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Abstract: | review our recent work on confinement in 2+1 Yang Mills theory using Karabali-Nair variables. I'll discuss our successful prediction of
the glueball spectrum, including the manifestations of the QCD string.
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Remarks

 the solution of the Yang-Mills theory is certainly one of the grand problems
of theoretical physics

* one has always expected that, if such a solution were to be found, it would
be in the large N limit

* a basic problem is in identifying the important degrees of freedom, and
tractably rewriting the theory in their terms

* we should expect to see both the asymptotically free regime as well as low
energy confining physics

e we should demonstrate:

* useful variables

* non-perturbative vacuum — the "Master field’

* demonstrate important observable consequences
* eg, signals of confinement: area law, string temsion, mass gap
* in pure Yang-Mills. compute the spectrum of glueball states
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QCD Basics

 pure Yang-Mills theory is given by the path integral | gruge group SUN)
dA2] 0 in

Z=fFJEE”“ e al

with ‘ g

1 . .

S}.-‘,” [A] — 5 /dﬂfl.l' tr Fjp
29y a1

* we will be primarily interested in D=2 here.

* in this case, 97 ,, has units of mass, and we define
N
m — g" AL ‘t Hooft coupling
2
* this is the basic (bare) mass scale in the theory.

* conceptually different than D=3, where the bare YM coupling is dimensionless and the physical
mass scale is generated dynamically

* nevertheless, D=2 is otherwise quite similar to D=3 (asymptotic freedom)

* believed to confime at long distances
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& Toy Models for Confinement

e 1+1 QCD
* in the 1970, ‘t Hooft showed that confinement can be seen directly by computing Feynman
diagrams (large N)

* the pole of the quark propagator moves off to infinity. because of an IR divergence
*  poles appear m multi-particle channels

* parution function of Euclidean pure YM on Riemann surface compurted exactly (Witten)
® re-mmterpreted term by term as contributions of a QCD string theory (Gross & Taylor) : =
* this may be related directly to (Das-Jevicki) collective field theory, and to one-matrix model Polvchronakos.

& 2
* lartice compact QED (Polvakov ‘75)
* explicit demonstration of confinement, condensation of magnetic monopoles
* Georgi-Glashow model (Polyakov *77)
» pure Yang-Mills (Feynman ‘81)
*  argued that theory should confine, with mass gap generated because configuration space is compact.
®  detasls mcorrect.

® see also Seiberg-Witten; AdS/CFT

“dual superconductoe”
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Experiment

e in 2+1 Yang-Mills, the ‘experimental data’ consists of a number of lattice

simulations, largely by M. Teper, et al

Teper:
hep-lat/o8o4008
Lucini & Teper:
me/ o hep-latiozo6027

state | SU(2) SU{3) SU{(4) SU{5) SU(4) SU(6)

or? 4.TI6(21) | 4.530(24) | 4.239(34) | 4.130(39) § 4.235(25) | 4.196(27)

0" 6787 6.485(53) | 6.383(77) | 6.22(8) 6.376(45) | 6.247)

o | s07(10) |s.21010) |s8a2013) |787(18) [ 7e3(7) |8.22(12)

0 6.464{48) | 6.27(6) 6.06(11) § 6.230(44) | 6.097(80)

o S.14(8) T.8413) | 7.85(15) [ 8. 215)° | 7.98(15)

- i 7.51(6) T12(T) T.14(8) 7.15(12) | T.17(8) 6.67(18)

Ay S.50(17) | 856(15) | 5.06(22) | 8.89(20)

a— 8.73010) | 8.25(21) |s.25(18) | 8.49(13) |s.52(20)

Table 4: Glueball mas=e= in units of the string tension. in the continuum limit. Reanalysis

of |2 on left: new calculations on right.  from Lucows & Toper ‘o2

e they extract masses of some low lving states for smallish values of N, and
extrapolate to large N

e (there is also info on states with other .77 quantum numbers for small N
in the ‘98 paper)
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Glueball Masses: analytic results

* we have computed these masses using an analytic technique, with the

following results

TABLE L 07" glueball masses in D All masses are
in units of the square root of the string tension. Results of
AdS/CFT computations in the supergravity Hmit are also
prediction and lattice data is given in the last column

TABLE IL 07 glueball masses in QCDs. All masses are
in units of the square root of the string tension. Hesults of
ADS/CFT computations in the supergravity lmit are also
prediction and lattice data 1= given in the last column.

