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Which vacuum?
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@ In Standard Cosmology the Universe is (almost) in a
zero-energy vacuum state.
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vacuum and then tunneled to the zero-energy state?
(through Bubble Nucleation)
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zero-energy vacuum state.

CLILIM 0 Why?

@ Is it possible that the Universe started in another
vacuum and then tunneled to the zero-energy state?
(through Bubble Nucleation)
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At the same time...
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tion @ We know that a Universe with a large vacuum energy
inflates....
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@ And, in fact, this was the first way to introduce Inflation
("Old” Inflation, Guth, 1982).

@ Old Inflation does not have Graceful Exit:
non-successful Bubble Nucleation
— need for Slow-Roll inflation.
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At the same time...

Did Inflation
d Hierarchy

@ We know that a Universe with a large vacuum energy
inflates....

@ And, in fact, this was the first way to introduce Inflation
("Old” Inflation, Guth, 1982).

@ Old Inflation does not have Graceful Exit:
non-successful Bubble Nucleation
— need for Slow-Roll inflation.

@ Go back to Old Inflation, no flat potentials.
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What is the problem of Old Inflation?

Did Inflation
d Hierarchy

Requirements:
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@ For a successful transition to radiation (nucleation and
collision of many bubbles) Iz ~ H*
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What is the problem of Old Inflation?

Did Inflation
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Requirements:
@ For sufficient inflation Iy, < H*

@ For a successful transition to radiation (nucleation and
collision of many bubbles) Iz ~ H*

@ In Old Inflation either Inflation too short or Inflation
never ends.
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What is the problem of Old Inflation?

Did Inflation
d Hierarchy

Requirements:

@ For sufficient inflation Iy, < H*

@ For a successful transition to radiation (nucleation and
collision of many bubbles) I ;. ~ H*

@ In Old Inflation either Inflation too short or Inflation
never ends.

Way-out:

@ Start with My, < H*
@ And then Iy, ~ H*

Page 16/196



Previous models...
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@ One possibility: make H variable

fation from a False

CLILIT

2(3. Mathiazhagan and V. B. Johri. Class. Quant. Grav. 1, L29 (1984)
3i:l. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989)

A
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Previous models...
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@ One possibility: make H variable
@ The first models in this spirit were proposed in 1984 2

and in 1989: "Extended Inflation" 3.

2(.‘.. Mathiazhagan and V. B. Johri. Class. Quant. Grav. 1, L29 (1984)
3I:l. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989)
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Previous models...
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@ One possibility: make H variable
@ The first models in this spirit were proposed in 1984 2

and in 1989: "Extended Inflation" 3.

@ But El had a prediction ( ng < 0.8) ...and in 1992,
COBE ruled it out. *

EG. Mathiazhagan and V. B. Johri. Class. Quant. Grav. 1, L29 (1984)
SD. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989)
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Previous models...

syl
@ One possibility: make H variable
@ The first models in this spirit were proposed in 1984 2

and in 1989: "Extended Inflation" 3.

@ But El had a prediction ( ng < 0.8) ...and in 1992,
COBE ruled it out. *

@ Many other models, quite complicated, were proposed
to cure the problem.

2(.‘.. Mathiazhagan and V. B. Johri. Class. Quant. Grav. 1, L29 (1984)
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Previous models...

syl
@ One possibility: make H variable
@ The first models in this spirit were proposed in 1984 2

and in 1989: "Extended Inflation" 3.

@ But El had a prediction ( ng < 0.8) ...and in 1992,
COBE ruled it out. *

@ Many other models, quite complicated, were proposed
to cure the problem.

@ Our model is still as simple as original El and viable.

EG. Mathiazhagan and V. B. Johri. Class. Quant. Grav. 1. L29 (1984)
BD. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989)
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Outline
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e Our proposal
@ Basic idea
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Our proposal

Did Inflation
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In the presence of a Non-Minimally coupled scalar field (¢)
the transition becomes viable.
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An initial Lagrangian
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@ As a starting point we take the action®:
S = [d*xy/=g [3M?R — 10,,60"¢ + B¢*R — \*]
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An initial Lagrangian

Did Inflation
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@ As a starting point we take the action®:
Si = [d**\/=g [3M?R — }8,00"¢ + B¢?> R — \*]
+ [U(9) + Lm] -

we assume 3 > 0.
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An initial Lagrangian

Did Inflation
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@ As a starting point we take the action®:
Si = [d**\/=g [3M?R — }8,00"¢ + B¢?* R — \*]
+ [U(0) + L] .

we assume 3 > 0.

@ The non-minimal coupling is usually set to zero for
simplicity...
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An initial Lagrangian
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@ As a starting point we take the action®:
S = [d*xy/=g [3M?R — 10,60"¢ + B¢*R — \*]
+ [U(d) + L]

we assume 3 > 0.

@ The non-minimal coupling is usually set to zero for
simplicity...

@ But it is generically present.
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An initial Lagrangian
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@ As a starting point we take the action®:
Si = [d*xy/=g [AM?R — 18,00"¢ + B*R — \*]
+ [U(9) + L] .
we assume 3 > 0.
@ The non-minimal coupling is usually set to zero for
simplicity...

@ But it is generically present.

@ Assume U(¢) to be negligible before tunneling
(U < )%
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Early Time Evolution
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Sy = [ d*x/—g[IM?R — 18,60"¢ + 1347°R — X*]],

where 5 > 0.
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Early Time Evolution
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S = [d*x/=g|[53M?R — 10,00"¢ + 536°R — \*]]|,

where 3 > 0.

sic idea

- Start with /3¢ < M = Exponential Inflation:

B 24

I 3m2
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Early Time Evolution
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S; = [d*x\/—g [5M?R — 30,,00"¢ + 536°R —

At

where 5 > 0.

- Start with /3¢ < M = Exponential Inflation:

-
Hf 3M2

2. ¢ grows due to the effective “mass” term 342R.
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Early Time Evolution
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S; = [d*x/—g|[53M?R — 30,,00"¢ + 536°R — \*]]|,

where 3 > 0.

