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D-brane - 4d sugra correspondence
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e |IA on Calabi-Yau X ~~ 4d N = 2 supergravity
+(h'! + 1) gauge fields
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e lIA on Calabi-Yau X ~~ 4d N = 2 supergravity

+(h*1 + 1) gauge fields
e D6-D4-D2-D0 BPS bound st. ~~+ BPS black holes with magn.

(D-branes + gauge flux) and el. charges (p°. p*. ga. qo)
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Wrapped D6-brane charges

D6-branes wrapped on X represented as sheaf E has induced
charge vector Q € H*(X) given by

& (X)
24

Q = ch(E)V A = ch(E)(1 + ).
In components (p°. p?. ga. go) = (D6,D4,D2,D0)-charge:
P°=Qle. *Da=Qlie. aa= [ DanQ. w=[ @

where { D4} is an integral basis of H*(X).
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Wrapped D6-brane charges

D6-branes wrapped on X represented as sheaf E has induced
charge vector Q € H*(X) given by

& (X)
24

Q = ch(E)V A = ch(E)(1 + ).

In components (p°. p?. ga. go) = (D6,D4,D2,D0)-charge:

£° = Qluo.  P*Da = Q. qA:/XDA,-f—ao, qo:/};o.

where {Da} is an integral basis of H*(X).

Special case: ideal sheaf 7, 0 — 7 — Ox — Oy — 0, with
3 =1Y] € Ha(X):

A
pPP=1 p*=0. qa=-bat+—;. a=—x(Oy)
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Wrapped D6-brane charges

D6-branes wrapped on X represented as sheaf E has induced
charge vector Q € H*(X) given by

& (X)
24

Q = ch(E)V A = ch(E)(1 + ).

In components (p°. p?. ga. go) = (D6,D4,D2,D0)-charge:
P = Q. p*Da=Qlie. aa= [ DanQ. w=[ @

where { D4} is an integral basis of H*(X).

Special case: ideal sheaf 7, 0 — 7 — Ox — Oy — 0, with
3 = [Y] € Ha(X):

A
PO — PA =0, ga=-08a+ 22—4 go = —x(Oy).
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Wrapped D4-brane charges
Similar general formula. Special case: single D4-brane wrapped on

divisor P = p* D4, with N DO-branes bound to it and U(1) gauge
flux F turned on.
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Wrapped D4-brane charges

Similar general formula. Special case: single D4-brane wrapped on
divisor P = p* D4, with N DO-branes bound to it and U(1) gauge
flux F turned on.

» induced D2 charges:

qA:DA-FE/DAﬂ,F.
P
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Wrapped D4-brane charges
Similar general formula. Special case: single D4-brane wrapped on

divisor P = p* D4, with N DO-branes bound to it and U(1) gauge
flux F turned on.
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Wrapped D4-brane charges

Similar general formula. Special case: single D4-brane wrapped on
divisor P = p* Dy, with N DO-branes bound to it and U(1) gauge
flux F turned on.

» induced D2 charges:

qA:DA-FE/DAEHF.
P
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Wrapped D4-brane charges

Similar general formula. Special case: single D4-brane wrapped on
divisor P = p* D4, with N DO-branes bound to it and U(1) gauge
flux F turned on.

» induced D2 charges:

qA:DA-FEfDAﬂF.
P

» induced DO charge:

i 1 > x(P)
W=t o

where

Y(P) = P? + (X)) - P = Euler characteristic of P.
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Wrapped D4-brane charges

Similar general formula. Special case: single D4-brane wrapped on
divisor P = p* D4, with N DO-branes bound to it and U(1) gauge
flux F turned on.

» induced D2 charges:

qA:DA-FE[DAxﬂF.
P

» induced DO charge:

- 1 s x(F]
=i o

where

Y(P) = P? + (X)) - P = Euler characteristic of P.

e aiOte: typically dim H?(P) > dim Hz(X), so same charge can ... g
have manv different flux realizations.



Connection to black holes
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Connection to black holes

When g5|Q| < 1, D-brane description is good. When g.|Q| > 1,
4d supergravity description is good.
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Connection to black holes

When g;|Q| < 1, D-brane description is good. When g;|Q| > 1,
4d supergravity description is good.

One possible supergravity description of state with charge @ is
spherically symmetric supersymmetric black hole.
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Connection to black holes

When g5| Q| < 1, D-brane description is good. When g;|Q| > 1,
4d supergravity description is good.

One possible supergravity description of state with charge @ is
spherically symmetric supersymmetric black hole.
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Connection to black holes

When g5|Q| < 1, D-brane description is good. When g|Q| > 1,
4d supergravity description is good.

One possible supergravity description of state with charge @ is
spherically symmetric supersymmetric black hole.

Key role played by central charge Z. For given charge Q and
complexified Kahler class B + iJ:

Z(Q.B+iJ)= —/ e (Bihg + inst. corr.
X
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Connection to black holes

When g5|Q| < 1, D-brane description is good. When g.|Q| > 1,
4d supergravity description is good.

One possible supergravity description of state with charge @ is
spherically symmetric supersymmetric black hole.

Key role played by central charge Z. For given charge Q and
complexified Kahler class B + iJ:

Z(Q.B+iJ)= —/ e (Bihg + inst. corr.
X

Regular solution exists if ming ;s |Z(Q.B + iJ)|/VJ? > 0.
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Connection to black holes

When g5|Q| < 1, D-brane description is good. When g.|Q| > 1,
4d supergravity description is good.

One possible supergravity description of state with charge @ is
spherically symmetric supersymmetric black hole.

Key role played by central charge Z. For given charge Q and
complexified Kahler class B + iJ:

Z(Q.B+iJ)= —/ e (BiEhg + inst. corr.
X
Regular solution exists if ming ;s |Z(Q.B + iJ)|/VJ? > 0.

wuaoscdiH entropy = horizon area/4 = mming ;| Z(Q. B + iJ)|? /8 Sz
'EKC]



Multicentered black hole bound states

In some cases supersymmetric D-brane states of charge @ are
known to exist, but no spherically symmetric black holes solution
exists
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Multicentered black hole bound states

In some cases supersymmetric D-brane states of charge @ are
known to exist, but no spherically symmetric black holes solution

exists ~= 777

Resolution: realized as multicentered black hole bound states [D]:
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Multicentered black hole bound states

In some cases supersymmetric D-brane states of charge @ are
known to exist, but no spherically symmetric black holes solution

exists ~ 777

Resolution: realized as multicentered black hole bound states [D]:

Example: pure D4 wrapped on P has charge vector
Q=P+ (P°+-P)/24and at B =0,

L

24(}‘3’3 re-F)

_1 2
£—_p- 1
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Multicentered black hole bound states

In some cases supersymmetric D-brane states of charge @ are
known to exist, but no spherically symmetric black holes solution

exists ~= 277

Resolution: realized as multicentered black hole bound states [D]:

Example: pure D4 wrapped on P has charge vector
Q=P+ (PP +c-P)/24and at B =0,

1
24
oo £ = 0 at some large J if P is large and very ample. e 27153

Z:%P-Jz— (P? + ¢ - P).



Multicentered black hole bound states

In some cases supersymmetric D-brane states of charge @ are
known to exist, but no spherically symmetric black holes solution

exists ~» 277

Resolution: realized as multicentered black hole bound states [D]:

Example: pure D4 wrapped on P has charge vector
Q=P+ (P’ +c-P)/24 and at B =0,

L
24

oo £ = 0 at some large J if P is large and very ample. = No ...
single centered solution.

Z:%P-Jz— (P?+c - P).



