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Motivation

Our work is motivated by a suggestive relation between
4D BPS black holes and the topological string, noticed

last year by Ooguri, Strominger and Vafa.
The black holes in question come from tvpe Il string

theory compactified on a Calabi-Yau threefold M. For

concreteness, let us focus on IIA compactification.
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Review: BH Entropy and Attractors

The Kahler and complex structure moduli of M become
vector and hvpermultiplets, respectively, in the effective

theory.

Wrapping D-branes on appropriate cycles in M. we

obtain a BPS black hole in four dimensions.
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At the horizon, the vector multiplet vevs are fixed by the

attractor mechanism:

:;"A\r-\'} — _f".k{:iu_ q )

£/

The hypermultiplets, however, are unconstrained.

Therefore, the black hole entropy can depend only on the

(attractor-fixed) vector multiplet vevs.
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Review: Topological Strings

Now let us compare with the topological string. The

topological A-model on M computes the “prepotential”

. - ) 2 SIS IR -
f‘f,_.,,l, X '\L. Gton) = r_,!:hJ “f‘;;. { X A
I j ! TTOT

h

which also depends only on the vector multiplets X*.
Each term in the prepotential corresponds to a coupling
= o) | Rl W s Bh P i
0L ~ /;/*HH BRAXY)~ P2 F(X) 1 ...

between the vector multiplets and the SUGRA multiplet.
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The OSV relation vs. *“conjecture”

These higher-derivative couplings modify the area law for
black hole entropy (Wald; Cardoso, de Wit & Mohaupt).

All other terms in the effective Lagrangian are believed
to depend on the hypermultiplet vevs. Thus, thev cannot

affect the black hole entropy.

Thus, we have a precise relation between the topological

string and black hole entropy!
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Review: Topological Strings

Now let us compare with the topological string. The

topological A-model on M computes the “prepotential”

= & e : S e _
‘!—fr -_I.ril. -\ -\- ,'r_if?“rjiu ) = E _'I'J.";rlflr_, N f' R _.\_ 4 |

h
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The OSV relation vs. “conjecture”

These higher-derivative couplings modify the area law for
black hole entropy (Wald; Cardoso, de Wit & Mohaupt).

All other terms in the effective Lagrangian are believed
to depend on the hypermultiplet vevs. Thus, thev cannot

affect the black hole entropy.

Thus, we have a precise relation between the topological

string and black hole entropy!
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OSV showed that this relation takes a verv simple form

fif)_ @) = \"BH'II’ffji — A J"‘IIL
where
T S = (p. Q)
T I~ = Py A 1 (D) -. A r. BH'J’ .rlr:l.
Fip,0) = -)f'l“fr:-;]{_*\ =1 = F. O = A
fi i fj'
Then they conjectured an exact relation
iZ.an,__ J.“ Q) r~ E .'ir;_-.)-lr_{.j,r_ q _:Er s
q
where
er J ik J{'_r'.._l. H(,‘._rlpj _ p w .
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The OSV conjecture is currently imprecise. Some obvious

questions:

e Why is the RHS invariant under © — o + 2wk but
not the LHS?

e What is the nonperturbative completion of Z;,,”
e What is the correct BH degeneracy to use?
e Are there non-trivial measure factors on either side?

Clearly, we need a better understanding of both Z;,, and
dgg 1n order to address these questions.
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OSV showed that this relation takes a very simple form

F @) = HBH {irr, q } — (A ¢ o
where
- [ _‘Ill_ .} ¥ i .'|
- : : s e LD dopglp.q)
PP = ﬁf*ii'lfh.jj{_*\'l — 1'*'\ —+ | r_'f\ = £ 4

f'_.frf'\"

Then they conjectured an exact relation

) E ‘;Df{'f} f_f.* —.*'f;r
q

!Z+rJ]'r" 'j_“l @)

where
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The OSV conjecture is currently imprecise. Some obvious

questions:

e Why is the RHS invariant under ¢ — o + 27wk but
not the LHS?

e What is the nonperturbative completion of Z;,,”
e What is the correct BH degeneracy to use?
e Are there non-trivial measure factors on either side?

Clearly, we need a better understanding of both Z;,, and
dgg 1n order to address these questions.
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OSV showed that this relation takes a veryv simple form

JC; s Qry = HBH:i-! | i — N J"‘II'L
where
. AA 3G "'.
/Clljrs 1,-1-:' — -'}1—{“ l_# | ,r \.._-1 - f;'\“ _|_ L ': . r-,-ﬁ'L _ &y BH ,.J!(:_ 'rlr.-'
e = 5 - g™

Then they conjectured an exact relation
| 9. - da
| Zeop(D, @) |° ~ E dpp(p,q)e "
q
where

Lm ™™, dpg ~ e BE
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The OSV conjecture is currently imprecise. Some obvious

questions:

e Why is the RHS invariant under & — o + 27ik but
not the LHS?