- Start with /3¢ < M = Exponential Inflation:

- S
Hf 3M2

- ¢ grows due to the effective “mass” term 36°R.

- When /3¢ ~ M transition to power-law expansion.
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Early Time Evolution
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S, = [ d*x/—g [ MPR — 19,60"¢ + 184°R — )*]],

where 5 > 0.

- Start with /3¢ < M = Exponential Inflation:

- A i
Hf 3M2

- ¢ grows due to the effective “mass” term 36°R.

- When /3¢ ~ M transition to power-law expansion.

4] Hx ! and when H = r'/4 — Graceful Exit.
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Phase |
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@ Friedmann equation:

1 i 8 .
2 - . 4
H = 355 |2 — 6HBod + )
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Phase |

Did Inflation
d Hierarchy

@ Friedmann equation:

1

= 3(M2 + 342)

i I :
59" — 6HBo) + X'

@ ¢ equation: i} '
®+3Ho — 3R =0.
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Phase |
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@ Friedmann equation:

1 | .
o A - 4
H = 355 |2 — 6HBod + )

@ ¢ equation: § '
& +3Ho — BRp =0.

@ Assume that the field ¢ sits close to zero at the
beginning:
/\4

H2 ~ H2 = =
= 3M2
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Phase |
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@ Friedmann equation:

1 1. .
2 _ i - 4
H = st 547 |29° —6HP9 + )

@ ¢ equation: : |
o+3Ho — 3Rp =0.

@ Assume that the field ¢ sits close to zero at the
beginning:
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Phase |
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@ The equation of motion for ¢ becomes:

¢+ 3Hip —12H?*36 =0,
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Phase |

Did Inflation
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@ The equation of motion for ¢ becomes:

¢+ 3H;d —12H?*Bo =0,

@ and its growing solution is:

where

e=3 (—1 - \/1 - 1:3) (e ~ 83 for small 3) .

Page 39/196



Initial condition
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@ We assume at it = 0O:
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Initial condition
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@ We assume att = 0:

@ ¢g small

@ Minimal value given by quantum fluctuations: O(H).
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@ ¢g small

@ Minimal value given by quantum fluctuations: O(H)).

@ Possible justifications:
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@ Minimal value given by quantum fluctuations: O(H).

@ Possible justifications:

@ This seems the most natural choice
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Initial condition
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@ We assume att = 0O:
@ ¢g small

@ Minimal value given by quantum fluctuations: O(H).

@ Possible justifications:

@ This seems the most natural choice

@ Or: starting from a random distribution,
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Initial condition
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@ We assume att = 0:

@ ¢g small

@ Minimal value given by quantum fluctuations: O(H).

@ Possible justifications:

@ This seems the most natural choice

@ Or: starting from a random distribution, regions with
small ¢q inflate more
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Initial condition

Did Inflation
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@ We assume att = 0:

@ ¢g small

@ Minimal value given by quantum fluctuations: O(H).

@ Possible justifications:

@ This seems the most natural choice

@ Or: starting from a random distribution, regions with
small ¢¢ inflate more

= they overwhelm the Universe.
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Phase |l

Did Inflation

d Hierarchy @ For late time (/3o > M):

SHC Wea
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Phase |l

Did Inflation

d Hierarchy @ For late time (/3o > M):

1 [1. :
H2 — e 5@2 — 6HBop + \*

¢+ 3Hd —68(2H? + H)p = 0.
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Phase |l

Did Infilation

d Hierarchy @ For late time (\/FO > M):

1 Jr, -
2:33052 50° — 6HBo% + \*

¢+ 3Hd —68(2H> + H)p = 0.

@ Solution:
a(t) ~ t=, o(t) ~ Bt

where:

1240 4./B)\2
A | |
413 \/60;_-32 + 283 + 3Page49/196
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Evolution of H
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Evolution of H
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Evolution of H
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HM
, Crucially
" - @ If Phase Il short enough
0.0001 N

Lx10*) \\
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1000 100000, | x 107 1 x16°

(3 = 1/56)
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Evolution of H

Did Inflation
d Hierarchy

HM
|

\\ @ If Phase Il short enough
. \\ @ Phase I. Perturbations
00001 \.\ that we see
\\ @ H decreases rapidly
[ x107% ”‘\ @ When H~T)/% —
Graceful Exit
Mt
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Evolution of H

Did Inflation

d Hierarchy
HM
5 Crucially
001 b @ If Phase Il short enough
| \ @ Phase I: Perturbations
00001 \.\\ that we see |
% @ H decreases rapidly
1,)(1[]'6- " @ When H ~ Flé:' =
Graceful Exit

W0 000 Ll @ VO Large Bubblesif

(3 — 1 / 56) Page 58/196






Difference with Extended Inflation
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@ El had almost the same Lagrangian:
S=[d*x/=g|3M?’R — 18,60"¢ + 186°R — \*

where 3 > 0.

@ Therefore only the power-law phase present
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Difference with Extended Inflation

Did Inflation
d Hierarchy

@ El had almost the same Lagrangian:
S=[d**/—g|3M°R — 0,00"0 + 5Bd*R — \*

where 3 > 0.

@ Therefore only the power-law phase present

@ H has to decrease fast to avoid early production of
Large Bubbles

@ COBE discovered almost flat spectrum
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Transition to radiation and Stabilization

Did Inflation
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@ When H* ~ I'yac many bubbles of true vacuum are
nucleated

@ They collide producing radiation, with Tgy given by

T4
RH . rU2

M2 vac

pl

@ During radiation ¢ does not evolve:

R=6(2H*>+ H) = 0.
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Transition to radiation and Stabilization

Did Inflation
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@ When H* ~ I'y,ac many bubbles of true vacuum are
nucleated

@ They collide producing radiation, with Tgy given by

4
TFt’H

M2

pl

1/2
~ [ vac

@ During radiation ¢ does not evolve:

R=6(2H?>+ H)~0.
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Stabilization of ¢
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@ Nonetheless we need to stabilize ¢ at late times:
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@ Nonetheless we need to stabilize ¢ at late times:

@ 5% force constraints

Page 65/196
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@ Nonetheless we need to stabilize ¢ at late times:

@ 5% force constraints
@ variation of Gy after equivalence.

ar Inflation
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Stabilization of ¢
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@ Nonetheless we need to stabilize ¢ at late times:

@ 5% force constraints
@ variation of Gy after equivalence.