D4 as D6 — D6 bound state

D6[S1] @ @ D6[S2]

Consider D6 with flux F = S; € H?(X.,Z) and anti-D6 with flux
F = 5>. For certain values of the background moduli B + iJ, there
exists a 2-centered bound state of these charges.
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D4 as D6 — D6 bound state

D6[S1] @ @ D6[S2]

Consider D6 with flux F = S; € H?(X.Z) and anti-D6 with flux

F = 5>. For certain values of the background moduli B + iJ, there
exists a 2-centered bound state of these charges. Total charge is

Q==¢e1—e72 je.

1

1
Qu=P. Q=PFP-5, Qﬂzﬂ(PB’—}—LQ'P)—}—EP.Sz

where

:51—1—52

P=5 -5, S >

irsa: 06020010 Page 30/163



D4 as D6 — D6 bound state

D6[S1] @ @ D6[S2)

Consider D6 with flux F = S; € H?(X.Z) and anti-D6 with flux

F = 5>. For certain values of the background moduli B + iJ, there
exists a 2-centered bound state of these charges. Total charge is
Q==¢e1—e2 je.

1 1
Q=P. Q=PFP-5, Qozﬁ(P3+C2'P)+§P-52
where oyl
P=5 —35, 5 — 1_; :

These are precisely charges of D4 wrapped on P with flux F = 5§
turned on.
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D4 as D6 — D6 bound state

D6[S1] @ @ D6[S2)

Consider D6 with flux F = S; € H%(X,Z) and anti-D6 with flux
F = 5>. For certain values of the background moduli B + iJ, there
exists a 2-centered bound state of these charges. Total charge is

Q==¢e1—e72 je.

1 1
Q=P. Q=PFP-5S, QOZE(PE’—FCg*P)—f—EP.SZ
where EE
P — 51 — ,52_ 5 — 1 _; -
These are precisely charges of D4 wrapped on P with flux F =5
turned on.
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Size, Stability and Spin: general 2-centered case
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Size, Stability and Spin: general 2-centered case

» Equilibrium distance between centers

(Q1. Q) |4+ L

= =
2 Im(/£;45) |
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Size, Stability and Spin: general 2-centered case

» Equilibrium distance between centers

(1. Qr) |41+ 45

where (@1, @) = Q™ - Q5! — Q¢! - Q7% = DSZ symplectic
intersection product between charges Q1 and (.

=
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Size, Stability and Spin: general 2-centered case

» Equilibrium distance between centers

Q. Q) |[4+4H

where (@, Q) = Q™% - Q»j‘" — f" - Q%% = DSZ symplectic
intersection product between charges Q1 and . In case of
two D6 corresponding to sheaves £y and E> on X:

(Q1. Q) = / ch(E;) A ch(—E) A A.

=
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Size, Stability and Spin: general 2-centered case

» Equilibrium distance between centers

R_ (Gh. Q) |4+ £
2 Im(Z125) |
where (@1, @) = Q™ - Q5! — Q¢! - Q7% = DSZ symplectic

intersection product between charges (1 and &>. In case of
two D6 corresponding to sheaves E; and E> on X:

A

(Qr. Q) = / ch(E;) A ch(—E>) A A.

» Stability condition: R > 0. When approaching wall of
marginal stability arg /3 = arg />, R — ~ and bound state
decays.
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Size, Stability and Spin: general 2-centered case

» Equilibrium distance between centers

(G, Q) |4+ 4
2 Im(Z125) |,

where (@, Q) = Q™% - Q;‘?*' o ‘f" - Q3% = DSZ symplectic
intersection product between charges Q1 and &>. In case of
two D6 corresponding to sheaves £ and E> on X:

{:Ql. Qz‘:‘ == /Ch( El) /\ Ch(—Ez) /\ :Z\

» Stability condition: R > 0. When approaching wall of
marginal stability arg /3 = arg />, R — ~ and bound state
decays. Indeed, spectrum of BPS states is moduli-dependent!
[p1-stab., #-stab. King, M-stab. Douglas et al, SLAG stab. Joyce, .. .]

=

irsa: 06020010 Page 38/163



Size, Stability and Spin: general 2-centered case

» Equilibrium distance between centers

(@1, Q) |4+ 45
2 Im(Z125) |
where (@, Q) = Q™% - Qze" i 1“"’ - Q7% = DSZ symplectic

intersection product between charges (1 and &>. In case of
two D6 corresponding to sheaves £ and E> on X:

=

(@1 Q) = /c*h(El) A ch(—Ep) A A

» Stability condition: R > 0. When approaching wall of
marginal stability arg /3 = arg />, R — ~ and bound state
decays. Indeed, spectrum of BPS states is moduli-dependent!
[pi-stab., #-stab. King, M-stab. Douglas et al, SLAG stab. Joyce, . . .]

» [ntrinsic spin stored in electromagnetic field:

1 \
irsa: 06020010 J P— 5 ':: Ql - Q2 ,j - Page 39/163



Size, Stability and Spin: D6 — D6 system

D6[S 1] @ ——> @ D6[S]
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Size, Stability and Spin: general 2-centered case

» Equilibrium distance between centers

(Gh, Q) |41+ 45
2 Im(Z125) |
where (@, Q) = Q™% - Q;‘;’" 1 1“"" - Q3% = DSZ symplectic

intersection product between charges (1 and &>. In case of
two D6 corresponding to sheaves £y and E> on X:

e —

Q1. @) = /c*h(El) A ch(—E) A A

» Stability condition: R > 0. When approaching wall of
marginal stability arg /3 = arg />, R — ~ and bound state
decays. Indeed, spectrum of BPS states is moduli-dependent!
[p1-stab., #-stab. King, M-stab. Douglas et al, SLAG stab. Joyce, .. .]

» Intrinsic spin stored in electromagnetic field:

B x_
irsa: 06020010 J\' —_— 5 { Q]_ X Q2 ;‘J ) Page 41/163



Size, Stability and Spin: D6 — D6 system

D6[S1] @ —— @ D6[S,]
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Size, Stability and Spin: D6 — D6 system

D6[S1] @ —— @ DB[S,]

» Intersection product:

(D6[Si]. DB[S) = 5% A= F 4

where P=51 — 5.
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Size, Stability and Spin: general 2-centered case

» Equilibrium distance between centers

(Q1. Q) |4 + 4
2 Im(Z125) |

where (@, Q) = Q™% - QQE" = 1“"“' - Q7% = DSZ symplectic
intersection product between charges (1 and @>. In case of
two D6 corresponding to sheaves £y and E> on X:

(Q1. Q) = f ch(Ep) A ch(—E) A A.

e

» Stability condition: R > 0. When approaching wall of
marginal stability arg /3 = arg />, R — ~ and bound state
decays. Indeed, spectrum of BPS states is moduli-dependent!
[pi-stab., #-stab. King, M-stab. Douglas et al, SLAG stab. Joyce, .. .]
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Size, Stability and Spin: D6 — D6 system

D6[S1] @ —— @ D6[S,]

» Intersection product:

—<D6[51].m> —_ 1% A_ "

where P =51 — 5.

irsa: 06020010 Page 45/163



Size, Stability and Spin: D6 — D6 system

D6[S1] @ —— @ D6[S,]

» Intersection product:

LLa s PR e P
—(D6[51]. DO[S]) = %= - A= — + 2

where P = 51 — 5>. Note: if P is class of very ample divisor,
this is dim H°(X. £Lp) = number of deformations + 1.
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Size, Stability and Spin: D6 — D6 system

D6[S1] @ —— @ D6[S,]

» Intersection product:

L] . P3 -P
—(D6[%1], D6[S2]) = &% - A= —— + ‘:212

where P = 51 — 5>. Note: if P is class of very ample divisor,
this is dim H°(X. £p) = number of deformations + 1.

» Stability condition R > 0, i.e. (Q1. Q2) Im(ZIZ) > 0:
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Size, Stability and Spin: D6 — D6 system

D6[S1] @ —— @ D6[S,]

» Intersection product:

alE T
—(D6[S1]. DE[S2]) = %= - A= — + 2

where P = 51 — 5>. Note: if P is class of very ample divisor,
this is dim H°(X. £Lp) = number of deformations + 1.

