement on the input register is /. the function
is constant; if it is 1’, the function is balanced.
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Deutsch's XOR Algorithm and Variations

Geometric formulation
am

o Alternativelv. measure the observable with eigenstates
o). |01, (1707, [1'17). Final state is in 3-dimensional
subspace orthogonal to the vector [1°0"). either in the
constant plullv or the balanced plz-lile*..

o If state is in constant plane, we will either obtain the
outcome 0’0" with probability 1/2 (since the final state is at
an angle 7/4 to [(Y0")). in which case the computation is
inconclusive. or the outcome (/1" with probability 1/2.

e If state is in balanced plane, we will again obtain the
outcome 0’0" with probability 1/2. in which case the
computation is inconclusive. or the outcome 1’1" with
probability 1/2.
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Deutsch's XOR Algorithm and Variations

Solution in one run

e With probability 1/2, we can distinguish in one run of the
algorithm between the two quantum disjunctions ‘constant’
and ‘balanced’ represented by the planes:

PC — PIOFO!} “ P“:'! 1::: 1: lj]
Ph Pl{]r”:} \/ P|1;1;; 1 l.j-)

|

without finding out the truth values of the disjuncts in the
computation (i.e., whether in the ‘constant’ case the
function maps 0 to 0 and 1 to 0 or whether the function
maps 0 to 1 and 1 to 1, and similarly in the “balanced’
case|).

@ We could also apply a Hadamard transformation to the

final states of both registers and measure in the

. . . . VOV k. ot
I {_Hllll)llfclrltilldl basis. since |U 0, — |{H_},_ etc. e 27155
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Deutsch's XOR Algorithm and Variations

Modest speedup, probability 1/2 of failing

@ Deutsch's XOR algorithm was the first quantum algorithm
with a demonstrated speed-up over any classical algorithm
performing the same computational task.

@ Algorithm has an even probability of failing. so
improvement in efficiency over a classical computation is
only achieved if the algorithm succeeds, and even then is
rather modest: one run of the quantum algorithm versus
two runs of a classical algorithm.

@ A variation bv Cleve (1998) avoids this feature.
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Deutsch's XOR Algorithm and Variations

Usual formulation

2
e Consider state of input register:

]_):-:~}'+I‘{:-c)

= —1)f(x)
Yy ( = =Y ( l%x 0...0)+... (17
y X =

o Coefficient of state |0...0) in the linear superposition is

v (1))

F— :\ \H'I :2 n
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Deutsch's XOR Algorithm and Variations

Geometric Picture

@ The final Hadamard transformation transforms the
constant state:

:i:%(]ﬂﬂ“} +101) + [10) + [11)) 2 +/00) (18)

and the six balanced states to states in the 3-dimensional
:-auhr-apm*{_‘l orthogonal to [l_]l}";.

@ So to decide whether the function is constant or balanced
we need only measure the input register and check whether
it is in the state |00).
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Simon’'s Algorithm

Simon’s algorithm

@ Problem: find the period r of a periodic function
f: B®* — B". ie.. a Boolean funection for which

f(}{i) = f(\J) if and Hlll_‘{ if S & r for all Xj. Xj € B®
(19)
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Simon's Algorithm

Simon’s algorithm

@ Problem: find the period r of a periodic function
f: B® — B". i.e.. a Boolean function for which

f(}li) = t(\J) if and {}lllf{ if X; = X & r for all Xij.Xj € B®
(19)

@ Since x &r & r = X, the function is 2-to-1.

Pirsa: 06020011 Page 32/133

[ e e e



Simon’'s Algorithm

Simon’s Algorithm

e Start with the input and output registers in the state
10...0)|0) in the computational basis:

on 1
| 1 .
0...0)j0) = — > x)[0) (20)
b x=0
U 1 \
: — Z |x) |f(x) (21)
V< x
1 ‘}Ci:? = "{1 39
e - __'I
V-"-)n—i Z \.2 “(\ ) ' :
2 -

where U is the unitary transformation implementing the
Boolean function as:

Us: |X)|y) — |X) |y & f(x)) (23)
Pirsa: 06020011
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Simon's Algorithm

Usual formulation

@ Consider what happens if we measure the output register
and keep the state of the input register, which will have the
form:

X;)+ X Pr
)+er i

V

Pirsa: 06020011 Page 34/133



Simon's Algorithm

Usual formulation

o Consider what happens if we measure the output register
and keep the state of the input register., which will have the
form:

/>

\

@ This state contains the information r. but summed with an
nunwanted ranc lnllll}' chosen offset Xi that {l{_’lJi'H[lh on the
measurement outcome. A direct measurement of the state
label would yvield any x € B" equiprobably. providing no
information about r.
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Simon's Algorithm

Hadamard moves offset to phase

o Apply a Hadamard transform:
IXi) + |xibr) H (—1)5Y + (—1)®0)s oK
\f? _Z V“’Fi ‘1\. l_._ljl
yeB®»
el
' {jfjﬁ