State Lattice. N —oc  Sugra Our prediction Daff. %

State | Lattice. N — s Sugra _ Our prediction  Diff.%

| LO6G = 0055  1.07(input) 4.10 (1¥.] o 591+ 025 610 615 4
| 618 =013 T02 541 125 o-—" 7634037 0.t T 46 23
" | Te80n 9.92 6.72 16 0~ S06+065 1237 877 22
o+ 94 £038" 12 50 T 15
“Mass of 0"~ state was computed on the lattice for SL'(2)
ing of SU(2) resalt from bep-th/os12111

® the results agree extremely well with the lattice data

framework, pionecred by Karabali and Nair

analvtic methods make use of a re-parameterization of the gauge fields within a Hamiltonian

* we have new results for the ground-state wavefunctional and simple correlators, for large N
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Experiment

e in 2+1 Yang-Mills, the ‘experimental data’ consists of a number of lattice

simulations, largely by M. Teper, et al Teper:
hep-lat/o804008
Lucini & Teper:
me/ /o hep-lat/ozo6027

state J SU2) SUI3) SU(D SU(G) SU4) SU(6)
07 | 4716(21) | 4.330(24) | 4.239(34) | 4.180(39) | 4.235(25) | 4.196(27)
0 | 678(T) | 6.485(55) | 6.383(77) | 6.22(8) | 6.376(45) | 6.2007)
o | 807010y |s.21010) |8.12013) |787(18) | 7e3(7) |8.22(12)

0 6.464(48) | 6.27(6) 6.06(11) J 6.230(44) | 6.097(80)
0" S.14(8) T.54(13) | 7T.85(15) [ 8.20(15)" | T.98(15)
i 7.51(6) 7.12(T) 7.148) 7.15(12) | T.17(8) 6.671(18)
- e SO0(1T) | 8.56(15) | 5.06(22) | 8.89%(20)
- == 3.73(10) | 8.25(21) | S8.25(18) J} 85.49(13) | 8.52(20)

Table 4: Glueball masses in units of the string tension. in the continuum limit. Reanalvsis
of [2! on left: new calculations on right.  free Lucies & Tiper o2

e they extract masses of some low lving states for smallish values of N, and

extrapolate to large N
e (there is also info on states with other .7”'“ quantum numbers for small N
in the ‘98 paper)
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Glueball Masses: analytic results

* we have computed these masses using an analytic technique, with the

following results

TABLE L 07" gloeball masses in (D). Al masses are
in units of the square root of the string tension. Results of
AdS/CFT computations n the supergravity hmit are also
prediction and lattice data is given in the last column

State Lattice. N —oc  Sugra  Owr prediction Diff. %

| L065 = 0,055 407 imput) 4.10 ¥}
| R 6.18 =013 T2 541 125
| N T 102 992 6.72 16
o+~ 944 +038" 1250 7.99 15

“Mass of 0" state was computed on the lattice for SL7(2)
anly [H. The number quoted here was obtamed by 2 simple rescal-
mg af SL'{2] result

TABLE IL 07" glueball masses in QCDy. All masses are
in units of the square root of the string tension Results of
ADS/CFT computations in the supergravity limit are also
prediction and lattice data is given in the last column.

Ht.lte] Lattice. N — o Sugra  Our prediction  Diff %

0 5.01 £0.25 6.10 615 1
e 7.63 £0.37 034 746 23
0"  B96+065 1237 87T 2.2
from bep-th/os12111

® the results agree extremely well with the lattice data

analvtic methods make use of a re-parameterization of the gauge fields within a Hamiltoman

framework, pionecred by Karabali and Nair
* we have new results for the ground-state wavefunctional and simple correlators, for large N
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2+ YM in the Hamiltonian Formalism

e we consider 2+1 SU(N) Yang-Mills theory with Hamiltonian

1 . . 1
Hym = EfTr (gfuunf 3 32)
9y M

* we choose the temporal or Hamiltonian gauge, 4, — (), leaving the gauge
fields A = (A, +iA4,)/2.A = (A, —iA,)/2 dynamical

e II; ~ E, is the momentum conjugate to A,

I=I1— 12 I=IX; — LIy
A, =—-il"A

. quantize : [I*(x) — 1

‘position representation’ @ v A% (x)

dAY r)’
* ume-independent gauge transformations preserve the gauge condition, and
the gauge fields transform as a connection