e What is the nonperturbative completion of Z;,,”

e What is the correct BH degeneracy to use?

e Are there non-trivial measure factors on either side?
Clearly, we need a better understanding of both Z;,, and

dgy 1n order to address these questions.
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OSV showed that this relation takes a verv simple form

Jf'ji- Q) — .L_'.‘-B[__,r-!:ifr. { | — (A :'ﬁ"'
where

: .F.f_'f'x “}HBH Ii P. :Ir :
Jfl:iﬂ. 1: — ﬂf~inh4.,«[§\"1 — f’ﬁk - j - ( n'l — i

r'_.-*rlf"‘

Then they conjectured an exact relation

S E f'fﬁ'g'{.j.f_ q _:i*' e
q

iZ.—'rilr_. - 1’_-?_ () :

where
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The OSV conjecture is currently imprecise. Some obvious
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e Are there non-trivial measure factors on either side?
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In particular, it would be nice to have exact expressions

f{Z}l‘ f/BH :

However, exact formulas for the degeneracies of N = 2

black holes are hard to come by.
Black holes with more supersymmetry might be easier to

understand. This motivates us to study BPS black holes

in A" =4 and N = 8 string theory.
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In this talk. we will derive formulas for the exact
degeneracies of large BPS black holes in A" = 4 and

N = 8 string theory.

We will then exhibit the OSV transform of these

degeneracies and compare with the topological string.
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In particular, it would be nice to have exact expressions

for f/BH -

However, exact formulas for the degeneracies of N' = 2

black holes are hard to come by.
Black holes with more supersymmetry might be easier to

understand. This motivates us to study BPS black holes

in ' =4 and N = 8 string theory.
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In this talk, we will derive formulas for the exact
degeneracies of large BPS black holes in A" = 4 and

N = 8 string theory.

We will then exhibit the OSV transform of these

degeneracies and compare with the topological string.
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Outline

Motivation

4D-5D connection

Black holes in ' = 4 string theory

Black holes in N = 8 string theory

Comparison with the topological string

11
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4D-5D Connection

Consider type IIA string theorv compactified on a CY3

M with
e p' = 1 D6 branes wrapped on M
e ¢4 D2 branes wrapped on a® C M
e o DO branes

Now lift this to M-theorv.
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The D6 brane lifts to Taub-NUT space:

R4 R3 x S1 | x11

Taub-NU'T space looks like a cigar, with a tip at r =0
: : 2/3
and an asymptotic radius R ~ Y10 -
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1@ (rs 3xS1 -

BH

The D2 branes lift to M2 branes sitting at the tip of

Taub-NUT.

The DO branes lift to angular momentum localized at the
tip of Taub-NUT.
1
..J-Irlf__ —_— _}'II“
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So we have a spinning black hole at the tip of Taub-NUT.

Changing the Taub-NUT radius R interpolates between
5D and 4D black holes.

Since the microscopic degeneracy — appropriately defined
— cannot depend on the continuous parameter R, the 4D
and the 5D degeneracies must be equal (Gaiotto.
Strominger and Yin):
. B - | . 1 |
da(p” = 1,q90,q4) = ds(JL = 540, 94)
In some cases, an 5D degeneracies are known exactly.

This allows us to derive the exact 4D degeneracies.
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Check: classical entropy

The classical entropy of 4D D6-D2-DO0 black holes with

'. . . - . ~y L1
»° = 1 1s g1ven by the formula (Shmakova,
’ = 1 is given by the formula (Shmakova)

(Q3 = (Dapcyy®y°)*, qa = 3Dapcy” -UB)

Agrees with entropy of 5D spinning black hole (Ikallosh.,

Rajaraman, Wong)

confirming the identification of Jr = ¢g/2.
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String theory on K3 x T+

Type II string theory compactified on K3 x T? preserves

N = 4 supersymmetry in four dimensions.
The U-duality group is SL(2.Z) x SO(22,6;Z).

The electric and magnetic charge vectors ¢.. ¢,
transform in the 28 of SO(22,6). We can form three
S50(22,6) invariants out of these charges,

oy

q. e = m

|-
| RN

He = Ym m
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Duality transformations

The simplest possibility consistent with U-duality is that

: 2 9
the 4D degeneracies depend only on ¢Z, ¢, and q. - q,,.

ds = {!_L{_EIEIU‘ q )

The goal is to use the 4D-5D connection to derive an
exact formula for dy. To proceed further. we must dualize

the 5D system to one whose degeneracies are known.
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String theory on A3 x 17

Type II string theory compactified on K3 x T? preserves
N = 4 supersymmetry in four dimensions.

The U-duality group is SL(2.Z) x SO(22,6;Z).