Page 36/133
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Simon’'s Algorithm

Hadamard moves offset to phase

o Apply a Hadamard transform:

IXi) + |xi & 1) H Z (—1)5¥ + _1)('-1~—r) v T
= = (2D
v i} }-._',EBII \’fi)
—1)xiy
= Z ( )? A (26)
yr-y=0 bt

e Finally. measure the input register in the computational
basis and obtain a value v (equiprobably) such that
r-y=0
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Simon’'s Algorithm

Hadamard moves offset to phase

o Apply a Hadamard transform:

G BT _1y6Y _1\(xi®r)y
|}LL - - _.}_‘Ll = H Z ( l) == I._1) i h '35)
\“'j i} yeB® Vv 2
—1)%iy
- ¥ 5
V4

@ Finally. measure the input register in the computational
basis and obtain a value v (equiprobably) such that
r-y =0

@ Then repeat the algorithm sufficiently many times to find
enough values v; so that r can be determined by solving the
linear equations r-y; =0..... r-ye =0
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Simon’s Algorithm—Geometric Picture

@ lo see what is “{11111_,‘ on ge« metric dll\ consider case n = 2.
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Simon’'s Algorithm

Simon’s Algorithm—Geometric Picture

@ To see what is gOIME ON Zex HIIHTI'i{'a”ﬁ'. consider case n = 2.
@ Possible values of the period r are: 01. 10, 11, and
corresponding states of the input and output registers after
the unitary transformation Us are:
r=01: (|00) + |01))|£(00)) + (|10} + [11))|£(10))
r =10 : (|00) + [10))|f(00)) + (|01) + |11))|£(01),
- (]01) + |10))[£(01))

r=11: (|00) + |11))|f(00)) +
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Simon’'s Algorithm

— 2 case reduces to Deutsch’s XOR algorithm

@ This case reduces to the same Ze metric construction as in
Deutsch’s XOR algorithm.

Pirsa: 06020011 Page 41/133



Simon’'s Algorithm

n = 2 case reduces to Deutsch’s XOR algorithm

@ This case reduces to the same geometric construction as in
Deutsch’s XOR algorithm.
r = 10 : input register states are |c;) = |00) + [10) or
o) = |01) + [11). depending on the outcome
of the measurement of the output register.
r = 11 : input register states are |by) = |00) + |11) or
|ba) = |01) + [10). depending on the outcome
of the measurement of the output register.
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Simon’'s Algorithm

n = 2 case reduces to Deutsch’'s XOR algorithm

@ This case reduces to the same geometric construction as in
Deutsch’s XOR algorithm.

r = 10 : input register states are |[c;) = |00) + [10) or
lca) = |01) +|11). depending on the outcome
of the measurement of the output register.

r = 11 : input register states are |by;) = [00) + [11) or
|ba) = |01) + [10). depending on the outcome
of the measurement of the output register.

@ So the three possible periods are associated with three
planes in H? @ H?. which correspond to the constant and
balanced planes in Deutsch’'s XOR algorithm, and a third
plane, all three planes intersecting in the line spanned by
the vector |00).
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Simon’'s Algorithm

Prime basis

In the prime basis obtained by applving the Hadamard
transformation. planes are as follows:

r = 01 : plane spanned by [0'0"), [10/)

r = 10 : plane spanned by [0'0").|0’1") (corresponds to
‘constant’ ]11;1111:-‘}

r = 11 : plane spanned by |0°0"),|1'1") (corresponds to
‘balanced” plane)

Pirsa: 06020011 Page 44/133
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Simon’'s Algorithm

Planes in prime basis

00"
A
=1k
F—1f 11717
>
|l,]"l’::|
11707}
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Simon's Algorithm

Finding the period

e We could simply measure the input register in the prime
basis to find the period.
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Simon's Algorithm

Finding the period

e We could simply measure the input register in the prime
basis to find the period.

e Alternatively, we could apply a Hadamard transformation
(which amounts to dropping the primes in the above
representation of the r-planes) and measure in the
computational basis.
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Simon’'s Algorithm

Finding the period

@ The three planes are orthogonal. except for their
intersection in the line spanned by the vector [00). The
three possible periods can therefore be distinguished by
measuring the observable with eigenstates
100). [01), |10). [11). except when the state of the register is
projected by the measurement (‘collapses’) onto the
intersection state |00) (which occurs with probability 1/2).
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Simon's Algorithm

Finding the period

@ The three planes are orthogonal. except for their
intersection in the line spanned by the vector [00). The
three possible periods can therefore be distinguished by
measuring the observable with eigenstates
100).01). |10). |11). except when the state of the register is
projected by the measurement (‘collapses’) onto the
intersection state |00) (which occurs with probability 1/2).

e So the algorithm will generally have to be repeated until
we find an outcome that is not 00.
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Simon’'s Algorithm

(General case: n

@ We can see what happens in the general case if we consider
the case n = 3.
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(General case: n

@ We can see what happens in the general case if we consider
the case n = 3.