A—gAg ' —dg9~', A—gAg ' —0dg99 ". g(z.2)c SU(N)
* (Gauss’ law implies that observables and physical states are gauge invariant

® hard to deal with gauge-fixing, so we would like to perform a field

redefinition to gauge-invariant variables
&4 A varables do not create

* traditionally, this is taken to mean Wilson loops W((') = trg Pe’ fo physical excitations
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Gauge Invariant Formalism

e would like to transform to gauge invariant variables {®}
e path integral would transform — / [dP] 1 iS

i® ©
det T2
* the Jacobian is typically hard to compute '

* a natural choice is to take variables to be Wilson loops
* expectation value is order parameter for confinement (Wg(C)) ~ e

a A+ ..

* Wilson loops are a complete set of operators but are over-complete and constrained
® at large N, they become independent, due to factorization. (PP . ..) — (B) (D) ...
¢ equation of motion “— loop equation

(Makeenko & Migdal)
® hard to proceed

* can compute (formally!!) in Hamiltonian formalism (Sakita ‘So; Jevicki & Sakira ‘1)
* Hamiltonian has “collective field form”
* formally, if one knew the Jacobian, one could do a saddle point approximation, and compute
* walidity is equivalent to large N
* this is essentially what we wall do, in a more convenient parameterization
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Karabali-Nair Parameterization

* it is possible to parameterize the gauge fields as

A=-OMM, A=MTOMT

A tramvwless — det M =1

where M is complex, invertible, unimodular S
M e SLIN.C)

® M transforms linearly under gauge transformations
M — gM
* gauge invariant variables may be written simply
H=MM

* note that these are local frelds. Roughly, M may be thought of as analogous to
an open Wilson line, and H a closed loop

e the Wilson loop evaluates to
@(C‘) — TFPEi fc‘("ld:'h'idf) — T,rPE—t fc., d= OHH ™!
* dependence on C is an artifact; one can use the local H variables instead.

* although Wilson loop retains its usefulness as an order parameter for confinement

Pirsa: 06010004 e
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Holomorphic Invariance

* one might wonder if the parameterization is well-defined
* does H capture all of the physics? Is the parametenization one-to-one”?

* in fact, there is a new bholomorphic invariance acting on M on the right, which
is not seen by the original gauge fields

M(z,2)— M(z,2)hT(2) M¥(z,2)— h(z)MT(z,32)
H(z,z) — h(z)H(z, 2)h'(2)
e the appearance of this can be seen by attempting to invert the defining

relations

M(z,2)= (I - [dzm* G(z,w)Alw,w) + .. ) V(z) BuC(x.y) = 5P [z —y)

* 50 one must ensure that all results are holomorphic invariant

* one could simply fix the gauge V' = 1, and then enforce holomorphic
invariance on physical states; in general, all physical formulae must be
holomorphic invariant
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Karabali-Nair Parameterization

* it is possible to parameterize the gauge fields as
A=-0MM™', A=MToM?

A tracvless — det M =1
M e SLIN.C)

where M is complex, invertible, unimodular
® M transforms linearly under gauge transformations
M — gM
® gauge invariant variables may be written simply
H=MM

* note that these are local fields. Roughly, M may be thought of as analogous to
an open Wilson line, and H a closed loop

e the Wilson loop evaluates to
®(C) = TrPEifc(*‘ld=+-'idf) — TrPe* §d= OHH™!
* dependence on C is an artifact; one can use the local H variables instead.