@ We reintroduce the potential U(¢) in the original
Lagrangian
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Stabilization of ¢

Did Inflation
d Hierarchy

@ Nonetheless we need to stabilize ¢ at late times:

@ 5™ force constraints
@ variation of Gy after equivalence.

@ We reintroduce the potential U(¢) in the original
Lagrangian

@ Assumed to be irrelevant before (U < \%).
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Stabilization of ¢
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@ Nonetheless we need to stabilize ¢ at late times:

@ 5" force constraints
@ variation of Gy after equivalence.

@ We reintroduce the potential U(¢) in the original
Lagrangian

@ Assumed to be irrelevant before (U < \%).

@ Any potential with a minimum is good...
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Potential
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@ For reasons clear later...we assume not to put by hand
the minumum.
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Potential

Did Inflation
d Hierarchy

@ For reasons clear later...we assume not to put by hand
the minumum.

ar Inflation

@ For example: periodic potential (axion?)
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Generalizing the Lagrangian
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@ We generalize as

S= [d*xy=g |sMPH@)R — 50,00"6 — \* + U(6) + Lm
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Generalizing the Lagrangian
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@ We generalize as

S = [d*xy/=g | sMPH@)R — 50,00"6 — \* + U(6) + Lm

@ where for © < M we expand —
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Generalizing the Lagrangian
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@ We generalize as

S= [d*xy=g | sMPH@)R — 50,00"6 — \* + U(6) + L

@ where for & << M we expand _
o For o > M assume [N
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Generalizing the Lagrangian
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@ We generalize as

S= [d*xy=g | sMPH@)R — 50,00"6 — \* + U(6) + Lm

@ where for ¢ << M we expand —
@ For o > M assume [FE)IEIE

@ The transition is strong enough (decelerated
expansion), independently on the exact form of 7(¢)!
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Generalizing the Lagrangian
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@ We generalize as

S= [d*xy=g |sMPH@)R — 50,60"6 — \* + U(6) + Lm

@ where for ¢ << M we expand _
® For o > M assume ()R

@ The transition is strong enough (decelerated
expansion), independently on the exact form of 7(¢)!

@ = visible scales are produced in phase I.
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Generalizing the Lagrangian
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@ We generalize as

S= [d*xy=g | sMPH@)R — 50,00"6 — \* + U(6) + L

@ where for ¢ << M we expand _
o For o M assume [

@ The transition is strong enough (decelerated
expansion), independently on the exact form of 7(¢)!

@ = visible scales are produced in phase |. No Large
Bubbles problem. Page 781196



Quantum gravitational effects?
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@ One may worry about quantum gravitational corrections
for a theory with ¢ > M

SA. D. Linde, Phys. Lett. B 129 (1983) 177. N
’A. D. Linde, “Particle Physics and Inflationary Cosmology”, Chur,
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@ We generalize as

S= [d*xy=g | sMPH@)R — 50,00"6 — \* + U(6) + L

& Lagrangian G where for Q << M We expand _
@ For s > M assume [0

@ The transition is strong enough (decelerated
expansion), independently on the exact form of 7(¢)!

@ = visible scales are produced in phase |. No Large
Bubbles problem. Page 80196
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Quantum gravitational effects?
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@ One may worry about quantum gravitational corrections
for a theory with ¢ > M

@ As in chaotic inflation ©

°A. D. Linde, Phys. Lett. B 129 (1983) 177. N
"A. D. Linde, “Particle Physics and Inflationary Cosmology”, Chur,



Quantum gravitational effects?
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@ One may worry about quantum gravitational corrections
for a theory with ¢ > M

@ As in chaotic inflation ©
@ ...corrections due to graviton loops do not go as

(f)n
O(1) 27

SA. D. Linde, Phys. Lett. B 129 (1983) 177. -t
’A. D. Linde, “Particle Physics and Inflationary Cosmology”, Chur,



Quantum gravitational effects?

Did Inflation
d Hierarchy

@ One may worry about quantum gravitational corrections
for a theory with ¢ > M

@ As in chaotic inflation ©
@ ...corrections due to graviton loops do not go as

qbn
O(1) 2

but as ’
(Energy)*

M4
(with a cutoff scale of order M).

o(1)

°A. D. Linde, Phys. Lett. B 129 (1983) 177. R
’A. D. Linde, “Particle Physics and Inflationary Cosmology”, Chur,
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TITIECS 0 Dynamics
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Going to the Einstein frame

Did Inflation

o s @ |t is convenient to transform

pr - f(‘f))gpy ;
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Going to the Einstein frame

Did Inflation

e i @ It is convenient to transform

Q,uu — f(@)g,uu )
o Get:

Se = 15 / d*x \/—g[M?R — K(¢)(3¢)?] + Svac
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Going to the Einstein frame

Did Infiation

g o @ |t is convenient to transform

qu — f(@)gpu ;
@ Get:

Se = 15 / d*x \/—g[M?R — K(¢)(3¢)?] + Svac

where f
2(¢) + 3MPF2(9)

9= """2r0)
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Going to the Einstein frame

Did Inflation

o s o @ |t is convenient to transform

9w = H(9)9u
o Get:

_ % / d*x /~GIM?R — K()(36)?] + Svac -

where

2f(0) + 3MPF2(0)
2f2(9) |
and the false vacuum energy, in this frame

Vo = /d4x Fﬁ((,ﬁ) _/d4x g V(o).