@ There are now seven possible periods: 001. 010, 011, 100,
101, 110, 111.

Pirsa: 06020011 Page 51/133
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Period r = 001

@ Period r = 001: the state of the two registers after the
unitary transformation Ug is:
(|000) + |001))|£(000)) + (|010) + |011))|£(010))
+(]100) + [101))[£(100)) + (|110) + |111))|f(110)[27)

irsa: 06020011 Page 52/133
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Simon's Algorithm

State ends up in 4-dimensional subspace

o Applving a Hadamard transformation amounts to dropping
the primes.

Pirsa: 06020011 Page 53/133



Period r = 001

@ Period r = 001: the state of the two registers after the
unitary transformation Ug is:
(|000) + [001))|£(000)) + (|010) + |011))|£(010))
+(]100) + [101))[£(100)) + (|110) + |111))|f(110))27)

o Measure the output register — the input register is left in
one of four states, depending on the outcome of the
measurement:

000) + |001) = |0°0°0") + |0'170") + |1'0°0") + [1'170%)
010) 4+ |011) = [0’0'0") — |0"1'0") + [170°0") — |1'170")
100) +[101) = |0°0°0") + |0'1"0") — [170°0") — |1'1'0)
110) +|111) = [00'0") — |0'1'0") — |10'0)) + |10



Simon’'s Algorithm

State ends up in 4-dimensional subspace

o Applving a Hadamard transformation amounts to dropping
the primes.
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Period r = 001

@ Period r = 001: the state of the two registers after the
nunitary transformation Uy is:
(1000) + [001))|£(000)) + (]010) + |011))|£(010))
+(|100) + |101))[£(100)) + (|110) + |111))|f(110)f27)

e Measure the output register — the input register is left in
one of four states, depending on the outcome of the
measurement:

000) +(001) = [0'00") + |0"10") + |1'0'0") + [1"1°0")
010) +|011) = |00'0") — |0’1'0") + |1'0’0") — |1'170")
100) +[101) = |00°0") + |0"1'0") — |170"0") — |1"1707)
110) +|111) = |0'0'0") — |0'1'0") — |1’0’0") + |1170")



Simon’'s Algorithm

State ends up in 4-dimensional subspace

@ Applving a Hadamard transformation amounts to dropping
the primes.

Pirsa: 06020011 Page 57/133
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Simon’'s Algorithm

State ends up in 4-dimensional subspace

@ Applving a Hadamard transformation amounts to dropping
the primes.

@ So if the period is r = 001, the state of the input register
ends up in the 4-dimensional subspace of H? @ H? @ H?
spanned by the vectors: |000),[010). |100). |110).
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Simon's Algorithm

Subspaces for different possible periods

A similar analysis applies to the other six possible periods.
Corresponding subspaces are spanned by the following vectors:

r = 001: |000),|010),|100). [110)
r = 010: [000),|001).[100).|101)
r = 011: |000),|011), [100), [111)
r = 100: |000).|001).|010).|011)
r = 101: ]000),|010). [101), |111)
r = 110: |000), [001). |110), |111)
r=111: |000).|011).|101).|110)

Pirsa: 06020011




Simon’'s Algorithm

Geometric Picture

@ Subspaces are orthogonal except for intersections in
2-dimensional planes. Note that the subspaces correspond
to quantum disjunctions. So determining the period of the
function by Simon's algorithm amounts to determining
which disjunction out of the seven alternative disjunctions
is true. i.e.. which subspace contains the state. without
determining the truth values of the disjuncts.
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Geometric Picture

@ Subspaces are orthogonal except for intersections in
2-dimensional planes. Note that the subspaces correspond
to quantum disjunctions. So determining the period of the
function by Simon's algorithm amounts to determining
which disjunction out of the seven alternative disjunctions
is true. i.e.. which subspace contains the state. without
determining the truth values of the disjuncts.

@ The period can be found by measuring in the
computational basis. Repetitions of the measurement will
eventually vield sufficiently many distinet values to
determine in which subspace out of the seven possibilities
the final state lies.
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Simon's Algorithm

Geometric Picture

@ In case n = 3. it is clear by examining the above list that
two values distinet from 000 suffice to determine the
subspace. and these are just the values v; for which
r-vy; = 0.
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Simon's Algorithm

Geometric Picture

@ In case n = 3. it is clear by examining the above list that
two values distincet from 000 suffice to determine the
subspace. and these are just the values v; for which
PV =1L

e Note that the subspaces correspond to quantum
disjunctions.
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Simon’'s Algorithm

Geometric Picture

@ In case n = 3. it is clear by examining the above list that
two values distinet from 000 suffice to determine the
subspace. and these are just the values v; for which
r-Vy = 0.

@ Note that the subspaces correspond to quantum
disjunctions.