* although Wilson loop retains its usefulness as an order parameter for confinement
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Holomorphic Invariance

¢ one might wonder if the parameterization is well-defined
* does H capture all of the physics? Is the parametenzation one-to-one”?
* in fact, there is a new bolomorphic invariance acting on M on the right, which
is not seen by the original gauge fields
M(z,2) — M(z,2)h"(2) Mi(z,2) — h(z)MT(z, 2)

H(z,z) — h(z)H(z, 2)h'(Z)
* the appearance of this can be seen by attempting to invert the defining

relations

M(z,2) = (1 - /dzw G(z,w)Al(w,w) + .. ) V(z) 8.Glx.y) =5 (z —y)

* 50 one must ensure that all results are holomorphic invariant

* one could simply fix the gauge V' = 1, and then enforce holomorphic
invariance on physical states; in general, all physical formulae must be
holomorphic invariant
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Karabali-Nair Parameterization

* it is possible to parameterize the gauge fields as
A=-9MM™, A=MToM?

A troacvless — det M =1

where M is complex, invertible, unimodular S
MeSLIN.C

® M transforms linearly under gauge transformations
M — gM
* gauge invariant variables may be written simply
H=MM

* note that these are local frelds. Roughly, M may be thought of as analogous to
an open Wilson line, and H a closed loop

e the Wilson loop evaluates to
@(C) — Trpelft’_‘("ldz’i'-:ldz_) — TrPe™ fC‘ d= OHH !
* dependence on C is an artifact; one can use the local H variables instead.

* although Wilson loop retains its usefulness as an order parameter for confinement
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Holomorphic Invariance

* one might wonder if the parameterization is well-defined
* does H capture all of the physics? Is the parametenization one-to-one”?

* in fact, there is a new bolomorphic invariance acting on M on the right, which
is not seen by the original gauge fields

M(z,2) — M(z,2)h"(2) Mi(z,2) — h(z)MT(z, 2)
H(z,z) — h(z)H(z, 2)h'(2)
e the appearance of this can be seen by attempting to invert the defining

relations

M(z,2)= (1 — [dzw G(z,w)A(w,w) + .. ) V(z) 3.Glx.y) = 6% (x — )

* 5o one must ensure that all results are holomorphic invariant

* one could simply fix the gauge V' = 1, and then enforce holomorphic
invariance on physical states; in general, all physical formulae must be
holomorphic invariant
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The Jacobian

* now, a change of variables is not too remarkable, classically However, in
this particular case, the path integral Jacobian of the transformation can be

worked out — in fact it is given in terms of the level —2¢ 4 hermitian

Wess-Zumino-Witten model

dp‘.[crl —= dp[HIEZL‘AS“'EH- {H] dp[H? ' -d.hj',. = [T,— (§HH 'y

. ¥ | -
—" —E/d": TrH"BHH‘Iaﬂq-# Ere Tr H'9,HH "9, HH ‘0, H

Polyakov & Wegmann

e this is both gauge and holomorphic invariant

e thus the inner product on states can be written in the position

representation as an overlap integral of gauge and holomorphic invariant
wave functionals with non-trivial measure

(112) = -/dﬂ[H]EEE"‘S“'z“'[H}'I’;‘I'g

 this non-trivial measure has important consequences —e.g., ¥ = lis
normalizable!
* in fact, this is an approximation to the ground-state wavefunctional
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The Hamiltonian

e it is natural to introduce the ‘current’ J is a connection for
- E ; - holomorphse wanance:
J="—@aHR J v hJh=* + = Qhh~!

® the YM Hamiltonian can then be rewritten in terms of J

: agy O ) ] ' B
HinlJ] =m (LI U}E.fﬂ{.r} + /;u Q. (x. "’F)J.}ﬂ(_r} 5J*’{y})+mr:,.; j;:).f a.J
(recall m is the ‘t Hooft coupling) Karabali & Nair
e this has the collective field form and
- CA tinb B ifuf,,_-..fr{.r]
Mslt¥)= G2 "7 -y

e the derivation of the Hamiltonian has involved a careful gauge-invariant
regularization

* this is true of all computations that we will discuss, but the details will be suppressed
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Wavefunctionals

* a wavefunctional in position representation may be regarded as a functional
of H, or as a functional of J

