Title: Strongly correlated spin systems from the point of view of quantum information theory
Date: Jan 25, 2006 11:00 AM
URL.: http://pirsa.org/06010014

Abstract: The concept of entanglement plays a central role in the field of strongly correlated quantum systems: it gives rise to fascinating
phenomena such as quantum phase transitions and topological quantum order, but also represents a main obstacle to our ability to simulate such
systems. We will discuss some new developments in which ideas, originating from the field of quantum information theory, led to valuable insights
into the structure of entanglement in quantum spin systems and to novel powerful simulation methods
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Overview

* Spin systems:
— Properties of ground states
— Monogamy of entanglement

* Numerical Renormalization Group methods
— Matrix Product States
— Projected Entangled Pair States

* Applications / Examples

— Entanglement Length
— Topological Quantum Order
— One-Way Quantum Computer




Strongly Correlated quantum systems

Recent years have seen an explosion of work on materials that lie outside of
the conventional weakly-interacting solid-state paradigm:

— EXxotic materials such as high T, superconductors and quantum magnets exhibit
their remarkable properties due to strong quantum correlations

— Experimental breakthroughs with atomic gases (optical |attices) provide a perfect
playground for probing such systems

Central question in theoretical condensed matter physics:

— Derive effective Hamiltonians describing the physics of those exotic materials, and
characterize the ground states, the different phases, order parameter, free energy,

— Despite huge efforts many elementary questions are still unsolved

MAJOR problem: people come up with theories but in most cases there is no
way to check whether they are right: simulation of Hamiltonians is hard

— Naively, the computational cost scales exponentially in the number of subsystems



Spin systems

Typical effective Hamiltonians are described on spin systems: e.g. ground
state of spin 2 Heisenberg antiferromagnet on a regular lattice (square,
Kagome, ...):

H=Y S!S +S'S! + AS'S;

Statistical mechanics questions:

Spectrum (gapped or critical?); phase diagram

Correlation length

Order parameter (symmetry breaking?) Topological features?
Simulation (Monte Carlo, RG, ...)

QIT questions (about STATES)

Can such a system be used as a Quantum Repeater if we have local control?
Relation between correlations and entanglement?

Do generic ground states have an efficient (polynomial) description?

How does the geometry / symmetry affects the amount of entanglement?
Can this state be used as a resource for universal quantum computation?
How to create ground states with a quantum computer?



Ground states of spin systems

Ground states of local spin Hamiltonians are very special:

H=) S.S!+8:S/ +AS'S!

Translational invariance implies that energy is completely determined by
n.n. reduced density operator p of 2 spins:

E=N.Trlp H_)

Finding ground state energy Is equivalent to maximizing E over all possible
o arising from states with the right symmetry

The extreme points of the convex set {p} therefore correspond to ground
states: ground states are completely determined by their reduced density
operators!

They obey the Perimeter Law

So there is hope for understanding / simulating ground states: it is in
principle enough to reproduce the local properties; they live in a tiny part of

the Hilbert space! < )




eg.: H = Z S S+ 515 +AS.S!

The Hamiltonian defines hyperplanes
in this convex set; convex set is
parameterized as 2x+Az+E(A)=0

cond-mat/0505140

« Difficulty in characterizing this convex set is due to monogamy / frustration
properties of entanglement: a singlet cannot be shared

— The exireme points of the convex set are determined by a hierarchy of
semidefinite constraints; the set heavily depends on the geometry of the
lattice

— A full characterization in the case of infinite dimensions: separable
states (quantum de-Finetti theorem) R. Wemer. Lett. Math. Phys. 17, 359 (1989)

— There is also a complete solution for bosonic quadratic Hamiltonians
(Gaussian states) M. Wolf, FV. IC, Phys. Rev. Lett. 92, 087903 (2004)

— this monogamy property is the main source of frustration for people

Arminm mnimarieceal cimnilatinne




Monogamy of entanglement

* Coffman-Kundu-Wootters relation for any n-qubit state
i * T. Osborne, FV, quant-ph/0502176
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— Consider lattice with coordination numberd: < \

* Monogamy of CHSH-Bell correlations:
(generalization of Cirel’'son bound)
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B. Toner, FV (2006)
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Such a monogamy relation
provides basic intuition for

security of quantum cryptographic Classical
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Ground states of spin Systems (lI)

 Ground states of gapped local Hamiltonians have a finite correlation length:
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* Let's analyze this statement from the point of view of quantum information
theory:

As all purifications of 0,5 are separable, there exists a unitary in region C that
disentangles the two parts