» Stability condition R > 0, i.e. (@, Qz}[m(ZIZ) > 0:

v = Pa i EE*P
» when J — ~x: (?—.— lz)P-JzL‘»D.
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Size, Stability and Spin: D6 — D6 system

D6[S1] @ —— @ D6[S,]

» Intersection product:

A r w P o P
—~(D6[$:]. D6[S2]) = e~ - A= —— + ‘:212

where P = 51 — 5>. Note: if P is class of very ample divisor,

this is dim H°(X. £p) = number of deformations + 1.
» Stability condition R > 0, i.e. {Qx1. Qg}[m(ZIZ) > 0:
» when J — ~x: (% — ‘:i}f) P.J?> 0. v ok for P very ample.
» along path J =r P, B = 5: crosses wall of marginal stability

atr=1,/3+P-c/P3.
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B+iJ

D4
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Stability region of D4 = D6 — D6

B+iJ

D4

Structure not visible in classical geometric picture of D4 as
Pirsa:oeozhlblomorphic CYCIE. Page 51/163



g. — 0 microscopic D-brane description near MS line

k
e—@

1 1

U(1) x U(1) quiver quantum mechanics with k = %3 - - % chiral
multiplets ®’. (No further matter because pure D6 has no moduli
on genuine CY.)
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g. — 0 microscopic D-brane description near MS line

o5

k
e—@

1 1

U(1) x U(1) quiver quantum mechanics with kK = %3 + % chiral
multiplets ®’. (No further matter because pure D6 has no moduli

on genuine CY.)

Moduli space of susy configurations given by D-term constraint
k
M ={p € C* ) "|¢il* = £}/U(D),
i=1

where £ depends on moduli such that £ > 0 iff in stable region.

Page 53/163
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g. — 0 microscopic D-brane description near MS line

K
e—@

1 1

U(1) x U(1) quiver quantum mechanics with kK = %3 - % chiral
multiplets ®’. (No further matter because pure D6 has no moduli

on genuine CY.)

Moduli space of susy configurations given by D-term constraint
k
M ={p € C* Y |&il* = £}/U(1),
i=1

where £ depends on moduli such that £ > 0 iff in stable region.
= M = P*~1. Matches with geometric D4 picture:
M = H*(X,Lp)/C* =P<1

Page 54/163
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g2: — 0 microscopic D-brane description near MS line

-
o—>@
1 1

U(1) x U(1) quiver quantum mechanics with kK = %3 - % chiral
multiplets ®’. (No further matter because pure D6 has no moduli

on genuine CY.)

Moduli space of susy configurations given by D-term constraint
k
M ={6eC Y loi =€} /U),
i=1

where £ depends on moduli such that £ > 0 iff in stable region.

= M = P*~1. Matches with geometric D4 picture:
M—H(X ca)jC*—P**

e ssopUIVEr quantum mechanical state can be shown to go smoothly, tg.,
two-centered when g- is increased. D]



Macroscopic counting of D6 — D6 BPS ground states

D6 constituents are particles, without horizons, and no intrinsic
degeneracies apart from two spin 0 singlets and one spin 1/2
doublet for each particle (i.e. a hypermultiplet).

Pirsa: 06020010 Page 56/163



2. — 0 microscopic D-brane description near MS line

-
o—> @
1 1

U(1) x U(1) quiver quantum mechanics with kK = %3 -~ % chiral
multiplets ®’. (No further matter because pure D6 has no moduli

on genuine CY.)

Moduli space of susy configurations given by D-term constraint
k
M= (o € Yl = H/U)
i=1

where £ depends on moduli such that £ > 0 iff in stable region.

= M = P*~1. Matches with geometric D4 picture:
M = H°(X,Lp)/C* =Pk 1

e ssopUIVEr quantum mechanical state can be shown to go smoothly, tg.,
two-centered when g is increased. D]



Size, Stability and Spin: D6 — D6 system

D6[S1] .;F @ D6[S-]

» Intersection product:

F | - P3 -P
—~(D6[$:]. D[S]) = e~ - A= —— + ‘:212

where P = 51 — 5>. Note: if P is class of very ample divisor,
this is dim H°(X. £Lp) = number of deformations + 1.
» Stability condition R > 0, i.e. {Qx. Qg}hn(ZIZ) > 0:
» when J — ~x: (%3 -+ Ci}f) P.J?> 0. v ok for P very ample.

» along path J =r P, B = 5: crosses wall of marginal stability
atr=1,/3+P-c/P3.
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Size, Stability and Spin: general 2-centered case

» Equilibrium distance between centers

(. Q2) |41+ 45
2 Im(Z125) |
where (@, Q) = Q™% - Qf" . 1“"" - Q7% = DSZ symplectic

intersection product between charges (1 and &>. In case of
two D6 corresponding to sheaves £y and E> on X:

=

(Q1. Q) = /Ch( Ei) A ch(—Ex) A A

» Stability condition: R > 0. When approaching wall of
marginal stability arg /3 = arg />, R — ~ and bound state
decays. Indeed, spectrum of BPS states is moduli-dependent!
[p1-stab., #-stab. King, M-stab. Douglas et al, SLAG stab. Joyce, .. .]

» Intrinsic spin stored in electromagnetic field:

irsa: 06020010 j S < Q]_ h QZ ‘ 3 Page 59/163
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g. — 0 microscopic D-brane description near MS line

=2

K
e—@

1 1
U(1) x U(1) quiver quantum mechanics with k = %3 + % chiral
multiplets ®’. (No further matter because pure D6 has no moduli

on genuine CY.)

Moduli space of susy configurations given by D-term constraint
k
M= {6 €Y |6 = £}/U(D),
i=1

where £ depends on moduli such that £ > 0 iff in stable region.

Page 60/163
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Macroscopic counting of D6 — D6 BPS ground states

D6 constituents are particles, without horizons, and no intrinsic
degeneracies apart from two spin 0 singlets and one spin 1/2
doublet for each particle (i.e. a hypermultiplet).
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Macroscopic counting of D6 — D6 BPS ground states

D6 constituents are particles, without horizons, and no intrinsic
degeneracies apart from two spin 0 singlets and one spin 1/2
doublet for each particle (i.e. a hypermultiplet). Two particle
supsersymmetric quantum mechanics equivalent to electron in field

of charge k magnetic monopole.
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Macroscopic counting of D6 — D6 BPS ground states

D6 constituents are particles, without horizons, and no intrinsic
degeneracies apart from two spin 0 singlets and one spin 1/2

doublet for each particle (i.e. a hypermultiplet). Two particle
supsersymmetric quantum mechanics equivalent to electron in field

of charge k magnetic monopole.

Ground state has electron spin down and total spin j = (k —1)/2
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Macroscopic counting of D6 — D6 BPS ground states

D6 constituents are particles, without horizons, and no intrinsic
degeneracies apart from two spin 0 singlets and one spin 1/2
doublet for each particle (i.e. a hypermultiplet). Two particle
supsersymmetric quantum mechanics equivalent to electron in field

of charge k magnetic monopole.

Ground state has electron spin down and total spin j = (k —1)/2
— degeneracy (apart from overall center of mass hypermultiplet

factor):
d=2j+1—=k.