Page 89/196
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Phasel: o < M

Did Inflation
d Hierarchy
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Phasel:o < M

Did Inflation
d Hierarchy

@ Expand
2 2 o\
M<f(od) =~ M |1 +3|— :

@ where aswe saild n =2
@ (But it works similarly also with any n)
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Phasel:o < M

Did Ir_'lﬂatrun
d Hierarchy ° Expand
2 2 ¢\"
M2f(p)=~M?> [1+8 (=) |.
@=wt1+5(3) |
@ where as we said n =2
@ (But it works similarly also with any n)

@ (Instead the 1 is crucial).
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Phasel: o < M

Did Ir_'lﬂatiun
d Hierarchy ° Expand
& n
M?f(o) ~M* |1 +3( — ) | .
@ = [1+5(57) |
@ whereaswesaidn=2
@ (But it works similarly also with any n)

@ (Instead the 1 is crucial).
@ Therefore:

K(p)~1, V=X [1 —2(%)1 .
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Phasel: o < M

Did Ir_'lﬂatiun
d Hierarchy ° Expand
Qf) n
M2f(d) ~ M? |11+ 38 = .
@ = [1+5(57) |
@ whereaswesaidn=2
@ (But it works similarly also with any n)

@ (Instead the 1 is crucial).
@ Therefore:

K(p)~1, V=X* [1 —2(%)1 .

@ it looks like slow roll on top of a hill



Phasel:o < M

Did Inflation
d Hierarchy

@ So in slow-roll approximation:

MEMaCs

Page 95/196



Phasel: o < M

Did Inflation
d Hierarchy

@ So in slow-roll approximation:

_ M 1 dV|? gy e -
T2 ‘Vdd) = (ﬁ) (1)
2
n = ledv 4.3 . (2)
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Phasel: o < M

Did Inflation
d Hierarch
y @ So in slow-roll approximation:
2 L N 2
P I\./'2 1 d‘{ :8/«’32 3 : (1)
2 |V do M
1 d?V
= M ——— =-43. 2

@ And
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Phasel:o < M

Did Inflation
K S Secnmctg @ So in slow-roll approximation:
5 o
_ M? |1 dV —8R(2) (1)
2 |V do M
1 d?V

— M2—— _4."(’ z 2
W " o 3 (2)

@ And

@ small [ required.
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Phase l: o < M

Did Inflation
d Hierarch
y @ So in slow-roll approximation:
M2 |1 dV|? A%
2 |Vdo M
1 d*V
“ = Mz—— e —4f 2

7] V do? 5] (2)

@ And

@ small [ required.
@ When ¢ of order M: end of slow-roll



Phasell: o > M

Did Inflation

d Hierarchy @ In thlS phase:

\_ 2f(¢) +3MPF2(¢)  BMP [f\° 24
ko)==~ (7) |
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Phase ll: o > M

Did Infiation

d Hierarchy @ In thIS phase:

-' ’2@ 2 ry 2 4
K($)Ezf(@)+3M2f (,)ﬁSM(f) | a

212 (o) 2 f

@ So we introduce a canonical variable via

¢_\/ngnf.
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Phase ll: o > M

DId inflation

d Hierarchy @ [n this phase:

2f(¢) + 3MPf2(¢)  3MP (f\° A4
212(¢) - 2 (f) ’ |

K(o) =

@ So we introduce a canonical variable via

CD__\/gM[nf.

@ The kinetic term is canonical and the potential
becomes:

5 2P
V((D) = A4 exp (2 3) : Page 102/196



Phase ll: o > M

Did Inflation

d Hierarchy @ The exponential potential is well-known to lead to
power-law expansion

a~ tP with ng.
4
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Phase ll: o > M

Did Inflation

d Hierarchy @ The exponential potential is well-known to lead to
power-law expansion

a~ tP with ng.
4

@ And ¢ grows with kinetic energy proportional to V.
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Phase ll: o > M

Did Inflation

d Hierarchy @ The exponential potential is well-known to lead to
power-law expansion

3
a~tP with p= —.
with p 2

@ And ¢ grows with kinetic energy proportional to V.
@ The end of this phase when

L ¥
T M2 T (r)M2

H2
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Phasell: o > M

Did Infiation

d Hierarchy @ The exponential potential is well-known to lead to
power-law expansion

3
a~tP with p= —.
with p 3

@ And ¢ grows with kinetic energy proportional to V.
@ The end of this phase when

2 A* =12

V
T M2 P(op)M2 T e

@ Therefore the final field value ¢f¢ is given by:
)\2

=1 I4 § Page 106/196
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Outline

Did Inflation
d Hierarchy

e Hierarchy Problem
mEw pro@osal o A new proposal
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The Hierarchy Problem

Did Inflation
d Hierarchy

@ Two fundamental scales observed in the Universe:
electroweak scale, Mgy, and Planck scale Mpg.
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The Hierarchy Problem

Did Inflation
d Hierarchy

@ Two fundamental scales observed in the Universe:
electroweak scale, Mgy, and Planck scale Mpg.

@ Mgy /Mg ~ 10714 —10~15: Why?.
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The Hierarchy Problem

Did Inflation
d Hierarchy

@ Two fundamental scales observed in the Universe:
electroweak scale, Mgy, and Planck scale Mpg.

@ Mgy /Mg ~ 10714 —10~15: Why?.

@ A deeper comprehension of physics should probably
lead us to a theory with one scale
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The Hierarchy Problem

Did Inflation
d Hierarchy

@ Two fundamental scales observed in the Universe:
electroweak scale, Mgy, and Planck scale Mpg;.

@ Mgy /Mp ~ 10714 —10715: Why?.

@ A deeper comprehension of physics should probably
lead us to a theory with one scale

@ At which scale new physics will appear?
(important for LHC)

Page 111/196



The Hierarchy Problem

Did Inflation
d Hierarchy

@ Two fundamental scales observed in the Universe:
electroweak scale, Mgy, and Planck scale Mpg.