* specifically note that .Jand D = 0 — -—T-f transform homogeneously under holomorphic
transformations =4
* thus. these are the building blocks for bolomorphic imvariant functionals
* in fact, we will find that, ac large N, . plavs a very special role, essennally a string escillator
* note also that | satisfies a “reality condition’ (analogous to hermiticity of H)

dJ — h(z)dJh™*(z)

CASHH!

w

aJ = D fl J =

* more precisely, paying attention to spacetime quantum numbers, we can B
build invariants (with .77 = 077) as traces of products of 7.7 and A = JD + Do

e consider the vacuum wavefunctional ¥,
e this will satisf_v the functional Sch.r&d.ingcr equation

Hin¥o = Eg¥y
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Wavefunctionals

e a wavefunctional in position representation may be regarded as a functional
of H, or as a functional of |

* specifically, note that @.Jand D = 0 — -—T-f transform homogeneously under holomorphic
transformations A
*  thus, these are the building blocks for bolomorphic imvariant functionals
* in fact, we will find that, ar large N, i plavs a very special role, essennally a string escillator
* note also that | satisfies a “reality condition’ (analogous to hermiticity of H)

aJ — h(2)dJTh™(=2)

ASHH!

Fry

aJ = [D, J] R

* more precisely, paying attention to spacetime quantum numbers, we can .
build invariants (with .77 = 077) as traces of products of J.7 and A = JD + Dd

e consider the vacuum wavefunctional ¥,
e this will .utisf_v the functional Schrﬁd.inscr equation

H;{N ‘I’u — Eﬂ‘l'n
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Vacuum Wave-functional

e if the KN Hamiltonian contained just the kinetic part, then ¥ = 1 would
be a suitable normalizable solution (because of the non-trivial measure)

note the potential term vanishes in the limir of large 9v 1

e more generally, the potential term will make a contribution

Pirsa: 06010004

we will take as ansatz

n

¥, = exp (& - - ]tr AJK(L)OJ + ) . L=A/m*

2c ym=
this is explicitly gauge and holomorphic invanant
this may be regarded as a WKB approximation
can also be regarded as a saddle point approximation, from the point of view of collective field
theory

® ts validity is controlled by the I/N expansion_
we solve the Schrodinger equation order by order in 7)./

note that this Gaussian part of the vacuum wavefuncrional contains a (non-trivial) kernel K,
which will be determined by the Schréodinger equation

* K contains information about the spectrum of the theory at large N
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Vacuum Wave-functional

¢ if the KN Hamiltonian contained just the kinetic part, then ¥ = 1 would
be a suitable normalizable solution (because of the non-trivial measure)

note the potential term vanishes in the imit of large v\t

* more generally, the potential term will make a contribution
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we will take as ansatz

m

W, = exp (-— ~ - /tr AJK(LYOT + . ) : L=A/m*

2c ,m*
this is explicitly gauge and holomorphic invariant
this may be regarded as a WKB approximation
can also be regarded as a saddle point approximation, from the point of view of collective field
theory

® sts validity is controlled by the I/N expansion.
we solve the Schrodinger equation order by order in ./

note that this Gaussian part of the vacuum wavefunctional contans a (non-trivial) kernel K,
which will be determined by the Schrodinger equation

* K comtams mformation about the spectrum of the theory at large N
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Schrodinger

the Schrodinger equation takes the form

Hin¥y = [ TP jtr dJ(R)DJ + .. ] O

mc 4
(divergent) vacuum energy
by careful cnmputanun (regulmzanun reqmrcti) we find

R-—B[L}— 5i[hf£}]+LK{L) 2 _n “Riccati diff eq.”

this is a formal expression, obtained by regarding K as a power series in L,
and computing term by term

the boxed equation is a differential equation for K, which can be solved
formally — in fact, by a series of redefinitions, it can be cast as a Bessel eq.
e this should be solved subject to a physical boundary condition
» atsmall L, we should have K(L) — | (confining regime)
®  will also obtain correct large L bebaviour (asymptotic freedom)
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Vacuum Wavefunctional

e the solution with the correct asymptotics is

N p—0 K—1
Yg=exp| — = ~ tr f}.ff\-{L}f}.f +...]. p—. K—2m/p
2¢4am=
NIE) = {_'I"‘"lvf‘_}
'\,-"L -Ilti\-"{L}

e the small L limit contains information about the string tension
* indeed, because )./ is similar to the Yang-Mills magnetic field B. and the computation of the
expectation value of a spatial Wilson loop may be regarded as a computation in 2-dimensional
Yang-Mills
2 AT
* one finds (correctly) Jo = 9y ."f!* (®) ~ exp(—cA)