Blocking the spins in blocks of log(&.) spins, then we can write the state as:

if.if = ‘f i ‘ i \r,
Doing this recursively yields a Matrix Product State (MPS):
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MPS and Wilson’s Numerical Renormalization Group

« MPS effectively appeared in the context of numerical renormalization group in the

« Main original idea of Wilson back in the 70 when studying the Kondo impurity problem:
diagonalize Hamiltonian in a recursive way and always project on low-energy sector
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* Numerical Renormalization group method can be understood of as a variational method
in the space of matrix product states: construction of effective Hamiltonian in the space
of MPS
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* Numerical Renormalization group method can be understood of as a variational method
in the space of matrix product states: construction of effective Hamiltonian in the space
of MPS
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Matrix Product States (MPS)
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Gives a LOCAL description of a multipartite state
Translational invariant by construction if all maps chosen equal to each other

Formally introduced by Fannes, Nachtergaele and Werner in '92 as generalizations of
AKLT-states; proved to be ground states of gapped local quantum Hamiltonians
The number of parameters scales linearly in N (# qubits)

The set of all MPS is complete: Every state can be represented as a MPS as long as D
is taken large enough

The point is: if we consider the set of MPS with fixed D, their reduced density operators
already approximate the ones obtained by all translational invariant ones very well (and
hence also of all possible ground states)

MPS have bounded Schmidt rank D (cfr. Vidal)

_+ D-dimensional
Correlations can be calculated efficiently: contraction of D?x D? matrices
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Convex set of reduced density operators of
ground states of XXZ-chains approximated with
MPS of D=1,2
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So how good will MPS approximate ground states of 1-D systems? We want to
bound Mym‘

L/ L

) —I s )

We need the following result:

— For 1-D critical systems, the Renyi entropy of a contiguous block of L spins
scales as - l

In|Tr p“ )= - I — In(Z)

|- 12 19

(3 [ pJ =

Korepin, Cardy, Kitaev, Vidal, ..

We want to make a statement on how D has to increase to represent the exact
ground state faithfully when the number of particles N increases:

— Choose an epsilon:

T |I _\._: '|'|_ -.' ~ - "I,. :. _1I_ .L" x ".l. - !:;
if D, <est| —————| explS (p..) = 3 ‘-—'"’r? - fl®)-|w? H
i \ (1—a)é& ) et > /- 7 ey

It shows that D only has to grow as a polynomial in the number of particles to
obtain a given precision, and moreover MPS will be able to represent long-range
oroperties faithfully, even in the case of cntical systems!



Variational methods using MPS

Piy Py P;:a Piy Piss Piis

| s | 2

P.

1

Goal: find MPS that minimizes the energy of a 1-D spin Hamiltonian

All expectation values and hence theenergy E£=y.. Hwv,.) are mult-
quadratic in the vanables P,

Strategy for minimizing energy:

— Fix all projectors P. except the j®

— Both the energy and the norm (¥... ¥..s, are quadratic functions of the
variable P, and hence the minimal energy by varying P, can be obtained by a

j
simple generalized eigenvalue problem: 3

H.- and N are function of the Hamiltonian and all other projectors, and can
efficiently be calculated by the transfer matrix method

— Move on to the (j+1)" particle and repeat previous steps (sweep) until
convergence

Dhwve Pay | aft Q2 2979005 (004N



S. White’'s DMRG method

W Al N W
Vi) = D [Ajla.8le)17)518);

off = f(ASq, H? ﬁ H)
» Extending DMRG to periodic boundary conditions:
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We can also enforce MPS to have a definite momentum quantum
number by taking linear combinations of them

Example: study of nematic phase in bilinear-biquadratic S=1
Heisenberg spin chain




Generalizations of MPS to higher dimensions

« The MPS picture can be generalized to any geometry: Projected
Entangled Pair States (PEPS)

® o @ ® @9 ® @ 9
» ’ .
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* Properties: Perimeter Law automatically fulfilled; local properties can
be approximated very well ; guaranteed to be ground states of local
Hamiltonians; again: every state can be written as a PEPS

e ™ A/ TRACs



How to calculate correlation functions?
— Assume for simplicity translational invariance on an infinite 2-D lattice

X, e, e, 2X(2 Koo 3o ersX
gxxxxxxxx
XXXXXXXXX
EXXXXXX XX
EEXXXXX XX
XXX XXXXXX

— Instead of contracting matrices, we have to contract tensors:

— Because of translational invariance, it is enough to calculate largest
eigenvector of “transfer matrix” which can be extremely well approximated
by using the 1-D MPS methods described before

— We also have a method for contracting tensors in an variational
approximate way when not translational invariant
renormalization group method sketched before to higher dimensions!