Pirsa: 06020010 Page 64/163

— lLandau deg. of electron on sphere with k units_.of maenetic flux



Microscopic counting of D6 — D6 BPS ground states

BPS ground states in 1-1 correspondence with H*(.\M).
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Microscopic counting of D6 — D6 BPS ground states

BPS ground states in 1-1 correspondence with H*(.\M).
M = P* = degeneracy:

d=dmH P =\(P" Y=k v
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Microscopic counting of D6 — D6 BPS ground states

BPS ground states in 1-1 correspondence with H*(\M).
M = P¥ = degeneracy:

d=dmH P H)=\(P" Y=k v

Note: in classical geometric D4 picture this is not immediately
obvious because M with natural (H*°) metric has singularities.
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Microscopic counting of D6 — D6 BPS ground states

BPS ground states in 1-1 correspondence with H*(\M).
M = P¥ = degeneracy:

d=dimH P =\(P" Y=k v

Note: in classical geometric D4 picture this is not immediately
obvious because M with natural (H*°) metric has singularities.

Spin? Lefschetz SU(2) action on H*(M).
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Microscopic counting of D6 — D6 BPS ground states

BPS ground states in 1-1 correspondence with H*(.\M).
M = P* = degeneracy:

d=dmH(E ) =x(F* )=k «

Note: in classical geometric D4 picture this is not immediately
obvious because M with natural (H*9) metric has singularities.

Spin? Lefschetz SU(2) action on H*(M). J3 = (deg — dim¢)/2,
JT ~ wA, with «w Kahler form on M.
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Microscopic counting of D6 — D6 BPS ground states

BPS ground states in 1-1 correspondence with H*(\M).
M = P* = degeneracy:

d=dimH P Y =\y(P"YH=k Vv

Note: in classical geometric D4 picture this is not immediately
obvious because M with natural (H*9) metric has singularities.

Spin? Lefschetz SU(2) action on H*(M). J3 = (deg — dim¢)/2,
J*t ~ wA, with w Kahler form on M. = one spin j =(k —1)/2
multiplet:
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D6-D0 bound states

Slightly less trivial example: D6 + . n; DO:

DO DO

/—\Dj}

® s ]

2D0

3 DO

Do

Do DO
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Microscopic counting of D6 — D6 BPS ground states

BPS ground states in 1-1 correspondence with H*(.\M).
M = P* = degeneracy:

d=dimH P Y =\(P"YH=k v

Note: in classical geometric D4 picture this is not immediately
obvious because M with natural (H*?) metric has singularities.

Spin? Lefschetz SU(2) action on H*(M). 3 = (deg —dim¢)/2,
J* ~ wA, with w Kahler form on M. = one spin j =(k —1)/2
multiplet:
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D6-D0 bound states

Slightly less trivial example: D6 + . n; DO:

. DO
/—NU

@ os

2D0

3 DO

Do

(B} DO
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Slightly less trivial example: D6 + . n; DO:

D6-D0 bound states

2D0

Do

Do

Do

DO

@ os

Do

Do

3 DO

Can form BPS bound state with D6 if each n; > 0 and if moduli on
side of MS wall where (D6, DO) Im[ZpeZpe] ~ Im[(B + iJ)?] > 0:

irsa: 06020010
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D6 - N DO: macroscopic counting
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D6 - N DO: macroscopic counting

» DO-branes can form bound states among themselves of
arbitrary DO-charge n.
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Slightly less trivial example: D6 + . n; DO:

D6-D0 bound states

Do
2D0

Do

DO

Do

DO

@ os

Do

3 DO

Can form BPS bound state with D6 if each n; > 0 and if moduli on
side of MS wall where (D6, DO) Im[ZpeZpe] ~ Im[(B + iJ)?] > 0:

irsa: 06020010
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D6 - N DO: macroscopic counting

» DO-branes can form bound states among themselves of
arbitrary DO-charge n.
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D6 - N DO: macroscopic counting

» DO-branes can form bound states among themselves of
arbitrary DO-charge n.
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D6 - N DO: macroscopic counting

» DO-branes can form bound states among themselves of
arbitrary DO-charge n.
» Each such particle can be in one-particle state

e Hy = (0,0,1/2, —1/2) ® H*(X).
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D6 - N DO: macroscopic counting

» DO-branes can form bound states among themselves of
arbitrary DO-charge n.

» Each such particle can be in one-particle state
€ H1=(0,0,1/2, —1/2) @ H*(X).

» When put in D6 magn. field, first factor is again forced to be
spin 1/2 down = H®*"(X) — bosons, H°%(X) — fermions.
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D6 - N DO: macroscopic counting

» DO-branes can form bound states among themselves of
arbitrary DO-charge n.

» Each such particle can be in one-particle state
cth —(0,0,1/2 1/2) H*(X).

» When put in D6 magn. field, first factor is again forced to be
spin 1/2 down = H®*"(X) — bosons, H°%(X) — fermions.

» Particle of DO charge n bound to D6 has Landau degeneracy
({D6.nD0} = n.
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D6 - N DO: macroscopic counting

» DO-branes can form bound states among themselves of
arbitrary DO-charge n.

» Each such particle can be in one-particle state
c Hi = (0 0. 1;;2. —].;’IZ) X Hx(X)

» When put in D6 magn. field, first factor is again forced to be
spin 1/2 down = H®*"(X) — bosons, H°%(X) — fermions.

» Particle of DO charge n bound to D6 has Landau degeneracy
{D6.nD0} = n.

» DO-branes noninteracting at rest, so multi-particle ground

states given by Fock space built from creation operators

a;?_wz bosonic for € H*(X), fermionic for n € H°%(X).
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D6 - N DO: macroscopic counting

» DO-branes can form bound states among themselves of
arbitrary DO-charge n.

» Each such particle can be in one-particle state
€t —(0,0,1/2 1/2)® H*(X).

» When put in D6 magn. field, first factor is again forced to be
spin 1/2 down = H®"(X) — bosons, H°%(X) — fermions.

» Particle of DO charge n bound to D6 has Landau degeneracy
({D6.nD0; = n.

» DO-branes noninteracting at rest, so multi-particle ground

states given by Fock space built from creation operators

anmz bosonic for n € H®(X), fermionic for n € H°%(X).

This gives as generating function for the number of (D6. NDO)
BPS states, counted with signs:

0 —x(X)
Tr(—1)F gV = (H(l — q”)”) — M(q)_\{x)

[ — |
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D6 - N DO: microscopic counting; DT invariants

Donaldson- Thomas invariants “count” ideal sheaves with D6
charge 1, D2 charge —3 + /24 and DO charge —n. We will
assume they thus count D6-D2-D0 BPS bound states (in

appropriate region of CY moduli space).
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D6 - N DO: microscopic counting; DT invariants

Donaldson-Thomas invariants “count” ideal sheaves with D6

charge 1, D2 charge —3 + /24 and DO charge —n. We will
assume they thus count D6-D2-D0 BPS bound states (in

appropriate region of CY moduli space).

Generating function:

Zpr1(q.v) = Z Npr(n,3)q" v,
n.3
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D6 - N DO: microscopic counting; DT invariants

Donaldson- Thomas invariants “count” ideal sheaves with D6
charge 1, D2 charge —3 + /24 and DO charge —n. We will
assume they thus count D6-D2-D0 BPS bound states (in

appropriate region of CY moduli space).

Generating function:

Zpr1(gq.v) = Z Npr(n, 3)q" vo.
n.3

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured degree 0
partition function to be

Z.{[))T(q) = Z NpT1(n.0) q" = M(_q)_\(x)
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D6 - N DO: microscopic counting; DT invariants

Donaldson- Thomas invariants “count” ideal sheaves with D6
charge 1, D2 charge —3 + /24 and DO charge —n. We will
assume they thus count D6-D2-D0 BPS bound states (in

appropriate region of CY moduli space).

Generating function:

Zpr(g.v) = Z Npr(n,3)q" v°.
n.,-3

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured degree 0
partition function to be

Zpr(q) = Z Npr(n,0) ¢" = M(—q) XX

Coincides with macroscopic result after redefining g — —g.