The electric and magnetic charge vectors ¢.. ¢,
transform in the 28 of SO(22,.6). We can form three
S50(22,6) invariants out of these charges,

rlf{. "j, . .rjr”r

[ e
| RN

L |

He = 4m m
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Duality transformations

The simplest possibility consistent with U-duality is that

. 9 5
the 4D degeneracies depend only on ¢Z, ¢;, and ¢, - q,,,

dy = dg(S2p,q))

The goal is to use the 4D-5D connection to derive an
exact formula for dy. To proceed further. we must dualize

the 5D system to one whose degeneracies are known.

Page 31/87

18




To be specific, consider the following D6-D2-D0
configuration:

e A single K3 x T? wrapped D6 brane

e g4 D2 branes wrapping 2-cycles a* C K3

e ¢ D2 branes wrapping 77

e ¢y DO branes

The SO(22,6) invariants reduce to:

_—}f — —1( fj__\(j;_“.;, "fr' - *(jr:_.- — :J!f” :f’i‘:” — :if
Pirsa: 05120012 Page 32/87
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M-theory on K3 x T2

ga K3-wrapped M2 branes
g T?-wrapped M2 branes
go/2 units of angular

moinentuim

IIB on K3 x St

1 D5 brane., N D1 branes
g units of momentum on S*
go/2 units of angular

moimentuim
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shrink

gt — 72

ITA on K3 x St

g4 K3-wrapped D2 branes
g F-strings winding S*

q0, 2 units ot a'tll}..';lll:-ll'

moientiuim

T-dualitv

U-duality
A

IIB on K3 x S!

g4 D3 branes

g units of momentum on S*
Jo/2 units of angular

moientiiim

20
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The D1-D5 charges are related to the 4D charges by:
1 1 1 5, 1- 1
N . AR - \ 2 2
(Lo, N, Jr) = {4, 3(- qagqs + 1, 540) = \5%9m 54 + 1, =qc - gm)
We can form a 5D generating function
‘2‘ : o - 27i(pLo+o N+2v.Jr)
Z:H?__J': h'j,[_[_“__\..}—j: e ' * -
Lo,N,Jg

By the 4D-5D correspondence:

dsy(Q2) = ds(Lo = i}*’f)” N = %*’f.: 1, Jg = i}“ " Gm )
Lap = r--'_::""TZ,;j}
It remains to compute Zsp. It has two parts,
Z_-'.j_‘} = Zf_'_} 1D5 7 Zj_'_}_',
pirsa: 05120012 | page 3467




Pirsa: 05120012

Exact 5D degeneracies

The microstates of the spinning D1-D5 system were first
studied by BMPV, extending the work of Strominger &
Vafa.

They are described by the worldvolume CFT on the N
D1 branes. This is a non-linear sigma model with target

space

M = Hilb" (K3) ~ Sym™ (K3)

The degeneracies of this CFT are known exactly.

Page 35/87
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The elliptic genus of M provides a generating function
for the exact degeneracies of this CFT:

I 2mil !'J_l-i”'—'_.;},'f..l-'r!r_

yv(p,v) = Tr(—1)>t+/r,

i . ‘rjr:-p{-[‘1i -.\-F. -}rJL I :_IFII:IIL“_F:;;']T_._ :I

R

.Ir_ |.-';r_'_

The full partition function of the D1D5 system is then

Zpips(p.o,v) = E TN v (p,v)
N
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The generating function Zpips(p.o.v) was studied by
DMVV. They derived a product formula for it:
Zf_'-. 1 D5 — ‘ ‘ [ J_ — 2 'r'-'f’—*ff'-"—l—-f-“ff Py —€ Akl —m=2)

1 :I.I'I ..._____ | ',_"."l'—::

. Py : . S :
where ¢(4k[ — m~) are the elliptic genus coefhicients for a
single K 3:

' \ o 7 & -' 2y 2mwi(hp+my)
X1l 2, V) = X| K3)= E etdh — Y " vE

h=>0.mcZ
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We also need the contribution Zps from the single D5
brane on K3 x S!. This was calculated by AGNT:

3 - — 7 I _ ) . 'I',T.'-'.n':'__|' D
Luslpw) — € " TleT —e T ) I |{l et B

E>1

(Il —e™5 iy 2] ) &

5 - i Y iy - Ry A Ala] 2y
— 2l p17) ‘ | e 2milkp+Ho+my ) —cldkl—m=)
— p f | J_ £ f .

Here we have used the fact that c¢(0) = 20. ¢(—1) = 2 and c(n) = 0 for
p < —1L.
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The generating function Zpips(p.o.rv) was studied by
DMVV. They derived a product formula for it:
f - :T.l'.. Ll |7 iy )y —C .I:r-||l—.| —
S |

, . ] o —
ke ]| JII,'.-_..J_ '.."-"'—__.