@ Mgy /Mp ~ 10714 —10715: Why?.

@ A deeper comprehension of physics should probably
lead us to a theory with one scale

@ At which scale new physics will appear?
(important for LHC)

@ Why the Higgs is so light? (if the mass is quadratically
sensitive to the cutoff > Mgy) -



Other explanations

Did Inflation
d Hierarchy

@ Popular solutions are:
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Did Inflation
d Hierarchy

@ Popular solutions are:

@ Supersymmetry or Technicolor at weak scale.
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Other explanations

Did Inflation
d Hierarchy

@ Popular solutions are:

@ Supersymmetry or Technicolor at weak scale. Higgs
mass insensitive to Mg,.
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@ Popular solutions are:

@ Supersymmetry or Technicolor at weak scale. Higgs
mass insensitive to Mg,.

@ Large Extra Dimensions 8
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Other explanations

Did Inflation
d Hierarchy

@ Popular solutions are:

@ Supersymmetry or Technicolor at weak scale. Higgs
mass insensitive to Mg,.

@ Large Extra Dimensions 8 Mgy, as a fundamental scale
and gravity diluted by a Large Extra Dim
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Other explanations

Did Inflation
d Hierarchy

@ Popular solutions are:

@ Supersymmetry or Technicolor at weak scale. Higgs
mass insensitive to Mg,.

@ Large Extra Dimensions 8 Mgy, as a fundamental scale
and gravity diluted by a Large Extra Dim

@ Warped Extra Dimensions®:
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Other explanations

Did Inflation
d Hierarchy

@ Popular solutions are:

@ Supersymmetry or Technicolor at weak scale. Higgs
mass insensitive to Mpg,.

@ Large Extra Dimensions 8 Mgy, as a fundamental scale
and gravity diluted by a Large Extra Dim

@ Warped Extra Dimensions®: Mg exponentially
enhanced w.r.t. Mgy
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Other explanations

Did Inflation
d Hierarchy

@ Popular solutions are:

@ Supersymmetry or Technicolor at weak scale. Higgs
mass insensitive to Mg,.

@ Large Extra Dimensions 8 Mgy, as a fundamental scale
and gravity diluted by a Large Extra Dim

@ Warped Extra Dimensions®: Mg, exponentially
enhanced w.r.t. Mgy

@ Our proposal provides a large Mg/ Mgy at late time

@ Starting with a smaller hierarchy at early time
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Scales in the problem

Did Inflation
d Hierarchy

[S= [d*x/—g [AMPf($)R — 29,00"¢ — X* + U(¢) + Lom]

@ Scales in the problem:

@ Scale A
@ Amplitude of potential |U|'/4
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Scales in the problem

Did Inflation
d Hierarchy

[S= [d*x/—g [AMPf($)R — 39,00"¢ — X* + U(¢) + Lom]

@ Scales in the problem:

@ Scale A\
@ Amplitude of potential |U|'/*
@ Scale of L: Mew
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Scales in the problem

Did Inflation
d Hierarchy

[S= [d*x/—g [AMPf($)R — 29,60"¢ — X* + U(¢) + Lom]

@ Scales in the problem:
@ Scale A
@ Amplitude of potential |U|'/4
@ Scale of Ly: Mew
@ Scale of gravity during inflation M
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Scales in the problem

Did Inflation
d Hierarchy

S = [ d*x\/=g [MPF($)R — 30,60"6 — X* + U(9) + L]

@ Scales in the problem:

@ Scale \

@ Amplitude of potential |U|'/4

@ Scale of L,: Mew

@ Scale of gravity during inflation M

@ Assume all scales to be close (up to 10%).
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Scales in the problem

Did Inflation
d Hierarchy

S =[x/~ [IMPH@)A — 10,00" — X + U@) + La]

@ Scales in the problem:

@ Scale \

@ Amplitude of potential |U|'/4

@ Scale of L,: Mew

@ Scale of gravity during inflation M

@ Assume all scales to be close (up to 103).

@ Quantum corrections are cutoff at this scale (close to
Mew)

Page 126/196

=



Scales in the problem

Did Inflation
d Hierarchy

S= [d*x/—g [5MPf($)R — 508,00"¢ — \* + U(4) + L]

@ Scales in the problem:

@ Scale \

@ Amplitude of potential |U|'/4

@ Scale of L,: Mew

@ Scale of gravity during inflation M

@ Assume all scales to be close (up to 103).

@ Quantum corrections are cutoff at this scale (close to
Mew)

@ We'll get dynamically Mg, ~ 10"° Mgy
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More precisely...

Did Inflation
d Hierarchy

@ However we still need M somewhat larger than A\ and
UT__-“'4

k
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More precisely...
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@ However we still need M somewhat larger than A and
U'/* = so classical GR is still ok

&
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More precisely...

Did Inflation
d Hierarchy

@ However we still need M somewhat larger than A\ and
U'/% = so classical GRis still ok :
M~ 103\ «from6T/T ~ 107°.

k
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More precisely...

Did Inflation
d Hierarchy

@ However we still need M somewhat larger than A and
U'/% = so classical GRis still ok :
M ~ 103\ < from 6T/T ~ 107°.

@ Two possibilities to explore:

LS
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More precisely...

Did Inflation
d Hierarchy

@ However we still need M somewhat larger than A and
U'/* = so classical GR is still ok :
M~103\ < from 6T /T ~ 10~>.

@ Two possibilities to explore:

- Assume M to be the fundamental scale (Mgw):
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More precisely...

Did Inflation
d Hierarchy

@ However we still need M somewhat larger than A\ and
U'/* = so classical GR is still ok :
M~ 103\ «from6T/T ~ 107°.

@ Two possibilities to explore:

- Assume M to be the fundamental scale (Mgw):
@ Take )\ and |U|'/* somewhat smaller (O(103))
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More precisely...

Did Inflation
d Hierarchy

@ However we still need M somewhat larger than A\ and
U'/* = so classical GR is still ok :
M~ 103\ < from 6T /T ~ 10~>.