Pirsa: 06020010 Page 88/163



More general configurations with net D4-D2-DO0 charge

P ik
/ .
U
SO ~. 8
; Rl N = D6-D4-D2-D0
F L
B i @ -D06D4D200
I
: j e =D0
1I|Illl.| ‘;‘;
. 7
e L

e —
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D6 - N DO: microscopic counting; DT invariants

Donaldson- Thomas invariants “count” ideal sheaves with D6
charge 1, D2 charge —3 + /24 and DO charge —n. We will
assume they thus count D6-D2-D0 BPS bound states (in

appropriate region of CY moduli space).

Generating function:

Zpr(q.v) = Z Npr(n. 3)q" Vo,
n.3

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured degree 0
partition function to be

Zpr(g) =) Npr(n.0)g" = M(—g) XX

Coincides with macroscopic result after redefining g — —q. v
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More general configurations with net D4-D2-D0 charge

e
£ *
=
o !:I .‘-H"\,__r.
L3 P, e
/ e % . — D6-D4-D2-DO0
F L

. i @ -D6DZD20D0

e =00
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D6 - N DO: microscopic counting; DT invariants

Donaldson-Thomas invariants “count” ideal sheaves with D6

charge 1, D2 charge —3 + /24 and DO charge —n. We will
assume they thus count D6-D2-D0 BPS bound states (in

appropriate region of CY moduli space).

Generating function:

Zpr1(q.v) = Z Npr(n,3)q" vo.
n.3

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured degree O
partition function to be

Z?)T(q) = Z NpT1(n.0) q" = M(_q)_\(x)

Coincides with macroscopic result after redefining g — —q. v
Page 92/163
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More general configurations with net D4-D2-DO0 charge

e
/ .,
1O
"!~ 1:':\ e
; S0 . — D6-D4-D2-DO
B i @ -D6D4D200
|
‘ " e =D0
% 3
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More general configurations with net D4-D2-DO0 charge

il
. ~ e
/ e @ -osos0200
. : @ =D6D4D2D0
1
* ’ e =D0
1TI.‘1 ‘;a;
e L
i L

Now two centers can have nonzero horizon areas giving degeneracy
N ~ Np x eM1/4 x /4

where N} = Landau and DO degeneracies similar to before.
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More general configurations with net D4-D2-DO0 charge

4 5
%, ~ -
- e @ -osos0200
. % @ =-D6D4D2D0
[
. e =D0
1"'.,1 ‘;a;
% o
\“--\ __-f"’f

Now two centers can have nonzero horizon areas giving degeneracy

- - / I

where \; = Landau and DO degeneracies similar to before.

Total degeneracy obtained by summing over all possible
configurations with same net charge. If “entropic additions” to
original D6 — D6 are not too big, entropy will still be dominated by

e eo@Nfigurations as above, rather than single centered one (does pgi...
even exist as long as v(P)/24 contribution to go dominates).



Microscopic description of these configurations

In this regime near MS, quiver QM:

SHt1aRE e
&= —C

Here k = (Gh. Q2).
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Microscopic description of these configurations

In this regime near MS, quiver QM:

m n
£ N 3 £y
B
Here k = (@Q1. Q2).

So expect M, = P¥~1 fibration over M; x M- and approx.

Qpps(M) = k Qpps(M1) Qpps(M>)
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OSV at small &°
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Microscopic description of these configurations

In this regime near MS, quiver QM:

m n
7 B £
S
Here k = (@Q1. Q2).

So expect M, = P¥~1 fibration over M; x M> and approx.

Qpps(M) = k Qpps(M1) Qpps(M2)
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OSV at small &°
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OSV partition function for D4

Define
Zoo(0, %) = Y Qqo, ) e ™ 00
qo-9A
where 2(qgo. ga) is suitable index of BPS states of a D4 wrapped
on very ample divisor P = pAD4 with D2 charges ga = D4 - F and
DO-charge go = —N + F?/2 + x(P)/24.
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OSV partition function for D4

Define
ZGSV(G'O- ¢’A) = Z Q(qo. Q2) e_”"ja‘*'ﬂ_ﬁ‘b'a%
go-ga

where 2(qgo. ga) is suitable index of BPS states of a D4 wrapped
on very ample divisor P = pAD4 with D2 charges ga = D4 - F and
DO-charge go = —N + F?/2 + x(P)/24.

Susy condition [MMMS]:
=0

~ puts constraints on divisor embedding in X. [MGM.S et al]
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OSV partition function for D4

Define
0 4~A — 7P gg— A
kg, O ) — E Q(qgo. q2) e o 9A

g0.94

where 2(qg. qa) is suitable index of BPS states of a D4 wrapped
on very ample divisor P = pAD4 with D2 charges ga = D4 - F and
DO-charge go = —N + F?/2 + x(P)/24.

Susy condition [MMMS]:
F —a

~+ puts constraints on divisor embedding in X. [MGM S et al]

Because in general H?(P) > H?(X), there are many different

(F.N) giving same (qgo. ga). Each sector gives moduli space
M p g n of divisors deformations + DO-positions, and

Qgo.qa) = Y x(MpEn)

F.N<go.qa
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Evaluation Z_., at small ©°
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OSV partition function for D4

Define
0 A — 7% gn— DA
Zul ) — E Q(qgo. q2) e qo 9A

90.94

where £2(qg. qa) is suitable index of BPS states of a D4 wrapped
on very ample divisor P = pAD4 with D2 charges ga = D4 - F and
DO-charge go = —N + F?/2 + x(P)/24.

Susy condition [MMMS]:
F"—0o

~+ puts constraints on divisor embedding in X. [MGM S et al]

Because in general H?(P) > H?(X), there are many different

(F.N) giving same (qgo. ga). Each sector gives moduli space
M p g n of divisors deformations + DO-positions, and

Qgo.qa) = Y x(MpEn)

F.N&go.qa
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Evaluation Z,., at small ©°
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OSV partition function for D4

Define
0 A E : — 7% gg—TdA
Zﬂgv(o = (b ) — Q(q{}. q2) e 90 9A

90.94

where £2(qg. qa) is suitable index of BPS states of a D4 wrapped
on very ample divisor P = pAD4 with D2 charges ga = D4 - F and
DO-charge go = —N + F?/2 + x(P)/24.
Susy condition [MMMS]:

F—0

~+ puts constraints on divisor embedding in X. [MGM S et al]

Because in general H?(P) > H?(X), there are many different

(F.N) giving same (qgo. ga). Each sector gives moduli space
M p g n of divisors deformations + DO-positions, and

Q(qo. q,q) = Z \(-V[P.F.N)

F.N<go.qa
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Evaluation Z_,, at small o°

In continuum approximation for sum over F (< large |gg| approx.
< small |0°] approx.): Z.sv can be evaluated as Gaussian
boson-fermion integral with Q-symmetry, giving:
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Evaluation Z__, at small o°

In continuum approximation for sum over F (< large |gg| approx.
& small |6°| approx.): Z.sv can be evaluated as Gaussian

boson-fermion integral with Q-symmetry, giving:

.0

1-b
= ) w i

where “differential geometric Euler characteristic”

1/detR.
wh M

with R curvature form of natural H*° metric on Moy.

N
%

“t OSV

X(Mo) =
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Evaluation Z__, at small ©°

In continuum approximation for sum over F (< large |gg| approx.
& small |#°| approx.): Z.sv can be evaluated as Gaussian

boson-fermion integral with Q-symmetry, giving:

-0

1-b;
o T LY
\("'MO) ( ) ) exp ( 6{'__}0(P3 -+ £ P) o 2@0¢) ) .