. Py i . i -
where ¢(4kl — m~) are the elliptic genus coethcients for a
single K 3:

' ] 2 -' 2y 2milhp+my)
\1(p,v) = x(A3) = E e(4h — m*~)e "\

h=>0mcZ
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We also need the contribution Zps from the single D5
brane on K3 x S!. This was calculated by AGNT:

ZJ['}; !:J;f_ Pl — _.-:“.J::' i R e ol ‘ | ’l
k>1

(1 — 2milkp—v)\=2(1 _ 2mikp)—20

ey . i 5 E. | 2 SRS : I.] 2
— 27l p4#) i 2mil kotHlot+-my) y—cldkl—m =)
=i f ‘ | | E— f J

Here we have used the fact that ¢(0) = 20. ¢(—1) = 2 and ¢(n) = 0 for
- —1.

oy e \ Oy
__,,l"_n"-.J—i—nl'_' £ —id
f f
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Exact 4D degeneracy

These two product formulas combine nicely to give
— Zmil oL - Yril b otlatmp iy —e bl — _'|
Zsp = LZpipsdps =€ v ‘ | §l o R R o
(k.l.m)>0

where (k.I.m) >0 means k. [ > 0. m e Z. and if k=1=0, only m < 0.

[

Therefore, the 4D partition function is:

Z-lﬂ — ¢ — 27 p+o+V) | ‘ ( l . 27 .{1'.,-r—|—." T+ '|_r | .lf..-a'__mj ]
e —

Pirsa: 05120012 Page 41/87
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e Our answer exactly reproduces an old conjecture of

Dijkeraaf, Verlinde and Verlinde!

] {I}ll:j =/

—1
4D
/)

.n 1s the unique weight 10 automorphic form
2 4.

,...
o
l.:_r',

[y ]
o

_.-'—_-\-\.
)

e As shown by DVV,

| I I — el -"'J } _* +2( e gJm )/ ) ( i
dy(Qp.q)) = # dpdody e ™ @pt@2ot2aean) 7, (5 o 1)

has the correct asymptotics

- ! ] ] 5
i ¥ Q59 —\Ge"Qm ) ©

|j’l_ BT ;
and 1s manifestly U-duality invariant.
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The generating function Zp1ps(p.o.r) was studied by
DMVV. Theyv derived a product formula for it:
Zf“f}r — | ‘ .:. J_ . f': il 'lj-'l.”—l'lf'?'—l—.-'.?-}z | !I_.-| _I___,;-I.'_”J__' |

q -JII.' .--:.~| F”r_.-.-—_

Py i . e :
where ¢(4kl — m~) are the elliptic genus coethcients for a
single K 3:

f 5 ; oy 7 2 2milhpLmuy)
1l 2. V) = X| [1'.-;_] = E i —ui Je v

h=>0mcZ
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We also need the contribution Zps from the single D5
brane on K3 x S!. This was calculated by AGNT:

Zf_}; lp, V) = B (i S o I | (1
k>1

bl — 2wilkp—v) —.ZJ_ - f_‘.:’ TiRp -I—if*'

—2wi( p4v) ‘ | /- 2wil kp+-lo+mu) \—e(dkl—m=)
— { f | _L =k f |

2mi(kp+uv)\—2
L f

Here we have used the fact that ¢(0) = 20. ¢(—1) = 2 and c¢(n) = 0 for
. —1.
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Exact 4D degeneracy

These two product formulas combine nicely to give

_ D L7 ¥ }T [+ 3| T oy sy — o L il _'I
Zsp = LpipsLps =€ T ‘ | (1 e slo bR

where (kK.I.m) >0means k. [ > 0. me Z. and if k=1=0. onlv m < 0.

I

Therefore, the 4D partition function is:

Z_]:D — _:...-‘Tf': I,.'-—!—rT—I—,';i I ‘ |' J- — _-_}T'Il l{1.I-C ’—I_l: 1I—J|_.|'.|'|III | -|—I"| —1_,&'_1"—}'.".’3;
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e Our answer exactly reproduces an old conjecture of

]:)i.ili*_‘?'L'ai;'lf'_ \1‘1‘1111{[51 ;-aun_l \*{ 'l'lilll.'f‘!

s _1 = { - e - _ N - 1._. '-_‘
o Oy = Z,, is the unique weight 10 automorphic form

e As shown by DVV,
; - . . _mila? ota2aL2a- -am Vir) ’ :
dy (£2(p.q)) = # dpdody e " 4m! e G- ' Z4p( P, o, V)

has the correct asymptotics

)

I — { _"\ r-!'.'_;"fl-'_-_ HeYm )~

J-L ™~
and 1s manifestly U-duality invariant.
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Exact 4D degeneracy

These two product formulas combine nicely to give

_:-}TI .J+) e ._}.-T !.',' |'I.T r F R -_Lr.'l— .:'|
ZGEJ:ZD{[}:ZD.}:*' i ‘l (1 — ¢ (- So=t antnpy— e

T

T\T}li.-l'-ﬁ_' l.‘-'..-':. I > U means JE [ ~ . m & : -illil 1I f — | = (). s_rlll'{ < ).