Vv 8T

e in the large L limit, the wavefunctional goes over to a form consistent with
free gluons, with coupling g7,

Page 31/41
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Correlation Functions

we would like now to use this result to compute correlation functions of
products of invariant operators (O, pc(F.1)0, pc(F.1)

at large distance, we will find contributions of single particle poles of the

correct qua.ntum numbcrs
. : # - .
O i B s nolis Y ~ —m;|t—g
O_ipclz. t)Orpcly.t)) = E ¢

to find particle states of given spacetime quantum numbers, we consider
operators of a suitable form

ey Oas s =t - RI0F :

the correlation function is written in position space representation as
frf}u' H}[:‘" ASwazw [H Wi z)O(y) ¥, = _/rf;.t JJWO(x)O(y)¥,

in the second half of this equation, we have changed variables from H to J

* since the vacuum wavefunctional is Gaussian, )./ acts as essentially a free field

* furthermore in the large N limit, we can regard K(L) as a function of #J/m"~ and correlation
functions may be computed by Wick contractions with kernel K '
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Vacuum Wavefunctional

¢ the solution with the correct asymprotics is

: - p—0 K—1
g = exp (— - ~ ffr AJK(L)DJ + .. ) . p—o. K—2m/p
2¢am=
K(L) = }_J-_r{-lv.f.'
'\,"'L .II':JV{L:'

e the small L limit contains information about the string tension
* indeed, because )./ is similar to the Yang-Mills magnetic field B, and the computation of the
expectation value of a spatial Wilson loop may be regarded as a computation in 2-dimensional
Yang-Mills
2 r
* one finds (correctly) S~ 9y .'I_.P (®) ~ exp(—cA)

VvV 8T

e in the large L limit, the wavefunctional goes over to a form consistent with
free gluons, with coupling G5 2e
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Correlation Functions

we would like now to use this result to compute correlation functions of
products of invariant operators (O, pc(F.1)0, pclF. 1)

at large distance, we will find contributions of single particle poles of the

COrrect quantum numbers
Z e |x—wl
]

to find particle states of given spacetime quantum numbers, we consider
operators of a suitable form

O_spclZ.)O01pcly.t)) ~
x — 1y

eg., Ogyp =tr:0J0J:

the correlation function is written in position space representation as
[ff}ll. ff:f"" "5“-2“. H ‘p:,c’[r]c}'!y:ilp“ = fff”l:}.j-!w:'{:}{.r.’m[y}‘p”

in the second half of this equation, we have changed variables from H to J

* since the vacuum wavefunctional is Gaussian, (.7 acts as essentially a free field

* furthermore in the large N limit, we can regard K(L) as a function of 3/m"~ and correlation
functions may be computed by Wick contractions with kernel K
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07" Glueballs

e thuswe ﬁnd {fl"‘ (‘}Jé}J{I) ir &J(}J(y)) — .&F_E(II — y“

e this is expressed in terms of the Fourier transform
(1z)* 5 z2

* using a product form of the Bessel function J.(z) = Fw+1) [Ha-=9

nf__,
¢,
p=1 .

we find e V2
E R =—— —‘E'T I =~
K~ (k) 5 E M+ M, = vy3,m/2

n=] -

e Fourier transforming, we find a result which at long distance behaves as

KM (e — yl) = — e 3 (M, )2 Ml

44/ 2x|x — yl

ri=1l

e thus, we find the remarkable formula
(tr BIDI(z) tr DIDI(y) = ¥ —T— e~ (MntMum)lz—u

m.mn II ik y|

* with masses determined by the zeros of Bessel function

m o 921 =5.14
Mpn = (HF'E-rn + H!E.ﬂ)_ e (H,*E,rn -+ HJ"E.H) I 2= 5.42 |
2 I 923 =11.62
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Comparison to Lattice