@ So determining the period of the function by Simon’s
algorithm amounts to determining which disjunction out of
the seven alternative disjunctions is true, i.e.. which
subspace contains the state. without determining the truth
values of the disjuncts.
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Shor’'s Algorithm

Prime factorization

@ Shor’s factorization algorithm exploits the fact that the two
prime factors p. q of a positive integer N = pq can be found
by determining the period of a function f(x) = a* mod N.
for any a < N which is coprime to N. i.e.. has no common

factors with N other than 1.

Pirsa: 06020011 Page 65/133
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Simon’'s Algorithm

Geometric Picture

@ In case n = 3. it is clear by examining the above list that
two values distinet from 000 suffice to determine the
subspace. and these are just the values v; for which
P-¥y; =L

e Note that the subspaces correspond to quantum
disjunctions.

@ So determining the period of the function by Simon's
algorithm amounts to determining which disjunction out of
the seven alternative disjunctions is true, i.e.. which
subspace contains the state. without determining the truth
values of the disjuncts.
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Shor’'s Algorithm

Prime factorization

@ Shor’s factorization algorithm exploits the fact that the two
prime factors p. q of a positive integer N = pq can be found
by determining the period of a function f(x) = a* mod N,
for any a < N which is coprime to N. i.e.. has no common

factors with N other than 1.
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Shor’'s Algorithm

Prime factorization

e Shor’s factorization algorithm exploits the fact that the two
prime factors p. q of a positive integer N = pq can be found
by determining the period of a function f(x) = a* mod N.
for any a < N which is coprime to N. i.e.. has no common
factors with N other than 1.

@ The period r of f(x) depends on a and N. Once we know
the period, we can factor N if r is even and
a2 # —1 mod N, which will be the case with probability
oreater than 1/2 if a is chosen randomly. (If not, we choose
another value of a.)
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Simon’'s Algorithm

Geometric Picture

@ In case n = 3. it is clear by examining the above list that
two values distinct from 000 suffice to determine the
subspace. and these are just the values y; for which
PV =L

e Note that the subspaces correspond to quantum
disjunctions.

@ So determining the period of the function by Simon’s
algorithm amounts to determining which disjunction out of
the seven alternative disjunctions is true, i.e.. which
subspace contains the state. without determining the truth
values of the disjuncts.
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Shor's Algorithm

Prime factorization

e Shor’s factorization algorithm exploits the fact that the two
prime factors p. q of a positive integer N = pq can be found
by determining the period of a function f(x) = a* mod N,
for any a < N which is coprime to N. i.e.. has no common

factors with N other than 1.
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Shor's Algorithm

Prime factorization

@ The factors of N are the greatest common factors of
/9 ’ . . i =
a”’< 4 1 and N. which can be found in polynomial time by
the Euclidean algorithm.
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Shor's Algorithm

Prime factorization

@ The factors of N are the greatest common factors of
a”’“ £ 1 and N, which can be found in polynomial time by
the Euclidean algorithm.

@ So the problem of factorizing a composite integer N that is
the product of two primes reduces to the problem of
finding the period of a certain periodic function
f:7Zs — Zn. where Z; is the additive group of integers mod
n (rather than B". the n-fold Cartesian product of a
Boolean algebra B. as in Simon’s algorithm).
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Shor's Algorithm

Prime factorization

@ The factors of N are the greatest common factors of
a”2 + 1 and N. which can be found in polvnomial time by
the Euclidean algorithm.

@ So the problem of factorizing a composite integer N that is
the product of two primes reduces to the problem of
finding the period of a certain periodic function
f:Zs — Zn. where Z; is the additive group of integers mod
n (rather than B". the n-fold Cartesian product of a
Boolean alegebra B. as in Simon’s algorithm).

e Note that f(x + 1) = f(x) if x + 1 < s. The function f is
periodic if r divides s exactly. otherwise it is almost
periodic.
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Shor's Algorithm

Shor’s algorithm: usual formulation

@ Begin by initializing the input register (s qubits) to the
0) € 'H® and the output register (N qubits) to the
0) ¢ HN.

state
state
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Shor's Algorithm

Shor’s algorithm: usual formulation

e Begin by initializing the input register (s qubits) to the
state |0) € 'H® and the output register (N qubits) to the
state |0) € HY.

@ Apply an .w-tuhl Hadamard transformation to the input
register. followed by the unitaryv transformation Us which
implements the function f(}:) = a* mod N:

0y]0) 2 _Z x)[0) (28)

x—H0)

— —_Z ‘}::‘Jh -+ llll vl \ (30)
'S
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Shor’'s Algorithm

Shor’s algorithm: usual formulation

e Measure the output register in the computational basis and
obtain a state of the following form for the input register:

§ ™
— Z IX; + Jr) (31)
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Shor's Algorithm

Shor’s algorithm: usual formulation

@ Measure the output register in the computational basis and
obtain a state of the following form for the input register:

1 .
e E IX; + 1) (31)

@ This will be the case if r divides s exactly.
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Shor's Algorithm

Shor’s algorithm: usual formulation

@ Measure the output register in the computational basis and
obtain a state of the following form for the input register:

s/r—1

Z IX; + 1) (31)

VAR i=0

@ This will be the case if r divides s exactly.
@ lhe value x; is the offset. which depends on the outcome i
of the measurement of the output register.
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Shor's Algorithm

Shor’s algorithm: usual formulation

e Measure the output register in the computational basis and
obtain a state of the following form for the input register:

1
— Z IX; + Jr) (31)

@ This will be the case if r divides s exactly.