- this allows to extend



« Similarly: calculation of free energy and classical partition functions

F(B)=Trlexp (- pH)

SH GH | H
~ Tr| {exp| - ﬁxpl - exp
| M \Y| \Y |
H=)H H > X l% Y ] =)

— can be done by contracting tensors by “vanational dimensional reduction”
| #m XesaX 2, s 2Xes X XewaX.
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Variational dimensional reduction of MPS

« Given a D-dimensional v, MPS parameterized by the DxD matrices A,
find . parameterized by D'’xD'matrices B' (D'< D) such as to minimize

Wi—| ¥ =

This can again be minimized variationally by iteratively solving linear equations

* This allows to treat real/imaginary time evolution of spin systems in a
variational way by Trotter decomposition (cfr. methods of Vidal for time

evolution)
P- 11'1'-1 Pl 2 P! Pi +4 i}i-.‘: P1-t’.~




Using ancilla’s to simulate finite-T

* Imaginary time evolution on a purification of the maximally mixed state:

Phys. Rev. Lett 93, 207204 (2004)

* How to simulate thermal states on a quantum computer?




Exploiting quantum parallelism to simulate random
quantum systems

B. Paredes. FV, IC, Phys. Rev. Lett. 95, 140501 (2005)

* Randomness can be encoded in ancilla’s:

H =T: - S *‘;—1—1] S;

® o o o o o o o

— By initializing the ancilla in the |++....+ state, all possible

(exponentially many) realizations of the Hamiltonian are ran in parallel
— Ensemble average obtained by tracing out ancilla’s
— Finding ground states: adiabatic evolution

& Marm ancithy e nmanaralhi—mad +eo imechnida randAoarm mtaraectiAane




« We can of course also use numerical MPS ansatz

— E.g. real time evolution of the ground state of Heisenberg
antiferromagnet in the presence of random magnetic field in z-direction




Green’s functions

Goal: calculate (V|a = |'P
— @M+
/ (see also Hallberg, Kuhner, White, Jeckelmann)
— First calculate 'Y, 1
— Variationally find |4/ which minimizes - ¢ ¥ H _ This

I.'.-'l| E _|..|-I| !II A" Y

amounts to solving min . (7 (H -®)| z)—(w|a'| #) which can be done
efficiently

_ [a, . (mjcee=1.08, AD)=1.00 .
— Calculate (¥Yia 7

Ayl eide=1.08, A0=0.57

LmQ12, o melli3, [=UM2
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— e.g: applied to asymetric SIAM

N=35, A=2

Bpeotral Function Atim) * i’
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The same techniques can be used to minimize mm,
which allows to calculate gaps of non-hermitean
Hamiltonians



MPS for experimentalists

» Class of D-dim. MPS gives a complete characterization of all N-
particle states that can be created by sequential generation through
coupling to a D-level ancillary system (Markov chain)

— Photonic qubits generated by a cavity QED source

— Quantum dot coupled to a microcavity
— Interaction of ions with phonons in ion trap

"_‘“—"'_"--'“W__‘J.O. = "f--.\___ 0 e T =T a O N -._J."~__-__ O- = _ O -

* 1-to-1 correspondence between maps and unitaries (isometries)
occurring in cavity

— Constructive: MPS-structure automatically yields description of how to
generate states

* Example for D=2: GHZ-, cluster-, W- states (for any N)




Renormalization group transformations on states

* Goal: coarse-graining of PEPS-ground states by isometries

« This can be done exactly, and leads exponentially fast to a fixed point;
the fixed points are scale-invariant and an alternative way of creating
MPS locally

— The fixed point of the generic case consists of the virtual subsystems

becoming real, and where the ME-states are replaced with states with
some entropy determined by the eigenvectors of the transfer matnx

98 00 T e . ee.Tee . ee._ " Tee._

— A complete classification of fixed points in case of qubit bonds has been
made; special cases correspond to GHZ, W, cluster and some other exotic
states in QIT

Phys. Rev. Lett. 94, 140601 (2005)



Entanglement Length / Localizable Entanglement

A B

". ______ ... ________ ....,..

Phys. Rev. Lett. 92, 027901 (2004); 92, 087201 (2004)

* Localizable Entanglement: how much entanglement can be localized
between qubits separated by A, B by doing local operations assisted by
classical communication?

