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The inflaton starts to oscillate near
the minimum of its potential as does
the effective mass squared of the
matter field

\j (Kofman, Linde, Starobinsky 1994)
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Parametric resonance 3




Preheating due to the tachyonic instability




Tachyonic Instability at the level of fluctuations




Tachyonic Instability at the level of flluctuations







E

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).

Tachyonic instability at the level of fluctuations

Initial gaussian fluctuations of
the inflaton and the matter
field (no particles)

. Generation of squ

(rapid changes in the
amplitude, long range
correlation of phases)
Correlation of phases is
broken; final state is
described in terms of particles



1. Initial gaussian fluctuations of
the inflaton and the matter
field (no particles)

2. Generation of squeezed state
(rapid changes in the
amplitude, long range
correlation of phases)

3. Correlation of phases is

broken; final state is

described in terms of particles

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).




1. Initial gaussian fluctuations o
the inflaton and the matter
field (no particles)

2. Generation of squeezed state
(rapid changes in the
amplitude, long range
correlation of phases)

3. Correlation of phases is

broken; final state is

described in terms of particles

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).

BEmaa— R 0 S




s

Tachyonic i"_sta'!"“’ at meml of fluctuations

1. Initial gaussian fluctuations ¢
the inflaton and the matter
field (no particles)

2. Generation of squeezed state
(rapid changes in the
amplitude, long range
correlation of phases)

3. Correlation of phases is

broken; final state is

described in terms of particles

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).




—

Tachyonic instability at the level of fluctuations

1. Initial gaussian fluctuations of
the inflaton and the matter
field (no particles)

2. Generation of squeezed state
(rapid changes in the
amplitude, long range
correlation of phases)

3. Correlation of phases is
broken; final state is
described in terms of particles

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).




Tachyonic instability at the level of fluctuations

1. Initial gaussian fluctuations of
the inflaton and the matter
field (no pam

2. Generation of squeeze i
(rapid changes i in the
amplitude, long range
correlation of phases)

3. Correlation of phases is

broken; final state is

described in terms of particles

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).




| 3

K 3

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).

Tachyonic Instability at the level of fluctuations

Initial gaussian fluctuations of
the inflaton and the matter
field (no particles)
Generation of squeezed state
(rapid changes in the
amplitude, long range
correlation of phases)
Correlation of phases is
broken; final state is
described in terms of particles




Tachyonic instability at the level of fluctuations

1. Initial gaussian fluctuations of
the inflaton and the matter

(rapid changmnﬂm -
amplitude, long range
correlation of phases)

3. Correlation of phases is
broken; final state is
described in terms of particles

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).




Tachyonic instability at the level of fluctuations

1. Initial gaussian fluctuations of
the inflaton and the matter
field (no parll:m}

2. Generation of squeezed
(rapid changes mﬂie
amplitude, m’mm
correlation of phases)

3. Correlation of phases is

broken; final state is

described in terms of particles

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).




Tachyonic instability at the level of fluctuations

- e

1. Initial gaussian fluctuations of
the inflaton and the matter
field (no particles)

2. Generation of squeezed state
(rapid changes in the
amplitude, long range
correlation of phases)

3. Correlation of phases is

broken; final state is

described in terms of particles

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).




1. Initial gaussian fluctuations of
the inflaton and the matter
field (no particles)

2. Generation of squeezed state
(rapid changes in the
amplitude, long range
correlation of phases)

3. Correlation of phases is

broken; final state is

described in terms of particles

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).




E

E

Amplitude of the inflaton’s fluctuations as a function of the
position in space (2d slice of 3d simulations).

Tachyonic instability at the level of fluctuations

Initial gaussian fluctuations of
the inflaton and the matter
field (no partlcm)
Generation of sque
(rapid changesllﬁ:le
amplitude, long range
correlation of phases)
Correlation of phases is
broken; final state is
described in terms of particles




"fﬂl:ll!llﬂi!:_ Sllllﬂ!”": the model

2 > ;f i

_m o 0 a2 A

Eff. frequency for y in Mspatﬂnm
wk(t) = k¥ + o ®(t) sin(mt) + ¢° (1) sin®(m¢)
The frequency can be negative during
the part of the period for the IR mode
Therefore, mixture of parametric
resonance and tachyonic effects.

Controlling parameters:
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Prethermalization
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