@ lhe value x; is the offset. which depends on the outcome i
of the measurement of the output register.

@ The sum is taken over the values of j for which
f(x; + jr) = i. (When r does not divide s exactly. the
analysis is a little more complicated.)
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Shor's Algorithm

Discrete Fourier transform

@ Since the state label contains the random offset. a direct
measurement of the label vields no information about the
[}H[‘iml.
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Shor’'s Algorithm

Discrete Fourier transform

@ Since the state label contains the random offset, a direct
measurement of the label vields no information about the
period.

e Apply a discrete Fourier transform for the integers mod s
to the input register. i.e.. a unitary transformation:

|x) =Y " e?" 5 y), for x € Zs (32)
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Shor’'s Algorithm

Offset shifted into phase factor

@ This vields the transition:

1 il U i = k
. « UDFTs g e ) [ ye
— E x; + jr) — E e“"7r |ks/r) (33)
E L .-"I 1_ !
VT =0 ¥E 5—0
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Shor's Algorithm

Offset shifted into phase factor

@ This vields the transition:

=

r 1‘—].

_[_ . I_T } ]. i . xlk "

— =djr) — — e*™= |ks/T) (33)
f S ] L FE .

VT o Ve

e Shifts the offset into a phase factor and inverts the period
as a multiple of s/r.
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Shor's Algorithm

Offset shifted into phase factor

@ This vields the transition:

r—1

=1
l - o I—TDFT ]_ s Xi K :
— E x; + jr) T — E e“"'r |ks/r) (33)
5 | 7= .
\/r i=0 |

e Shifts the offset info a phase factor and inverts the period
as a multiple of s/r.

e A measurement of the input register in the computational
basis vields ¢ = ks/r.
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Shor’'s Algorithm

Offset shifted into phase factor

@ This vields the transition:

1 = U = k
. « YUDFTs izt /o \
= E \Xi <+ = =" 3 ‘kr;.,.’r} (33)
E : r.-'l- '
Vr =0 V7 k=0

e Shifts the offset into a phase factor and inverts the period
as a multiple of s/r.

e A measurement of the input register in the computational
basis vields ¢ = ks/r.

@ The algorithm is run a number of times until a value of k
coprime to r is obtained. Cancelling ¢/s to lowest terms
then yields k and r as k/r.
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Shor's Algorithm

Randomized algorithm

@ We don't know the value of r in advance of applyving the
algorithm. so we don't recognize when a measurement
outcome yvields a value of k coprime to r.
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Shor's Algorithm

Geometrical picture

@ Consider case N = 15.a =7 and s = 64 (discussed 1n
Barenco).

@ The function f(x) = a* mod 15 is:

P mod15 = 1
Tmodl1s = 7
7“mod15 = 4
™ mod 15 = 13
7*mod15 = 1

and the period is evidently r = 4.
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Shor's Algorithm

Factors

The factors 3 and 5 of 15 are derived as the greatest common
. . 19 _ 9 - -
factors of a"/“ — 1 =48 and 15 and a/“ 4+ 1 = 50 and 15,
respectively.
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Shor's Algorithm

Final state after unitary evolution

After the application of the unitary transformation
Us = a®™ mod N. the state of the two registers is:

$(10)[1) + |1)|7) + [2)[4) + |3)[13)
+ |4 |1) +15)|7) + |6)|4) +|7)[13)
+ [60)[1) + |61)|7) + [62)|4) + |63)|13)) (34)
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Shor's Algorithm

Final state after unitary evolution

This state can be 1‘}:1}1‘{*.55{'*11 as:

1(10) + 4) + [8) + ... +160))|1)

+£(\1; +|5) +19) + ...+ |61))|7)

+1(12) +16) + [10) + ...+ |62))]4)

+%(|3? + |7) 4+ |11) + ...+ |63))|13)) (35)
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Shor’'s Algorithm

Input states

o If we measure the output register. we obtain (equiprobably)
one of four states for the input register. depending on the
outcome of the measurement: 1. 7. 4, or 13:

1(10) + [4) + 18) + ... + 60)) (36)
(11 +|5) +19) + ... +|61)) (37)
1(12) + 16) + [10) + ... +[62)) (38)
1(I13) +|7) +111) + ... +|63)) (39)
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Shor’'s Algorithm