%

“~ oSV

where “differential geometric Euler characteristic”

1/detR.
ah M

with R curvature form of natural H*° metric on Moy.

xX(Mbo) =

Pirsa: 06020010
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Evaluation Z_,, at small o°

In continuum approximation for sum over F (< large |gg| approx.
& small |0°] approx.): Z.sv can be evaluated as Gaussian

boson-fermion integral with Q-symmetry, giving:

- &° 1=b - , o
Y(Mo) (2) eXp (ﬁnU(P -t 2@D¢J ) .
where “differential geometric Euler characteristic”

1
{(Mo) = — / det R,
il .M

%

“~osV

with R curvature form of natural H*° metric on Moy.
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Evaluation Z_,, at small &°

In continuum approximation for sum over F (< large |gg| approx.
& small |6°| approx.): Z.sv can be evaluated as Gaussian
boson-fermion integral with Q-symmetry, giving:
2
2@0

) it bl
i (£) ™ oo (-5

where “differential geometric Euler characteristic”

1‘/‘ch-:'tﬁ’.
il M

with R curvature form of natural H*° metric on Mo.

N
%

oSV

X(Mo) =

singular = not at all obvious that

- 1 1 .
% = Ytop = (EPB 52 P)/|Aut|.

but comparison to independent results [Shih-Yinl indicate it is!

Page 112/163



Comparison to OSV conjecture

Up to prefactor refinement (which was not specified in conjecture),
matches exactly in ©® — 0 approximation:

"_:_?" . eFrop(/\.r) eFtﬂp(/\t)

“~' oSV
with substitutions

4 A —ip? + ¢

== K
0 A0

/\—3‘

o
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Comparison to OSV conjecture

Up to prefactor refinement (which was not specified in conjecture),
matches exactly in ©® — 0 approximation:

Zﬂiv ~ eFrgp(/‘\..t) eFtﬂp(;&.t)

with substitutions

4vi , —ipr A
0 t ' 0 -
@ o

/\—J‘

Note:
» Only polynomial part of Fp survives when o° — 0.
» Agreement somewhat surprising, given A\ — >c and topological
string series a priori only asymptotic A — 0 expansion.
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Evaluation Z__, at small ©°

In continuum approximation for sum over F (< large |gg| approx.
& small |6°| approx.): Z.sv can be evaluated as Gaussian
boson-fermion integral with Q-symmetry, giving:

2@0 )

o nis bl
i) (5) e (-

where “differential geometric Euler characteristic”

1/cfetR.
i M

with R curvature form of natural H*° metric on Mo.

ZGSV

%

X(Mo) =

singular = not at all obvious that

- 1 1 .
{ = Xtop = (EPB 52 P)/|Aut|.

but comparison to independent results [Shih-Yinl indicate it is!
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Comparison to OSV conjecture

Up to prefactor refinement (which was not specified in conjecture),
matches exactly in ©® — 0 approximation:

Emv ~ eFrﬂ.p(/\..t) eFraP(/\.t)

with substitutions

dri a4 —ipt+ oA

/\ — =
0 {,_-}E}

@

Note:
» Only polynomial part of Fp survives when ¢° — 0.
» Agreement somewhat surprising, given A\ — ¢ and topological
string series a priori only asymptotic A — 0 expansion.
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OSV in general
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Comparison to OSV conjecture

Up to prefactor refinement (which was not specified in conjecture),
matches exactly in ©® — 0 approximation:

Zﬂsv ~ eFrop(;\..t) eFtﬂp(A.t)

with substitutions

i  , —ipr A
0 t ' 0 -
X 0

/\—J‘

Note:
» Only polynomial part of F,p survives when o° — 0.
» Agreement somewhat surprising, given A\ — oc and topological
string series a priori only asymptotic A — 0 expansion.
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Comparison to OSV conjecture

Up to prefactor refinement (which was not specified in conjecture),
matches exactly in ©® — 0 approximation:

2~ eFon(At) gFeop()

with substitutions

&5i o —ipg* e
0 t ' 0 -
@ o

/\—J‘

Note:
» Only polynomial part of Fp survives when ¢° — 0.
» Agreement somewhat surprising, given A\ — oc and topological
string series a priori only asymptotic A — 0 expansion.
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OSV in general
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Physical interpretation and regularization of =,

Suitable topologically twisted theory of D4 on S x P, with S!
Euclidean time circle of radius 3 presumably localizes on BPS
configurations, i.e.

ZD4( jgs B+ iJ. C{}. C2) —

S Q(F, N; B+iJ) e~ &1 ZFMB+id)ls 2mi(F - B) G 2mil-Ne-H(F—BF + 51Go
F.N

where Cop 7 =: G A dE/.
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Physical interpretation and regularization of Z_,

Suitable topologically twisted theory of D4 on S x P, with S!
Euclidean time circle of radius 3 presumably localizes on BPS
configurations, i.e.

ZD4( jgs B - - iJ. C[}. C2) —

S Q(F, N; B+id) e~ &1ZF M+l 2mi(F—BY o 2mil- N4 (F—BF + 51Go
F.N

where G417 =: (g A dt/3.

Then we see that formally

0
ZDSV(O 7 ¢) - ZD4|.-3:0.520.Cg:f'r:r‘:'flffg:id);.-2 :
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Physical interpretation and regularization of Z_,

Suitable topologically twisted theory of D4 on S! x P, with St
Euclidean time circle of radius 3 presumably localizes on BPS
configurations, i.e.

ZD#( jgs B+ iJ. C{}. C2) —

Y Q(F, N; B+iJ) e sl 2P NB+iNl2milF—B) Grramil-N-+3(F-B)*+ 3]G
F.N

where G437 =: G A dt/.
Then we see that formally

= 0 —
“-’DSV(O 3 (b) _ ZD4|."E:E}.B:‘J.Cg:fr_:rﬂ_f2.C2:f¢f.-’2 :

Zpa has better convergence properties than Z.s, (which diverges
everywhere), so this is also a good regularization.
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Physical interpretation and regularization of Z__,

Suitable topologically twisted theory of D4 on St x P, with St
Euclidean time circle of radius 3 presumably localizes on BPS
configurations, i.e.

ZD#( jgs B+ iJ. C{}. C2) —

Z Q(F.N; B+il) o~ &1 Z(F.N:B+iJ)|+2mi(F—B)-G+2mil—N+3(F—B)*+3]Go
FN

where G443 =: (g A dt/B.
Then we see that formally

g 0 —
Zosv(®™.P) = Zpalg_g B_0.G=is®/2.Co—it0/2 -
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Evaluation Z_,, at small &°

In continuum approximation for sum over F (< large |qgg| approx.
& small |0°| approx.): Z.sv can be evaluated as Gaussian
boson-fermion integral with Q-symmetry, giving:
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OSV partition function for D4

Define
Zosu(0%.0%) = Y Qqo. g2) e 0T A

g0.94

where £2(qg. ga) is suitable index of BPS states of a D4 wrapped
on very ample divisor P = pAD4 with D2 charges ga = D4 - F and
DO-charge go = —N + F?/2 + x(P)/24.

Susy condition [MMMS]:
F'—go

~ puts constraints on divisor embedding in X. [MGM S et al]

Because in general H?(P) > H?(X), there are many different

(F.N) giving same (qgo. ga). Each sector gives moduli space
M p g n of divisors deformations + DO-positions, and

Qgo.qa) = Y x(MpEn)

F.N&go.qa
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Physical interpretation and regularization of Z__,

Suitable topologically twisted theory of D4 on S x P, with St
Euclidean time circle of radius 3 presumably localizes on BPS
configurations, i.e.

ZD4( jgs B+ iJ. C{}. Cz) —

Y Q(F.N; B+iJ) e 551 Z(F.N:B+iJ)+2mi(F—B)- G+ 2i[—N+3(F—B)*+ 3]G
F.N

where (o447 =: G A dt/3.
Then we see that formally

0
EGSV(O ’ (b) — ZD4|.-3:0,5:0.ngfr_:rﬂ;Q.Cg:id);"Z :
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Physical interpretation and regularization of Z_,

Suitable topologically twisted theory of D4 on S x P, with St

Euclidean time circle of radius 3 presumably localizes on BPS
configurations, i.e.