I

Therefore, the 4D partition function is:

;]

Z4p g _:..-}T.'-:!'_—E—KT—I—L-| I ‘ |' J_ ., '_:}T-'I_.ﬂ'.,-r—l—:'.TJ,_.rH.' | .l_r.l _JCI,.‘_..;_”_.djl

(k.d,m)>0
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e Our answer exactly reproduces an old conjecture of
Dijkeraat, Verlinde and Verlinde!

o Oy = Z,, is the unique weight 10 automorphic form

e As shown by DVV,
dy(Qp,q)) = )é dodody e @mptacot2geam)v) 7, (5 5 1)

has the correct asymptotics

N T
P — eV e dm —\Ye Um )~

rf’_L - f
and 1s manifestly U-duality invariant.
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String theory on 7"

Type II string theory compactified on 7° preserves

N = 8 supersymmetry in four dimensions.

The U-duality group is E-. There is a unique quartic

charge invariant: the “Cremmer-Julia invariant.”

In terms of the N = 4 charges, it is

)

T "2

W "j.-‘fj,f, — | e * Gm )

The simplest possibility consistent with U-duality is that

the 4D degeneracies depend only on .J.
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e Our answer exactly reproduces an old conjecture of
Dijkeraaf. Verlinde and Verlinde!

_ _1 = i - = - _ _ i - . P i
o Oy = 7, is the unique weight 10 automorphic form

)
e As shown by DVV,

/ \ : 5 _mila= ota3 2 M e Vi) ; \
dy(Qp.q)) = f dpdody eGP+ Eo+2aean) 7, (4 & 1))

has the correct asymptotics

—li ke "\ r!'.':!flf_- —\9e-9m }°

rf’_L £
and 1s manifestly U-duality invariant.
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String theory on 7"

Type II string theory compactified on 7° preserves

N = 8 supersymmetry in four dimensions.

The U-duality group is E-. There is a unique quartic

charge imvariant: the “Cremmer-Julia invariant.”

In terms of the N = 4 charges. it is

)

J =4 ¢ — (Ge - gm)”

The simplest possibility consistent with U-duality is that

the 4D degeneracies depend only on .J.
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We consider the same D6-D2-DO0 brane configuration as
before. The same chain of dualities vields a D1-D5
system on 7% x S*.

The charges are:

A . 1 | S B
- =LA - 2 2
"'-L”' N, '}FJ'E P = (‘rir ?{- HAYB - E"r}r”) = Sff-n' E'r_-‘r:" E'rfr " {m
Using the 4D-5D correspondence,
| | P " 1 5 1
JJI{_L — vl‘/’j ( [_” — —)(j: _h\, — _}rjr- }—f_ — —}fi - qf.f-'
‘J q Page 52/87




However. the elliptic genus of Sym™ (T*) vanishes

because of the extra supersymmetry.

So we are forced to consider instead the modihlied elliptic

genus,

. ; \ & e ..}, i -:,17; 2.0 { 2mi(pLo+2 .Jrf /
\v(p.v) = Tr(2Jg)*(—1)>L =" eV v J

. _ i 10 n '_',-,.Tr-
= E -1":,|L1}._\L.]-£_.|f_ phot-Rly
.fi.-|..e'r_j_

The generating function for the 5D degeneracies is then

Zsp = Zp1Ds = E emNoy (o, v)

N
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This was computed by Maldacena, Moore & Strominger:
Z.-1 mn — E SF Zmas| "r‘ 1T —E1 ) r —_I:.Ir ! f{}' _— 2 !
“.I'Ix'. I {
where the coeflicients are defined by the Fourier
expansion of \;
/ — b ’ .5} s~ 21 _-!—“.' :'I-.','J'—I' 4
_I:JJ‘I! H:{_;.-‘FJ" — E r‘{éf{.' — =Y (&, ]
k.

Notice that when (k,n,f) are coprime, there is only one

term that contributes to the sum Z5p.
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This was computed by Maldacena, Moore & Strominger:
Z.'; n = E c¢ 2mis| .l'r.,- gL fr) :r“ —_I:I'f{u' _ 2 :_
% R
where the coeflicients are defined by the Fourier
expansion of \;

. £) = Dy D fay Py
F .|‘. — E r|4}1 — - _'-.f'- G it :

T
|

—f:f{:;; | _“H: : 1/

Notice that when (A&, n,f) are coprime, there is only one

term that contributes to the sum Zsp.
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Therefore.

I Fe it v
| .7 E )i oprime

- o - 1
Cl —_I:f:'/‘{f — 7 = .f'; LH — H_*\ — f}] — —f)

e Al =t R =Tk A

The combination 4nk — ¢? is preciselv the
I ,

~ . . 2 9 y .
Cremmer-Julia invariant J = ¢2q¢-, — (e - ¢m)”!