@ Two possibilities to explore:

- Assume M to be the fundamental scale (Mgw):

@ Take )\ and |U|'/* somewhat smaller (O(103))
@ One has to explain this tuning: maybe U(¢) is an axion
potential with an amplitude Agcp?

28 Assume )\ and |U|'/* as fundamental scale (Mgy):
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@ However we still need M somewhat larger than A and
U'/* = so classical GR is still ok :
M~103)\ < from 6T /T ~ 10~>.

@ Two possibilities to explore:

- Assume M to be the fundamental scale (Mgw):

@ Take )\ and |U|'/* somewhat smaller (O(103))
@ One has to explain this tuning: maybe U(¢) is an axion
potential with an amplitude Agcp?

. Assume ) and |U|'/# as fundamental scale (Mgy):
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More precisely...

Did Inflation
d Hierarchy

@ However we still need M somewhat larger than A and
U'/* = so classical GR is still ok :
M ~103\ < from6T/T ~ 10~>.

@ Two possibilities to explore:

- Assume M to be the fundamental scale (Mg ):

@ Take )\ and |U|'/* somewhat smaller (O(103))
@ One has to explain this tuning: maybe U(¢) is an axion
potential with an amplitude Agcp?

28 Assume )\ and |U|'/* as fundamental scale (Mgy):
@ Then quantum corrections are all of this order
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More precisely...

Did Inflation
d Hierarchy

@ However we still need M somewhat larger than A\ and
U'/% = so classical GRis still ok :
M ~ 103\ < from 6T/T ~ 1072,

@ Two possibilities to explore:

- Assume M to be the fundamental scale (Mgw):

@ Take )\ and |U|'/* somewhat smaller (O(103))
@ One has to explain this tuning: maybe U(¢) is an axion
potential with an amplitude Agcp?
28 Assume )\ and |U|'/* as fundamental scale (Mgy):

@ Then quantum corrections are all of this order
@ But one has to explain why M is larger...
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More precisely...

Did Inflation
d Hierarchy

@ However we still need M somewhat larger than A and
U'/* = so classical GR is still ok :
M ~ 103\ < from 6T/T ~ 10°.

@ Two possibilities to explore:

- Assume M to be the fundamental scale (Mgw):

@ Take )\ and |U|'/* somewhat smaller (O(103))
@ One has to explain this tuning: maybe U(¢) is an axion
potential with an amplitude Agcp?
. Assume ) and |U|'/# as fundamental scale (Mgy):

@ Then quantum corrections are all of this order
@ But one has to explain why M is larger...
@ Analoguous to Mg and M; in string theory.
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More precisely...

Did Inflation

d Hi h -
S @ However we still need M somewhat larger than \ and

U4 — so classical GR is still ok :
M ~ 103\ < from 6T/T ~ 107°.

@ Two possibilities to explore:

- Assume M to be the fundamental scale (Mgw):

@ Take )\ and |U|'/* somewhat smaller (O(103))
@ One has to explain this tuning: maybe U(¢) is an axion
potential with an amplitude Agcp?
- Assume ) and |U|'/# as fundamental scale (Mgy):

@ Then quantum corrections are all of this order
@ But one has to explain why M is larger...
@ Analoguous to Mg and M; in string theory.

@ In any case we explain how Mp, becomes SO Diggse s



Explaining a large Mp,

Did Inflation

d Hierarchy @ The field ¢ which ends Inflation also sets the value Mpg;:

M3, = M?f(o)
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Explaining a large Mp,

Did Infiation

d Hierarchy @ The field ¢ which ends Inflation also sets the value Mp;:

M3, = M?f(o)

@ Even starting close to Mgy,
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Explaining a large Mp,

Did Infliation

d Hierarchy @ The field ¢ which ends Inflation also sets the value Mp;:

M3, = M?f(o)

@ Even starting close to Mgy, today Mg is set by f(og) :

Mp; 1

Mew V(oF)
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Explaining a large Mp,

Did Inflation

d Hierarchy @ The field ¢ which ends Inflation also sets the value Mp;:

M3, = M?f(o)

@ Even Starting close to Mgy, today Mgy is set by f({}'}',:) Z

Mg " 1 _ Mew
Vew ™ Jitor) Tl

@ We have a large hierarchy if I'\% < Mgy
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Explaining a large Mp,

Did Inflation

d Hierarchy @ The field ¢ which ends Inflation also sets the value Mpg;:

M3, = M?f(o)

@ Even starting close to Mgy, today Mg, is set by f(og) :

Mey 1 Mew
Mew — \/f(¢g) T2

1/4

@ We have a Iari;e hierarchy if I' ;. < Mgy : but this is
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Explaining a large Mp,

Did Inflation

d Hierarchy @ The field ¢ which ends Inflation also sets the value Mp;:

M3, = MP1(o)

@ Even starting close to Mgy, today Mg, is set by f(og) :

Mpr 1 Mew
Mew — \/f(6F)  Tife

1/4

@ We have a Iari;e hierarchy if I' ;. < Mgy : but this is

@ New kind of solution:

Page 146/196

'S



Explaining a large Mp,

Did Inflation

d Hierarchy @ The field ¢ which ends Inflation also sets the value Mpg;:

M3, = M?f(¢)

@ Even starting close to Mgy, today Mg, is set by f(oF) :

Mg, » 1 _ Mew
Mew ™ o)~ T2

1/4

@ We have a Iari;e hierarchy if I' ;. < Mgy : but this is

@ New kind of solution: starting with a Hierarchy of order
103 (fixed by COBE)
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Explaining a large Mp,

Did Inflation

d Hierarchy @ The field ¢ which ends Inflation also sets the value Mp;:

M3, = MP1(0)

@ Even starting close to Mgy, today Mg, is set by f(oF) :