* Gives rise to the notion of entanglement length: £, =&
— all bipartite correlations can be converted into singlets by LOCC
 Spin chain as a perfect quantum repeater: entanglement swapping
— OK if P in MPS is spanned by set of maximally entangled states

P

LE can be calculated exactly in asymptotic limit of many copies:
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One-Way Quantum Computing: virtual qubits in action

« One-way QC is equivalent to teleportation based quantum computation (cfr.
Gottesman and Chuang, '99) on “virtual® qubits
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PEPS with topological quantum order

Virtue of QIT approach: physics is about quantum states (as opposed
to Hamiltonians); MPS/PEPS: guaranteed to be ground states of local
Hamiltonians

— Topological order can be defined on level of quantum states: a state
exhibits topological order iff there exists another orthogonal one that is
locally indistinguishable from it and no local matrix elements connect both

Toric code state of A. Kitaev: |\ pp, ... P |+)[+)---|+)

— Jamiolkowski: applying a nonlocal map can be implemented by taking an auxiliary
entangled state and doing joint local projections on the original state and the
auxiliary one; this yields a PEPS

— Can be done for every stabilizer state which has local stabilizers (e.g. cluster)

Resonating Valence Bond States: superposition of all possible n.n. dimer coverings
Is a PEPS with D=3

P =|0){(0222/+ (2022 + (2202 + (2220]|

1' ‘E"I'\"l '\‘I'\'\' "_I"!‘i"i & S L
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Lieb-Robinson bound

* Lieb-Robinson bound for Hamiltonian evolution states that any local spin
system exhibits a finite group velocity (also critical ones):

[4(0). BO)] | <]

AllBlexp(—c(x—vi))

— Assume that we have a number of qubits on a lattice with some geometry
and any quantum circuit with only gates between n.n. :

Lieb-Robinson implies that correlations between two separated particles can
only be created by a circuit whose depth is linear in their distance if one

starts from a separable state (note that this statement cannot be derived
from no-signaling!)

— Similarly : depth of quantum circuit has to be at least linear in the size of the
torus to create a state with topological quantum order

M. Hastings and FV. 2006



Critical PEPS

« PEPS with D=2 and power law decay of correlations: consider classical Ising model
on a square lattice and temperature T.

— |t is obvious how to create quantum state with same correlations as classical one:

._\ ;ﬁ | '
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— This is again a PEPS with D=2; So PEPS with very small D can exhibit power law decay
of correlations: emergent phenomena

» Area law for critical 2-D systems: no logarithmic correction (as in 1 dim.)!

« This procedure is completely general: all classical phase transitions driven by temperature
have always an equivalent desription in terms of a zero-T quantum phase transition described
by a PEPS and associated local Hamiltonian in the same dimension

» Corollary: the problem of contracting a calculating network of tensors as in the PEPS is NP-
hard (because calculating the partition function of a random 2-D classical Ising spin glass is
NP-hard: Barahona 1982) ; So an oracle that could calculate expectation values of PEPS
would give you the power to solve NP-hard problems; what about QMA?
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2-D fermionic systems

Fundamental question: are fermions fundamentally different from
bosons/spins or can local fermionic Hamiltonians be understood as
effective Hamiltonians describing low energy sector of local bosonic
theories?

Hilbert space associated to fermions is Fock space, which is
obtained via second quantization:

KFI = ZC.._.; (“ ) (“

I-"'N
|'--‘

What we want to approximate is <,

Effective Hamiltonian for this tensor is obtained by doing the Jordan-
Wigner transformation on the original one (note the ordering of the
fermions Iin second quantization)

Consider hopping terms in 2-D: J-W induces long-range correlations

Solution: use auxiliary Majorana fermions to tum this Hamiltonian
iInto a local Hamiltonian of spins (cfr. Kitaev)

Similar but different trick applies to any geometry/dimension and
multi-channel impurity problems

Important from numerical point of view!
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Vertical hopping terms become nonlocal by JW-transformation:
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Solution: add ancillary chains of free fermions b, constructed as follows: define Majorana fermions

c.=b +bf d=ib -bT) and free Hamiltonian
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Conclusion

Formalism of quantum information theory provides unique perspective on
strongly correlated quantum systems

— MPS/PEPS picture describes low-energy sector of local Hamiltonians

— Allows to reformulate and extend numerical renormalization group methods
— Also applies to local Markov processes (e.g. hopping, traffic)

— Similar ideas should apply to quantum field theories / lattice gauge theories

Key element: Frustration / monogamy property of entanglement (cfr.
quantum cryptography)

New algorithms allow to go where nobody has gone before, such as
simulating 2-D Fermi-Hubbard model, crucial in the field of condensed

matter theory