¢ using this result, we tabulate states

TABLE L 0" giueball masses in QCDs. All masses are TABLE II 07 glueball masses in QCDy. All masses are
m units of the square root of the string tension. Hesuls of in units of the sguare root of the string tension. Results of
;HS{CHmmmthwﬁtme.hn ADS/CFT computations in the supergravity lmit are also
mven for comparson. The percent difference between our given for comparison. The percent difference between our
prediction and lattice data is given in the last column prediction and lattice data is given in the last column.
State |Lattice. N — o Sugra  Our prediction Diff. % State | Lattice. N — o Sugra _Our prediction  Diff-%
o 1065 £ 0055  L0T(input) 10 08 ' 501 £0.25 .10 6.15 1
i 613013 .02 54 125 0——* 763+ 037 9,34 T 46 23
™" | 789x0n .92 6.72 16 0~  806+066 1237 8.77 22
0T 944 +£0.38° 12 =0 7.99 15

“Mass of 0°+*** state was computed om the lattice for SU/(2) from bep-th/osiz111

oaly [9]. The mimber quoted here was obtained by a simple rescals
ing of SL7{2} result

® the lowest lying 0" state agrees very well with the lattice result
* other 0" states are within 10-15% of lattice e R
» bowever, it bas been suggested in the past that the masses of these states should bave larger ervor bars

e results for 0~ states come from correlation function of #r 0.J0.Ji.J and
agree with lattice within a few percent
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Comments on Regge Trajectories

e preliminary work on higher spin ' s P
- * i -
states 1s encouraging 6F . =.045 A
o' =0.302 -
* lattice data is sparse, except for : P
low N al . f_./
* states organize into a series of i ,,;/
straightish trajectories J,//
2k |
A . . £
a representative is shown here s
® in any case, a more careful analysis is [ ,/
required oL ,r':
0 25 50 75 100 125 150
M/
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Comments on the QCD String

* the Bessel function is essentially sinusoidal, and so its zeros are evenly
spaced (better for large n)

o o ~ mT{m+1/4)

e thus, the predicted spectrum has approximate degeneracies
A M, 4+ M5~ M> + My ~ M3+ M;

and the spectrum is organized into bands concentrated around a given level
(which are well separated)

e at each level, one finds more and more spin states

e preliminary counting suggests that there is an approximate (in the sense
that degeneracies are not exact) Hagedorn spectrum of states

* degeneracies are more precise at high levels

e we believe this is a basic manifestation of the QCD string

¢).] essentially plays the role of a string osallator

the departure from exact degeneracies at low levels is a sign thar this is not a fundamental

string (a result which is certainly expected, as the theory retains information about the
asymptotically free regime)

see Leigh, Minec, Nowling, Yelnskov
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Comments on the QCD String

e the Bessel function is essentially sinusoidal, and so its zeros are evenly
spaced (better for large n) e e b 5P

e thus, the predicted spectrum has approximate degeneracies
e, M 4+ M5 >~ M> + My ~ My + M,

and the spectrum is organized into bands concentrated around a given level
(which are well separated)

® at each level, one finds more and more spin states

e preliminary counting suggests that there is an approximate (in the sense
that degeneracies are not exact) Hagedorn spectrum of states

* degeneracies are more precise at high levels

e we believe this is a basic manifestation of the QCD string

* ().J essentially plays the role of a string oscillator

® the departure from exact degeneracies at low levels is a sign that this is not a fundamental
string (a result which is certainly expected, as the theory retains information abour the
asymptotically free regime)
see Leigh, Minic, Nowling, Yelnikov
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Outlook

e further work

* would like to more carefully sort out predicted states, especially higher spins
* finite N effects? (widths?, etc)

* more lattice simulations are required!

e 2+1 QCD
* we believe that we can extend these results to QCD with fundamental fermions
® it is possible to include fermions mto the KN formalism.
* would like to demonstrate confinement and compute meson spectrum (1)
e 3+1 Yang-Mills
* it’s not clear that this can be handled rigorously by an extension of this formalism
* bowever, its certainly worth a try!

©  preliminary numerical estimates, based on 'scaling up’ the 2+1 ideas, seem to agree with 3+1 lattice.
results with 10% or so
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