Input states

o If we measure the output register. we obtain (equiprobably)
one of four states for the input register, depending on the
outcome of the measurement: 1. 7. 4, or 13

l(l{]'f. + [4) + |8) + ... +|60)) (36)

(11 +|5) +19) + ... +|61)) (37)
5(\:2:. + |6) 4+ ]10) + ... + |62)) (38)
1(13) +17) +|11) + ... +|63)) (39)

@ These are the states

S I'_—
E IX; + 1) (40)
r‘H T =0
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Shor’'s Algorithm

Input states after Fourier transform

e Application of the discrete Fourier transform yields:
x; =0: 2(|0) + |16) + |32) + |48))

X; : 0) +1i|16) — [32) —i[48))

=2 1( 0) —|16) + |32) — |48))

— & - 9

L(loy —i|16) — |32) + i|48))

I_/‘

I

I
2
—

xisa =3

which are the states in

r—1
. « UDFT, 2 |
: E 1X; + jT) — E g (41)
VT 5=0 vIii—o
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Shor’'s Algorithm

Input states after Fourier transform

e Application of the discrete Fourier transform yields:

x1 = 0: 3(]0) +]16) + [32) + |48))
x7=1: 3(]0) +i|16) — |32) —i|48))
x4 =2: £(|0) —|16) + |32) — |48))
Xz =3 —}? \ll —1|16) — [32) +1/48))

which are the states in

=
.+ VDPFT,
_E X; + jr) _E e (41)
r =0 V" k=0

@ So for the period r = 4. the state of the input register ends
up in the 4-dimensional subspace spanned by the vectors
10), |16). |32). |48).
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Shor's Algorithm

Geometric Picture

e Counsider all possible even periods r for which
f(x) = a® mod 15. where a is coprime to 15.
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Shor's Algorithm

Geometric Picture

e Consider all possible even periods r for which
f(x) = a® mod 15. where a is coprime to 15.

@ The other possible values of a are 2, 4. 8. 11. 13, 14 and the
corresponding periods turn out to be 4. 2. 4. 2. 4. 2. So we
need only consider r = 2.
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Shor's Algorithm

Geometric Picture

@ Consider all possible even periods r for which
f(x) = a® mod 15. where a is coprime to 15.

@ The other possible values of a are 2. 4. 8. 11. 13. 14 and the
corresponding periods turn out to be 4. 2. 4. 2. 4. 2. So we
need only consider r = 2.

e Note: every value of a except a = 14 }'i{_"ltlh the correct

factors for 15. For a = 14. the method fails: r = 2. so
= =
az — —1 mod 15.
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Shor's Algorithm

Geometric picture

e For r = 2. if we measure the output register. we will obtain
(equiprobably) one of two states for the input register.
depending on the outcome of the measurement (sav, a or

b):
0) +12) + |4) + ...+ |62) (42)
1) +13)+15) + ...+ |63) (43)



Shor's Algorithm

Geometric picture

e For r = 2. if we measure the output register. we will obtain
(equiprobably) one of two states for the input register.
depending on the outcome of the measurement (sav, a or

b):
0) +12) + [4) + ...+ |62) (42)
1) +13) +15) + ...+ |63) (43)

@ After the discrete Fourier transform. these states are
transformed to:

v
)

0: |0) +[32)
xp =1: |0) —|32)
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Shor's Algorithm

Geometric picture

e In this case. the 2-dimensional subspace V,—s spanned by
10).[32) for r = 2 is included in the 4-dimensional subspace
1/}:_1 ﬁll' F=i

Pirsa: 06020011 Page 100/133



Shor's Algorithm

Geometric picture

e In this case. the 2-dimensional subspace V,—s spanned by
10).[32) for r = 2 is included in the 4-dimensional subspace
Vg lorr=4.

@ A measurement can distinguish r = 4 from r = 2 reliably,
i.e.. whether the final state of the input register is in V,—4
or V;—». only if the final state is in V,—4 — V,—». the part of
Vi—4 orthogonal to V,—s.
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Shor's Algorithm

Geometric picture

o In this case. the 2-dimensional subspace V,—s spanned by
10).[32) for r = 2 is included in the 4-dimensional subspace
Vg lor r=4.

@ A measurement can distinguish r = 4 from r = 2 reliably,
1.e.. whether the final state of the input register is in V,—4
or V,—». only if the final state is in V,—y — V,—». the part of
Vi—4 orthogonal to V,—o.

e What happens if the final state ends up in V,_5?
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Shor's Algorithm

Geometric picture

@ Shor’s algorithm works as a randomized algorithm. It
produces a candidate value for the period r and hence a
candidate factor of N. which can be tested (in polvnomial
time) by division into N.
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Shor's Algorithm

Geometric picture

@ Shor’s algorithm works as a randomized aleorithm. It
produces a candidate value for the period r and hence a
candidate factor of N. which can be tested (in polynomial
time) by division into N.

e A measurement of the input register in the computational
basis vields an outcome ¢ = ks/r. The value of k is chosen
equiprobably by the measurement of the output register.
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Shor's Algorithm

Geometric picture

@ Shor’s algorithm works as a randomized aleorithm. It
produces a candidate value for the period r and hence a
candidate factor of N, which can be tested (in polynomial
time) by division into N.

e A measurement of the input register in the computational
basis vields an outcome ¢ = ks/r. The value of k is chosen
equiprobably by the measurement of the output register.