ZD#( jgs B+ iJ. CU. C2) —

Y " Q(F.N; B+iJ) o~ 2| Z(F.N:B+iJ)|+27i(F—B)-G+2mil-N+3(F—B)*+ %G
F.N

where G471 =: G A dt/B.
Then we see that formally

= 0 =
Zosv(®".P) = Zpalg_g B_0.G=is®/2.Co—it0/2 -

Zpa has better convergence properties than Z.s, (which diverges
everywhere), so this is also a good regularization.
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S-duality

Now do following chain of dualities:
» [-dualize along time circle: maps the D4 into a Euclidean D3.

» S-dualize: preserves D3.
» T-dualize back to D4.
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Physical interpretation and regularization of Z_,

Suitable topologically twisted theory of D4 on S x P, with S!

Euclidean time circle of radius 3 presumably localizes on BPS
configurations, i.e.

ZD4( jgs B+ iJ. C{}. Cz) —

S Q(F, N; BiJ) e~ &1 2FNi+id)le2mi(F B o 2mil- N4 (F—BF + 51Go
F.N

where G447 =: G A dt/3.
Then we see that formally

=z 0 —
A:'_Josv(o - (D) — ZD4|u'jJ:E}.B:O.C{j:f-@ﬂfz.czzl-(b;.f2 —

Zpa has better convergence properties than Z.s, (which diverges
everywhere), so this is also a good regularization.

irsa: 06020010 Page 130/163



S-duality

Now do following chain of dualities:
» [-dualize along time circle: maps the D4 into a Euclidean D3.

» S-dualize: preserves D3.
» T-dualize back to D4.
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S-duality

Now do following chain of dualities:
» [-dualize along time circle: maps the D4 into a Euclidean D3.

» S-dualize: preserves D3.
» [-dualize back to D4.
In OSV limit this maps the background into

Pl =0 C=—— C=0, B=06G, [I'=|G|
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Pi

IIIII

S-duality

Now do following chain of dualities:
» [-dualize along time circle: maps the D4 into a Euclidean D3.
» S-dualize: preserves D3.

» [-dualize back to D4.
In OSV limit this maps the background into

Pl =0 C=—— C=0 B=-06, I'=|G\

Under these dualities Zp,4 should be invariant or perhaps transform
as a modular form. This descends to the following formal equality:

13 2 2%wi
Zon = (¢°/2)" €2 ZQ(F N) e~ FEN+E+I+FoF
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Dominant contributions

So we have

.- 2 = . —N—|—F.,2 = xiP} L 2migy
Zosv = (OD_--"Z)WeEG‘:’ E Q(F N) e o ( >+ 25 g0

We take as usual Red? < 0.
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Dominant contributions

So we have

i §

Loor = (DD..--"'Z)WeEGD

" 2 x(P 270
—:‘D—'D{—NJHC: ) +5®-F

ST Q(F.N)e
F.N

We take as usual Reo? < 0.

Pirsa: 06020010 Page 135/163



Dominant contributions

So we have

We take as usual Red? < 0.

The leading contribution comes from N = 0. F = 0 because
N > 0, F? < 0 on susy configurations [there is actuslly one “bad™ positive susy F2

mode, but this disappears in regularized version.]
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Dominant contributions

So we have

- -2 _ame gy F2 L X(P)y omig, p
Zosv = (OOI_.-"Q)WEMD E Q(F N) e 50 ( >+ 28 g0
F.N

We take as usual Reo? < 0.

The leading contribution comes from N = 0. F = 0 because
N > 0, F? < 0 on susy configurations [There is actually one “bad” positive susy F2
mode, but this disappears in regularized version.]

Note: in &Y — 0 limit this immediately reproduces our previous

result, since €2(0.0) = y(Mp)!
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Dominant contributions

So we have

i =g i E Py i g
Zow = (6°/2)"e2®® Y Q(F, N)e o8 T M0
F.N

We take as usual Reo® < 0.

The leading contribution comes from N = 0. F = 0 because
N > 0, F? < 0 on susy configurations [rhere is actually one “bad” positive susy F2
mode, but this disappears in regularized version.]

Note: in &Y — 0 limit this immediately reproduces our previous

result, since 2(0.0) = y(Mp)!

More generally: at large \(P) = P3 + o - P, N — F?/2 must
become very large before single centered BH configurations start to
exist, so these are very much suppressed in this sum. Leading
contributions will come from exactly the multicentered bound
- .Skates we have been considering, not deviating much from pure,

D6[S;] — D6[S,] system.

ge 138/163



Counting the dominant contributions

."‘r‘ 'l"'.
-r""'.i_" l]
s - 3
£ A . = D6-D4-D2-D0
.'r'f hlt.
{ : @ =-DsD4D2D0
i. 4 |
L =
5 E * =D0
-.\ “I
\“w_ f’
; ‘-"'ﬁ-,___,____fﬂ""“
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Counting the dominant contributions

g
- L'n'.{
Y ks @ -oso20200
7
{ ; @ -DsDaD2D0
’~. . |
L £
L i s —DO0
% ;
\"‘*-. '!,—’
"L“- I" o

» Each D6+D4+D2+D0 can be monodromy transformed by
B-shifts to D6+D2+D0, which in turn is described by ideal
sheaf whose BPS states are counted by reduced
Donaldson-Thomas generating function Zp+ = EDT,-’":ZE)T-
We factor out contributions of degree zero because these
correspond to DO-branes in cloud.
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Counting the dominant contributions

T
& "IIT

s e @ -oso20200
/
{ ; @ -DsDaD2D0
’~. . :
t £
L )3 s —D0
X y

'xh_“- f!,f

ﬂ“-..\_‘__“_‘-_\_'_ fj“_

» Each D6+D4+D2+D0 can be monodromy transformed by
B-shifts to D6-+D2+D0, which in turn is described by ideal
sheaf whose BPS states are counted by reduced
Donaldson-Thomas generating function Z5+ = EDT;"EE)T.
We factor out contributions of degree zero because these
correspond to DO-branes in cloud.

» DO-brane cloud gives contribution given by coefhicients of Mac
Mahon M(q)X(X) (degree zero DT invariants).
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Counting the dominant contributions

‘_.-ﬂ,!
I S
o .“'*w-?!
v e = D6-D4-D2-D0
/
;'r ; @ -D5D4D2D0
’~. . :
k £
b = e =00
2\, Z
\h"*-..‘_‘ ) P
._"____‘__._.f_,.—'

» Each D6+D4+D2+D0 can be monodromy transformed by
B-shifts to D6+D2+D0, which in turn is described by ideal
sheaf whose BPS states are counted by reduced
Donaldson-Thomas generating function Zp+ = EDT,-’";ZE)T-
We factor out contributions of degree zero because these
correspond to DO-branes in cloud.

» DO-brane cloud gives contribution given by coefhicients of Mac
Mahon M(q)X(X) (degree zero DT invariants).

» Landau degeneracy from D6 — D6 equals
x(Mp)=P3/6 + - P/12.
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Computing Z_.,

Thus, at large \(P) = P3 + ¢ - P, after some work:

Zow = x(Mp)(¢°/2)1~8 M(¥7/#°)—X(X) g5 (P HerP)

“rosv

3 -y 2 2 2%i .
X E o250 (PF25) Zpr[—e*™ o~ eﬂ_ﬂp_*’f‘_{j(@rm}]

_P
S<PH2(X)
xZppl—e " e ~ Ly

2mi
@G

{¢—|—21’5}1

[recall P=5, — S and S = (5 + 52)/2].
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DT-GW correspondence and OSV

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured relation between
Zprlg. v] and Z5 [N, v] = exp Foy/[A. v] which applied to our
formula for Z,, gives

- W ey o
2o X(«""V[P) (@foz)l—bl M(e :;r_-;ﬂ)_\{x) - ﬁmD{P +c2-P)

w g 14 2w 2mi .
D DI - e T

o
SeP L H2(X)

0o 5P+ (e+2is)

x Zewldwi/o”, e?