Clearly, we can get everyv value of .J by an appropriate

choice of coprime charges. Therefore we conclude that
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Therefore.

([ &.TE. L | -J]'rJ."-'..'.'-'J'

~ o : 1
cldnk — (7) . = n'{f, ln — 13, 1} :A'_.]—r}' = —/{

— "‘l!--L (ff-:a —— ‘j“_ ri':' — _}/} e - Gn = | )
The combination 4nk — (? is precisely the

i 2 b “ oy 0y 4 \ ©)
Cremmer-Julia invariant J = ¢-q¢, — (e - ¢m)”!

Clearly, we can get every value of .J by an appropriate

choice of coprime charges. Therefore we conclude that
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A short calculation starting from

—n(p)~ 01 (v|p = Z da(4k — €%)e 2mi( kp+£v)

k. §

vields the generating function for the 4D degeneracies:

23 A P 2 H'J, | _} / .:'
Zap = E dy(.J)e 2mipd n(dp) ; eZripm= _ ZO\EF) :
j = ;'f[J_cl,r')_f'“

Pirsa: 05120012 : Page 58/87

s
L




Summa ry
We have derived the exact degeneracies of dvonic black

holes in N' = 4 and N = 8 string theory. They are

4

" o @m pHa2o+2(ge-gm V)
fhi_'if’p_ q) . — %

{:[}1” | f"’ o. 1/ I

and

" 1 —'.}Tr' -’.I D.q) fje; | j.'r) }
"/-li- .]-:f!_rif_j F— e N T
: J"J.’ { —'I:."' ’__:'1"

respectively.

The first result precisely reproduces an old conjecture of

DVV. The second result is entirely new.
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OSV Transforms

Finally, let us briefly discuss the OSV transforms of d,

and their topological string intepretation:

N1 9) = Z"”-L(EE-{};J; ) )e %

For technical reasons. we will restrict to the case p° = 0.
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The result of the OSV transform is:

1 D 1 1 2 .
v S L - A

Z § | * '
Rt —— , S \ D4 mpl Lipl 94
} e e e i ¥ r Ry LI I-

_._'_,__._':._'_ '-' 7 L Jrfl "__ |I- r-_ i} __| _|'I | .-: :-_._| i

apl —iol R S
| . i j’_:' — L % - k 4 Fi -p, —I_IP"_’ .
Dapcp”p°p© 24p* M ("5 ) 24p M (g0 )

il IV - b

F ._{' : = .-l. " : { TF J‘—I.-_";.l . e | : ; :-1 'II'___.Il 3
(¢°)° Ti(00)3 p(TEitl)  wi(g0)P pp(TEtidl

and

D 2 i 2yt g oG 2 A B Cy A B C
e ( ;.-_:_H,_- I - 3] L i ! D‘—E_Bf_'j) J!;) IJ} |
LN=8 = E ( i R

1 (_':rl:' } 11

Dd—a+2mik
Does this mess have an interpretation in terms of the

topological string?
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Ry, °

The topological string on 7° and A3 x 7T~

" : £ s =
The topological string on M = T°, K3 x T< is only

nontrivial at tree-level and one-loop

n | s B 24logn(t') (K3 x T?)
ZT"(JL.T- = “ ffu-!'- — < 3 j_' . f.»'l ;
1) | Bi ! ':_Z 0 .

The attractor mechanism fixes the moduli (for p” = 0) to

A -1_-! ,I'JL + ‘r .}_--1 __I: :_}
f_ = 0 3 _f)rh n — 0

P ) D
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The result of the OSV transform is:

\ B C . A, B C
] f%l e it — el )
Z { -
Z_".L :_L i : T,JJ-—."r'* . _.’-'J-—.' | S
R "r,'lll:-. : _-|- ':—‘Lf b= \ 24
S R 5 S e
-~ . PP —i® ) : TP ot y
D scp?pPp° 24pt N (g ) 24pt N (~g0 )
_ B ; B : N
(L)Y ML W ¢ mpl —ipl il AR Y rpl4iol :
(ot _}3 mi(oY)3 N p---cf(_ } Tl f{_uo )2 ‘,}{ P_'_"S— }
LDy T2
and
Dapge(m=< 3 pC 344 4B A B _C
Z d B : i Hi 3] | D:}_B(_'E) J!U IUI |
N=8 — E TS = %
By (@)1
Does this mess have an interpretation in terms of the
topological string?
Pirsa: 05120012 Page 63/87




Pirsa: 05120012

The topological string on 7° and K3 x T~

; : e o
The topological string on M = T° K3 x T< is only

nontrivial at tree-level and one-loop

i)3Dspct?tBtC - (I o T2
. 1 s * —Ulogy(t') (K3 x T2
ZT'rJL.r- — K “ lL?Lr /1y = < 27i)° | J'j : ; _[.[

The attractor mechanism fixes the moduli (for p” = 0) to

it 9
.','frjl + 1o A4
0 » Ytop = "5

LD D

e
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The result of the OSV transform is:

Y i J | »
2L S o ¥ A [ =
L £ L

7 * |
\ A e - : - -
* W ——1: Z ,|. :EI'JJ'—.'r_"L .II.._-,,_L ||' T__."'J'—n'":_:.L '|:_1

f - e \ / J\
O+ 2TtR £ il ; L

W SR S S A O
(TP —IiQ } }1 TP~ 10 .]