@ The procedure is to repeat the algorithm until the outcome
vields a value of k coprime to r. in which case canceling ¢/s
to lowest terms vields k and r as k/r.
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Shor's Algorithm

Geometric picture

@ Suppose we choose a value of a with period r = 2 and find
thi_‘ value ¢ = 32.

@ The only value of k coprime to r is k = 1. Then ¢/s
cancelled to lowest terms is 1/2. which vields the correct
period. and hence the correct factors of N.
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Shor's Algorithm

Geometric picture

e Suppose we choose a value of a with period r = 2 and find
the value ¢ = 32.

@ The only value of k coprime to r is k = 1. Then ¢/s
cancelled to lowest terms is 1/2. which vields the correct
period, and hence the correct factors of N.

@ But ¢ = 32 could also be obtained for a=7. r = 4. and
k = 2. which does not vield the correct period. and hence
does not vield the correct factors of N.
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Shor’'s Algorithm

Geometric picture

e Putting it geometrically: the value k =1 for r = 2
corresponds to the same state, |32). as the value k = 2 for
r = 4.
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Shor's Algorithm

Geometric picture

e Putting it geometrically: the value k =1 for r = 2
corresponds to the same state, |32). as the value k = 2 for
r=4.

@ Once we obtain the candidate period r = 2 (by cancelling
¢/s = 32/64 to lowest terms). we calculate the factors of N
as the greatest common factors of a =1 and N and test
these by division into N.
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Shor’'s Algorithm

Geometric picture

e Putting it geometrically: the value k =1 for r = 2
corresponds to the same state, |32). as the value k = 2 for
r=4.

@ Once we obtain the candidate period r = 2 (by cancelling
¢/s = 32/64 to lowest terms). we calculate the factors of N
as the greatest common factors of a =1 and N and test
these by division into N.

o If a =7, these calculated factors will be incorrect. If a = 2.
say. the factors caleculated in this way will be correct.
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Shor’'s Algorithm

Geometric picture

With the added information provided by the outcome of a test
division of a candidate factor into N. Shor’s randomized
algorithm again amounts to determining which disjunction
among alternative disjunctions is true, i.e.. which subspace
contains the state, without determining the truth values of the
disjuncts.

Pirsa: 06020011 Page 111/133



Speedup?

What feature is responsible for the exponential

speedup?

What. precisely. is the feature of a quantum computer
responsible for the phenomenal efficiency over a classical
computer? In the case of Simon’s algorithm. the speed-up is
exponential over any classical algorithm: in the case of Shor's
algorithm. the speed-up is exponential over any known classical
aleorithm.
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Speedup?

Deutsch’s view

@ The first stage of a quantum algorithm involves the
creation of a state in which every input value to the
function is correlated with a corresponding output value.
Deutsch cites this "quantum parallelism™ as the source of
the speed-up in a quantum computation.
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Deutsch’s view

@ The first stage of a quantum algorithm involves the
creation of a state in which every input value to the
function is correlated with a corresponding output value.
Deutsch cites this "quantum parallelism™ as the source of
the speed-up in a quantum computation.

@ The idea is that a quantum computation is something like
a massively parallel classical computation. for all possible
alues of a function. with the parallel computations taking
place in parallel universes
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Deutsch’s view

@ lhe first stage of a quantum algorithm involves the
creation of a state in which every input value to the
function is correlated with a corresponding output value.
Deutsch cites this "quantum parallelism™ as the source of
the speed-up in a quantum computation.

@ The idea is that a quantum computation is something like
a lli:-ir«hl’\-'vl}' IJE-ll’H"Pl classical e nmplltﬂrinu_ for all l}llhhill]f‘
alues of a function. with the parallel computations taking
place in parallel universes

e For a critique. see Steane (2003).
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St pee _11_1[_1

is not quite clear how the

Steane’s view (1998)
The period finding algorithm appears at first sight like

v conjuring trick
quantum computer managed to produce the period
like a rabbit out of a hat. ...I would say that the most
important features are contained in
|. ... The ‘magic’ happens when
and it is

o S5—
Y olx) £(x))]
a measurement of the v register produces the special

» X-regilster.

o) —
1 s/r—1 |
state [;7; ) iLg  |Xi +jr)] in the
quantum entanglement which permits this. The final
Fourier transform can be regarded as an interference
between the various superposed states in the x-register

compare with the action of a diffraction grating
Steane (1998
Page 116/133

i ' o B T y 1
Ll
Pirsa: 06020011
TS s e e e e



Jozsa’'s view

Jozsa (1997) Imillh ont that the state space {]}115-159 space) of a
composite classical system is the Cartesian product of the state
spaces of its subsystems. while the state space of a composite
quantum system is the tensor product of the state spaces of its
subsvstems.
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Speedup?