]
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Computing Z,

Thus, at large Y (P) = P3 + ¢ - P, after some work:
| o R
Zoow = x(Mp)(6°/2)1 8 M(2/9°)XX) g e (P2 P)

“r OsSV

_P
cf 1H2(Xx)

2m

5P+

27i
@D

‘ (P+2i5)
X Z DT '—e s .eo ]

[recall P=5, — S and S = (5 + 52)/2].
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DT-GW correspondence and OSV

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured relation between
Zp71lg. v] and Z5 [\, v] = exp Foy/[A. v] which applied to our
formula for Z,., gives

/ == r Wi P3 c-P
Eosv = X(«MP)(OU,Jz)l blM(E‘ /e ) X)e { +c2-P)

X Z (gt ® FEOE Zew|—4rmi/o°, e o8P~ TI{(I:HQIS)]

i
€5 +H?*(X)

ZTP_I_ETH ¢—|—2J‘5
x Zew|[4wi /6°, e : )]
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Computing Z_.,

Thus, at large \(P) = P3 + ¢ - P, after some work:

- ~ X(.s"wp)(f}ﬂffz)l_bl M( 4;?,-"(_){]')_\()() e ﬁ{_:.l'.‘l

Lt OS5V
$-+2i5)- 4/ 30 2t p_ 27i (4 2iS
X E e 250 ? ,-;_,b?—[—e e el o0 }]

_P
sl im2(X)

| /60 25 P25 (042i5)
)’(z_;DT '—e E"D ]

[recall P=5; — S and S = (5 + 52)/2].
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DT-GW correspondence and OSV

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured relation between
Zprlg. v] and Z5 [, v] = exp Foy/[A. v] which applied to our
formula for Z,, gives

f 3 c
o & X(Mp)(6°/2)1t1 M(e47/4°)X(X) oan (P +eP)

T_($12iS)2 Ze p %0 Egh 1 25
X Z 200 *125) Zew|—47i/4°, e® o0 (P42 )]

=
€5 +H?*(X)

ZTP_I_ETH Cb—|—2j5
x Zew|47i /6°, e4° : )]
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DT-GW correspondence and OSV

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured relation between
Zp7lg. v] and Z5 [\, v] = exp Foy/[A. v] which applied to our
formula for Z,, gives

; _ woepRy
Zosy = q’L(«f""“‘/[F’) (@D/IZ)I_bI M(E‘ FfQﬂ)_w‘[l[}() € ﬁd}n{P L

1 =32 2% 2mi .
X Z e2e8 P H25) Zew|—4wi/8°, e P {¢+2IS)]

o
SeP 1 H2(X)

e 2P+ (d+2iS
x Zew|4wi /6°, e4° o0 )

]

in exact agreement with (refined) OSV conjecture!
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Corrections

=
e
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DT-GW correspondence and OSV

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured relation between
Zp7rlg. v] and Z5 A, v] = exp Foy/ [N, v] which applied to our
formula for Z,, gives

A C
Zow = X(Mp)(6°/2)70 M(e¥/4°)XX) o (TH )

9 Z eﬁ{:bjusz)EZ,GW (—4x ’/O ef:P "T*’{¢+2f5)]

_P
:E—FHE(X)

ZT P_,_E‘TI b1 2iS
x Zew|[4wi /6°, e : )

]

in exact agreement with (refined) OSV conjecture!
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Corrections
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Corrections

» More centers [DGOV]

» More complicated Landau degeneracies or non-factorization
Landau - internal states.
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Corrections

» More centers [DGOV]

» More complicated Landau degeneracies or non-factorization
Landau - internal states.

» More D6-branes
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Corrections

» More centers [DGOV]

» More complicated Landau degeneracies or non-factorization
Landau - internal states.

» More D6-branes

» More precision
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Pirsa: 06020010

Corrections

More centers [DGOV]

More complicated Landau degeneracies or non-factorization

Landau - internal states.
More D6-branes

More precision

But: suspect asymptotically exact in limit P?/0% — ~,

Pfx"!@U >> 1

> ...
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DT-GW correspondence and OSV

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured relation between
Z57rlg. v] and ZGW[/\ v] = exp Foy[A. v] which applied to our
formula for Z,, gives

- i
2 = X('I_-\/[P)(@'Dﬁfz)l—bl M(e*/® ) x00) = 5 (P +e-P)

. Z eﬁ{tanZESFZ,GW (4 I/O e:fP "'T*’(¢-+255)]

_P
:E+H2(X)

ZTP_I_ETH Cb—|—2j5
x Zew|47i /6°, e4° : }]

in exact agreement with (refined) OSV conjecture!
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Dominant contributions

So we have

We take as usual Re&? < 0.

Pirsa: 06020010 Page 158/163



Comparison to OSV conjecture

Up to prefactor refinement (which was not specified in conjecture),
matches exactly in ©® — 0 approximation:

"_:_?" . eFrop(A.r) eFtﬂp(/\t)

“~ oSV
with substitutions

i A —ip? + oA

/\—" 0’ t 0

0 >
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OSV partition function for D4

Define

Zosu(0%.0%) = Y Qqo. q2) e 0T oA
qo-ga

where £2(qg. ga) is suitable index of BPS states of a D4 wrapped
on very ample divisor P = pAD4 with D2 charges ga = D4 - F and
DO-charge go = —N + F?/2 + x(P)/24.

Susy condition [MMMS]:
F"—g
~ puts constraints on divisor embedding in X. [MGM S et al]

Because in general H?(P) > H?(X), there are many different

(F.N) giving same (qgo. ga). Each sector gives moduli space
M p g n of divisors deformations + DO-positions, and

Q(q{}. q,q) = Z \(-VIP.F.N)

F.N<go.qa
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Evaluation Z_,, at small &°

In continuum approximation for sum over F (< large |gg| approx.
& small |0°] approx.): Z.sv can be evaluated as Gaussian

boson-fermion integral with Q-symmetry, giving:

x(Mo) ((;E})l_bl EXP( } 2;0 2)

where “differential geometric Euler characteristic”

: / det R.
wh M

with R curvature form of natural H*° metric on Moy.

N
%

“~ oSV

X(Mo) =

singular = not at all obvious that

" 1 1
X = Xtop— (EPB o P)/|Aut|.
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Dominant contributions

So we have

. _T_$2 _ 4= —N—|—F.,2—i—¥ip) —l—?'.ﬂj¢+F
Zosv = (f._)ol_.a-"?)wez@ﬂ E Q(F N) e 50 ( > +28 g0

F.N

We take as usual Reo® < 0.

The leading contribution comes from N = 0. F = 0 because
N > 0, F? < 0 on susy configurations [rhere is actually one “bad” positive susy F2

mode. but this disappears in regularized version.]
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DT-GW correspondence and OSV

[Maulik-Nekrasov-Okounkov-Pandharipande] conjectured relation between
Zp7rlg. v] and ZGW[/\ v] = exp Foy [A. v] which applied to our
formula for Z,, gives

R C
“rasv = X( \/[P)(o /2)1 blM(eq-- fJ) \X)e ﬁc‘)n P‘I—ZP)

W i . 2w ’?Tr' i
>< Z ez¢0(¢+2 iS)? Zgw[_‘q'hf/fj* aed = {¢+2 5)]

_P
:E—FHE(X)

ZTP_I_ETJ ¢—|—2j5
x Zew|4wi /6°, e : )

]
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