D‘_l B{_'f.}'_lf_lBj}Cr —)_-I:}_”l ”’ { T J —')_'I:f ”'F | I,,_-}|j|

[ 10\3 T i AD)3 mpl—idly i 40\3 /wpl4icl '
(oY) mi( oY) ”{-EET} T V) ”{-IJT?

and

D 2 i 2o oG a4 B Cy A B _C
=t (G011 S

—o4-2wik
Does this mess have an interpretation in terms of the

topological string?
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The topological string on 7% and K3 x T~

The topological strine on M = T%. K3 x T? is only
| g g i
nontrivial at tree-level and one-loop

( g ML e oy ;A B

F My At T Mlogy(tt) (K3 x T2
ZT"(JL.T- = “ lL?"I JE — < 3 13 ] f ALBLC _Z.[
e R [ 5 L L ||" ¥

The attractor mechanism fixes the moduli (for p” = 0) to

.-1.-! J_‘l + .-'I-'Ir .}_"1 _-I: r\-i

. b .{J’?"r I =
1 U ; r__'}“
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The result of the OSV transform is:

) 2 A B C A B C
][_gl T I;| — II-J
|
Z f
Yo — — - .
—L Z T Jl—.'r_'é \ -__L { T .'J-—,- — '—1
oy P .Irlr' | I|-— llI'll'l : i
_._',_ + A T g i , ¥\ ;

A B¢ Uyt (L DAl f’f—“*pLJr"':"l]
DABC‘E—" PP 24p I\ ¢ 24p ]\~ 540

- - — 1
$0)3 —q( 403 ¢ mpl —igl ral A3 s Eptlidt y B
(oY) e o mi(oY) (R

and

Z D s pc(x2p*pBpC —36465,C) Dapep*p®p©
Z_"\d:_?ﬁ — £ == :_ s E

{ Y J' 11

- 2mik
Does this mess have an interpretation in terms of the

topological string?
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In particular. the volume of the CY is fixed to:

) 1 —A
. E B X 8
Gt € = | Xol? Re X' 0p Fiop
| AQ \

e A4 2
E j]—_-}_-{B{’.."fr -iufl“{.

Ij‘ar —

Note that we are extending the usual formula for the CY
volume to include quantum corrections coming from the

subleading terms in F;,,.
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In particular, the volume of the CY is fixed to:

O 1 s
¥ oo =, 4
,‘.a'rmf.‘-f — E Re X ’-)_1f.+-qu
.\H‘_ \

™ D apcp®p®p©

Ij‘ar =

Note that we are extending the usual formula for the CY
volume to include quantum corrections coming from the

subleading terms in F;,,.
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The result of the OSV transform is:

5 |1. J.'.; 1 {
B B M I = 3
Z ( kS
Z :_1_: P IR . —.-J-_,- 1 .
o Sovecs NI oo 249 . 24
SIS, SRR i1 N e
= , TP —iO ; . TP tio
D:l B{_1f'}__lﬁr)Bf'}t —)—‘I:f_ul ” { il } —')—-I:j”i 'l [ ToL )
[ L0%3 e ADY3 s apl—it ol A0V _ sapl4iol
(@) Tl oY) ‘THE;‘.T ) mi( oY) f;,{_ff_T ;

and

D e 2B C oA B _C\ A B
Z - Z : ~ABt¢ : o p ) D;‘-lB(_.'j-) pop N
H=Eh ( >0 "}11 -

4 2mik
Does this mess have an interpretation in terms of the

topological string?
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The result of the OSV transform is:

z : |
N=4 — Z Tl —igpl \24. | pl il 94
| O S SRR i I-

; (e : ] _

(pt —ig! } rwptigt

D apcp”p”p© 24p' N (ZSg0 ) 24p M (g0 )

- - — L.
- l:' :3 .__.- / -IJ ::; ¢ T }J._E'(_—;l Y S _0 :5 . ~ }J. _|_-'!1'r_'__|l 3 | _—
(V) e Qv) FN"I;'.TJ m1(@ )% p( Imu |

and

» DN s . 355 - S SRS BT 2 S S it B
Z d - f ‘II'_:J"j’*.’ [ i [ 1 ) D‘—'LB(_"E) J!;J IUI N
S Z (G011 Fress

—+ 1 :_).-‘I_ 'I.IIII'\.