Jozsa’'s view

e For n qubits, the quantum state space has 2" dimensions.
So the information required to represent a general state
increases exponentially with n: even if we restrict the
specification of the amplitudes to numbers of finite
precision. a superposition will in general have O(2")
components.

@ For a classical composite system of n two-level subsystems.
the number of possible states grows exponentially with n.
but the information required to represent a general state is
just n times the information required to represent a single
two-level system, i.e., the information grows only linearly
with n because the state of a composite system is just a
product state.
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Speedup?

Entanglement and speedup

e Jozsa and Linden (2002) have shown that a quantum
algorithm operating on pure states can achieve an
exponential speed-up over classical algorithms only if the
quantum algorithm involves multi-partite entanglement
that increases unboundedly with the input size.

e Vidal (2003) has shown that a classical computer can
simulate the evolution of a pure state of n qubits with
computational resources that grow linearly with n and
exponentially in multi-partite entanglement.
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Speedup?

Steane’s view (2003), my view

The essential feature of the quantum computations discussed
above is the selection of a disjunction. representing a global
property of a function. among alternative possible disjunctions
without computing the truth values of the disjuncts. which is
redundant information in a quantum computation but essential
information classically:.
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Speedup?

The role of the Fourier transform

e It would be incorrect to attribute the efficiency of these
quantum algorithms to the interference in the input
register produced by the Fourier transform.
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Speedup?

The role of the Fourier transform

e It would be incorrect to attribute the efficiency of these
quantum algorithms to the interference in the input
register produced by the Fourier transform.

@ The role of the Fourier transform is simply to allow a
measurement in the computational basis to reveal which
subspace representing the target disjunction contains the
state.
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Speedup?

The role of the Fourier transform

o Why is the discrete Fourier transform is even necessary”’
We could simply perform an equivalent measurement in a
different basis.
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Speedup?

The role of the Fourier transform

e Why is the discrete Fourier transform is even necessary”’
We could simply perform an equivalent measurement in a
different basis.

e Note that a computation would have to be performed to
determine this basis.
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Speedup?

The role of the Fourier transform

e Why is the discrete Fourier transform is even necessary”’
We could simply perform an equivalent measurement in a
different basis.

@ Note that a computation would have to be performed to
determine this basis.

@ This raises the question of precisely how to assess the
speed-up of a quantum algorithm relative to a rival
classical algorithm.
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Counting the steps

@ What are the relevant computational steps to be counted
in making this assessment for a quantum computation?
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Counting the steps

@ What are the relevant computational steps to be counted
in making this assessment for a quantum computation?

@ Since any sequence of unitary transformations is equivalent
to a single unitary transformation. and a unitary
transformation followed by a measurement in a certain
basis is equivalent to simply performing a measurement in
a different basis, any quantum computation can alwayvs be
reduced to just one step: a measurement in a particular
basis!
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Counting the steps

@ What are the relevant computational steps to be counted
in making this assessment for a quantum computation?

@ Since any sequence of unitary transformations is equivalent
to a single unitary transformation. and a unitary
transformation followed by a measurement in a certain
basis is equivalent to simply performing a measurement in
a different basis, any quantum computation can alwayvs be
reduced to just one step: a measurement in a particular
basis!

@ But a computation at least as difficult as the original
computation would have to be performed to determine the
required basis.
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Speedup?

Counting the steps

@ Some convention is required about what steps to count in a
quantum computation.
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Counting the steps

e Some convention is required about what steps to count in a
quantum computation.

e Accepted convention is to require the unitary
transformations in a quantum computation to be
constructed from elementary quantum gates that form a
universal set and to count each such gate as one step.
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Counting the steps

@ Some convention is required about what steps to count in a
quantum computation.

e Accepted convention is to require the unitary
transformations in a quantum computation to be
constructed from elementary quantum gates that form a
universal set and to count each such gate as one step.

@ All measurements are required to be performed in the
computational basis. and these are counted as additional
steps.
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Counting the steps

The final discrete Fourier transform is indispensable in
transforming the state so that the quantum algorithms can be
completed by measurements in the computational basis. and it
is an important feature of the algorithms that the Fourier
transform can be implemented efficiently with elementary
unitarv gates.
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Speedup?

Quantum computational speedup

To claim that a quantum algorithm is exponentially faster than
a classical algorithm is to claim that the number of steps
counted in this way for the quantum algorithm is a polynomial
function of the size of the input (the number of qubits required
to store the input). while the classical algorithm involves a
number of steps that increases exponentially with the size of the
input (the number of bits required to store the input).
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