Mp 1 Mew
Mew — \/f(éF)  Tihe

1/4

@ We have a Iari;e hierarchy if I' ;. < Mgy : but this is

@ New kind of solution: starting with a Hierarchy of order
103 (fixed by COBE) we get the Hierarchy of 10— 1°
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Explaining a large Mp,

Did Inflation

d Hierarchy @ The field ¢ which ends Inflation also sets the value Mp;:

M3, = M?f(o)

@ Even starting close to Mgy, today Mg is set by f(oF) :

Mpr 1 Mew
Vew * iGer) ~ r

1/4

@ We have a Iari;e hierarchy if I' ;. < Mgy : but this is

@ New kind of solution: starting with a Hierarchy of order
103 (fixed by COBE) we get the Hierarchy of 1015
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Outline

Did Inflation
d Hierarchy

e Cosmology Constraints
@ Sufficient Inflation
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Sufficient Inflation

Did Infiation

d Hierarchy @ A scale L (today) left the horizon at number of efolds \/;
If:
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Sufficient Inflation

Did Infiation

d Hierarchy @ A scale L (today) left the horizon at number of efolds .\/;
if:

@ After bubble nucleation (assumed almost
istantaneous): T3, ~ M4M2, ~ \4,

@ The redshift during the power-law phase is given by
ae/aan = (te/tan)>/* ~ (Tibe/Fi®/%.
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Sufficient Inflation

Did Inflation

d Hierarchy @ A scale L (today) left the horizon at number of efolds .\/;
if:

@ After bubble nucleation (assumed almost
istantaneous): T3, ~ I':,,QEME, ~ X&

@ The redshift during the power-law phase is given by
ae/aan = (te/tan)>/* ~ (Tibe/Fi)?/%.

—— @ The horizon scale (3000h~ ' Mpc) corresponds to:

i A
NSUUUh_1MpC ~ 49 == In |:M:| .
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Sufficient Inflation

Did Inflation

d Hierarchy @ A scale L (today) left the horizon at number of efolds .\/;
if:

@ After bubble nucleation (assumed almost
istantaneous): T3, ~ M4aM2, ~ X4,

@ The redshift during the power-law phase is given by
ae/aan = (te/tan)/* ~ (Tibe/Fi)?/%.

gcient wation @ The horizon scale (3000h~ ' Mpc) corresponds to:

i A
N3UUUh_1MpC ~ 49 + In |:M:| .
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Outline

Did Inflation
d Hierarchy

e Cosmology Constraints

=moiogical

riurbations

@ Cosmological Perturbations
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Flat spectrum of ¢ fluctuations

Did Inflation
d Hierarchy

@ We consider fluctuations in the field ¢ that ends
inflation.
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Flat spectrum of ¢ fluctuations

Did Inflation
d Hierarchy

@ We consider fluctuations in the field ¢ that ends
inflation.

@ In the original (Jordan) frame H = constant but the field
Is not minimally coupled = not exactly flat spectrum
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Flat spectrum of ¢ fluctuations

Did Inflation
d Hierarchy

@ We consider fluctuations in the field ¢ that ends
inflation.

@ In the original (Jordan) frame H = constant but the field
Is not minimally coupled = not exactly flat spectrum

@ In the Einstein frame there is a potential = not exactly
flat spectrum

Page 158/196

[ ™



Flat spectrum of ¢ fluctuations

Did Inflation
d Hierarchy

@ We consider fluctuations in the field ¢ that ends
inflation.

@ In the original (Jordan) frame H = constant but the field
Is not minimally coupled = not exactly flat spectrum

@ In the Einstein frame there is a potential = not exactly
flat spectrum

@ Fastest way: in the Einstein frame (we have checked
both): just look at the slow-roll parameters.
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Flat spectrum of ¢ fluctuations

Did Inflation
d Hierarchy

@ We consider fluctuations in the field ¢ that ends
inflation.

@ In the original (Jordan) frame H = constant but the field
Is not minimally coupled = not exactly flat spectrum

@ In the Einstein frame there is a potential = not exactly
flat spectrum

@ Fastest way: in the Einstein frame (we have checked
both): just look at the slow-roll parameters.

@ Use:

AQ — Fh - 1
-\ M 8m2¢

c.'?-l} zﬁi}(h'd"‘n:-‘" ngn h— 1 Mpe%;e 160/196



Parameter values

Did Inflation
d Hierarchy
@ So, the spectral index is _
oaical ‘
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Parameter values

Did Inflation
d Hierarchy

@ So, the spectral index is _

@ The total duration of inflation is Ny &~ ;—:3 In [ \g@ﬂ] .
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Parameter values

Did Inflation
d Hierarchy

@ So, the spectral index is _

@ The total duration of inflation is Vi ~ 75 In [Tg’?ﬂ] :

@ If 87 < 0.1= flat spectrum and enough inflation.
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Parameter values

Did Infiation
d Hierarchy

@ So, the spectral index is _

@ The total duration of inflation is Ny &~ ;= In [%@G] :

@ If 83 < 0.1= flat spectrum and enough inflation.

@ The amplitude requires _ (COBE)
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Parameter values

Did Inflation
d Hierarchy

@ So, the spectral index is [fig =1~ 8

@ The total duration of inflation is N, ~ 75 In [%@D] :

@ [f 83 < 0.1= flat spectrum and enough inflation.

@ The amplitude requires _ (COBE)

@ A regsonable choice of parameters is

3~10"2 and 7 ~ 1073
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Parameter values

Did Inflation
d Hierarchy

@ So, the spectral index is _

@ The total duration of inflation is Ny ~ 4‘? In [ A ] .

@ If 87 < 0.1= flat spectrum and enough inflation.

@ The amplitude requires _ (COBE)

@ A regsonable choice of parameters is
3~10"2 and 7 ~ 1073

@ We expect to see some red tilt
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Outline

Did Inflation
d Hierarchy

e Experimental signatures
@ GW at LISA
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Gravity waves at LISA

Did Infiation

d Hierarchy @ Reheating proceeds through bubble collisions.
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Gravity waves at LISA

Did Inflation

d Hierarchy < F{ehea’[ing proceeds through bubble collisions.