Does this mess have an interpretation in terms of the

topological string?
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In particular. the volume of the CY is fixed to:

Z Re X~ Op Frop

Ij‘ar —

- s
,".*'."mf-‘ L
”\

™ D apep®p®p©

Note that we are extending the usual formula for the CY
volume to include quantum corrections coming from the

subleading terms in F;,,.
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In terms of the quantities of the topological string, the

OSV transform is actually quite simple!

Z}'HZTI - Z ‘Z'*"f’ 3 I}{:LIJ = i
Oo—o2mik

In=s = D, |Zipl x V1o X |gropl® +
O—+2mik

We come very close to the original proposal of OSV!

But many questions remain...
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Open questions

e Can we think of the extra factors as measure factors
for the topological string “wavefunction”? How do
they fit with the holomorphic anomaly equations?
(Verlinde)

e The sum over ¢ shifts was also found by AOSV in the
context of local CYs. Is this a general feature of the

OSV conjecture? What is its physical interpretation?
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In terms of the quantities of the topological string, the

OSV transform is actually quite simple!

Tea = 3 Bl Wmt o

i _'J—|—'_3_T-' K

Zn=s = Y |Zopl® x Virs x |guopl® +

—

H— 427k

We come very close to the original proposal of OSV!

But many questions remain...
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Open questions

e Can we think of the extra factors as measure factors
for the topological string “wavefunction”? How do
they fit with the holomorphic anomaly equations?
(Verlinde)

e The sum over ¢ shifts was also found by AOSV in the

context of local CYs. Is this a general feature of the

OSV conjecture? What is its physical interpretation?

40
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Future Directions

e Understand better the nonperturbative corrections.
Do thev contain information about baby universes

and black hole fragmentation?

e Obtain more examples. In particular. it would be nice
to generalize to other A" = 4 (or even \' = 2) string
theories, obtained from orbifolds of K3 x T2 (recent
work of Jatkar & Sen).
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Future Directions

e Understand better the nonperturbative corrections.
Do thev contain information about baby universes

and black hole fragmentation?

e Obtain more examples. In particular. it would be nice
to generalize to other N' =4 (or even N = 2) string
. = . - o - )
theories, obtained from orbifolds of A'3 x 1= (recent

work of Jatkar & Sen).

41
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In terms of the quantities of the topological string, the

OSV transform is actually quite simple!

Z_‘-._Id:_l_ — Z ‘Z;‘-,:}-J‘j : I:r\';'jh]‘;’ o e

(o — J—|—_},._| 5

Zios = X Vgl x Ve x lggl® +

O—o+2mik

We come very close to the original proposal of OSV!

But many questions remain...
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Future Directions

e Understand better the nonperturbative corrections.
Do thev contain information about baby universes

and black hole fragmentation?

e Obtain more examples. In particular. it would be nice
to generalize to other N =4 (or even N = 2) string
w - L) . - g .:}
theories, obtained from orbifolds of A'3 x 1= (recent

work of Jatkar & Sen).

41
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In terms of the quantities of the topological string, the
OSV transform is actually quite simple!

In=s = D), |Zipl" x Visxrz + ...

o—o+2mik

IN—8 = Z | Zsop|? X Vips X |geopl® +
O—a+2mik

We come very close to the original proposal of OSV!

But many questions remain...

Pirsa: 05120012 Page 84/87




Pirsa: 05120012

L)

The topological string on 7° and A3 x 7T~

: : s o .
The topological string on M = T° K3 x T< is only

nontrivial at tree-level and one-loop

XDy _I___'w_l_'_?'? i : : = R
- i L}"_“" E M )z 1 i) (K3 x1 '}_,I
top e 1¢
Z*r] = lL?‘r S < 2miV3 D s nrtdAtB+C ’ _[{
1 7 re : I

The attractor mechanism fixes the moduli (for p” = 0) to

TEJ'JL + 2« < —lITjr

] i .‘fr?Lf'-.'-' — :
1 U ; r__'}*

e
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In terms of the quantities of the topological string, the
OSV transform is actually quite simple!

Zn=t = Y | Ziop|* x Viaxra + ...

(— _'J—|—'_3_T-' K

Z_‘u\‘:\-.-‘ — T ‘Z."‘r-_‘n‘: ' I}‘Fi pr ‘Hf‘_}pl?ﬁ +

o m—

o—+2mik

We come very close to the original proposal of OSV!

But many questions remain...
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The elliptic genus of M provides a generating function
for the exact degeneracies of this CFT:

..IIT I,I'J_n'i||'—-..2}1'*'--'-|r£|_

: : s a2 420 &
v(p,v) = Tr(—1)>i+dn,

= Y di(Lo, N, Jp)e¥rilpLo+2v L)

st

Lul.-'r_'_

The full partition function of the D1D5 system is then

Y Re— ; 2mioN / |
LD\ P, T, V) = ; ¢ \~n(p, )

e

N
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