@ This produces a lot of relic gravity waves (GW)°
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Gravity waves at LISA

Did Infiation

d Hierarchy 9 F{ehea’[ing proceeds through bubble collisions.

@ This produces a lot of relic gravity waves (GW)'°
peaked at horizon scale (set by Tgy ~ A)
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Gravity waves at LISA

Did Inflation

d Hierarchy 9 Rehea’[ing proceeds through bubble collisions.

@ This produces a lot of relic gravity waves (GW)'°
peaked at horizon scale (set by Tgy ~ A)

@ If \is some TeV
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Gravity waves at LISA

Did Inflation

d Hierarchy @ Reheating proceeds through bubble collisions.

@ This produces a lot of relic gravity waves (GW)'°
peaked at horizon scale (set by Tgy ~ \)

@ If X is some TeV = vpeac = 0.1 mHz (in the sensitivity
range of LISA)
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Did Inflation
d Hierarchy

@ Reheating proceeds through bubble collisions.

@ This produces a lot of relic gravity waves (GW)'°
peaked at horizon scale (set by Tgy ~ A)

@ If A is some TeV = vpeac = 0.1 mHz (in the sensitivity
range of LISA)

@ Amplitude at the peak is big enough to be detectable:
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Gravity waves at LISA

Did Infiation

d Hierarchy 9 Rehea’[ing prOCGEdS through bubble collisions.

@ This produces a lot of relic gravity waves (GW)'°
peaked at horizon scale (set by Tgy ~ A)

@ If X is some TeV = vpeac = 0.1 mHz (in the sensitivity
range of LISA)

@ Amplitude at the peak is big enough to be detectable:

Expected value at peak Qguwh® ~ 10~7
LISA sensitivity Qguwh® ~ 101"

.
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Gravity waves at LISA

' Hierarchy @ Reheating proceeds through bubble collisions.

@ This produces a lot of relic gravity waves (GW)'°
peaked at horizon scale (set by Tgy ~ )

@ If A is some TeV = vpeac = 0.1 mHz (in the sensitivity
range of LISA)

@ Amplitude at the peak is big enough to be detectable:

Expected value at peak Qguwh®> ~ 10~7
X LISA sensitivity Qguwh® ~ 1011

@ If M~ fewTeV, so \ ~ fewGeV:
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Gravity waves at LISA

Did Inflation

d Hierarchy 2 Rehea’[ing proceeds through bubble collisions.

@ This produces a lot of relic gravity waves (GW)'°
peaked at horizon scale (set by Tgy ~ A)

@ If X is some TeV = vpeac = 0.1 mHz (in the sensitivity
range of LISA)

@ Amplitude at the peak is big enough to be detectable:

Expected value at peak Qguwh® ~ 10~7
LISA sensitivity Qguwh® ~ 101"

@ If, M~ fewTeV, so A\ ~ fewGeV: vy = 10~% mHz...
much harder to see.

k
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Gravity waves at LISA

DId Inflation

d Hierarchy 9 F{ehea’[ing proceeds through bubble collisions.

@ This produces a lot of relic gravity waves (GW)'°
peaked at horizon scale (set by Tgy ~ \)

@ If Ais some TeV = vpec = 0.1 mHz (in the sensitivity
range of LISA)

@ Amplitude at the peak is big enough to be detectable:

Expected value at peak Qguwh® ~ 10~7
LISA sensitivity Qguwh® ~ 101

@ If, M ~ fewTeV, so \ ~ fewGeV: vy ~ 10~* mHz...
much harder to see.

@ If A > TeV (only Inflation, no solution to Hierarchy)=-
higher frequency (LIGO, Virgo, TAMA?)

.




Outline

Did Inflation
d Hierarchy

e Experimental signatures
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What do we expect?

Did Inflation
d Hierarchy

@ From the LHC we expect only generic predictions
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What do we expect?

Did Inflation
d Hierarchy

@ From the LHC we expect only generic predictions

@ A new scale should be seen, by appearance of higher
order operators.
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What do we expect?

Did Inflation
d Hierarchy

@ From the LHC we expect only generic predictions

@ A new scale should be seen, by appearance of higher
order operators.

@ And this can be related to a scale eventually detected
by LISA.
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What do we expect?

Did Inflation
d Hierarchy

@ From the LHC we expect only generic predictions

@ A new scale should be seen, by appearance of higher
order operators.

@ And this can be related to a scale eventually detected
by LISA.
@ Combination of three very different observations:

Gravity waves (LISA)
< Particle physics (LHC)
Spectral index (WMAP? Planck?)

\
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Other hierarchies?

Did Inflation
d Hierarchy

@ Other tunings are present in late-time physics.
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Other hierarchies?

Did Inflation
d Hierarchy

@ Other tunings are present in late-time physics.

@ Once we have a large hierarchy f(¢F) ~ 10%° > 1, we
can in principle explain any other tuning,
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Other hierarchies?

Did Inflation
d Hierarchy

@ Other tunings are present in late-time physics.

@ Once we have a large hierarchy f(¢f) ~ 10%° > 1, we
can in principle explain any other tuning, just by
coupling to ¢!
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Other hierarchies?

Did Inflation
d Hierarchy

@ Other tunings are present in late-time physics.

@ Once we have a large hierarchy f(¢F) ~ 10%° > 1, we
can in principle explain any other tuning, just by
coupling to ¢!

@ Example: A potential term

M4
7(3)

generates - = 10~ 20 without any tuning.
[

W(o) =
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Other hierarchies?

Did Inflation
d Hierarchy

@ Other tunings are present in late-time physics.

@ Once we have a large hierarchy f(¢F) ~ 10%° > 1, we
can in principle explain any other tuning, just by
coupling to ¢!

@ Example: A potential term

M4
f2(¢)

generates - = 10~ 2% without any tuning.
Pl

W(o) =

@ The same can be done for any tiny (or huge) quantity...
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