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ENTANGLEMENT-ASSISTED INVARIANCE,
IGNORANCE, AND INFORMATION IN
QUANTUM PHYSICS*

Born’s R ule” from entanglement

|¥)= 2%‘5 )= p, =

“Max Born, Zutm. hrift fur Physik, 37, pp. 863-867 (1926).

*Wojciech H. Zurek, “Environment-assisted invariance, entanglement,
and probabilities in quantum physics™, PRL 90, 120404 (2003); also
Section VI D of “Decoherence...”, RMP 75, 715-765 (2003):also
“Probabilities from entanglement...”, quant-ph/0405161, PRA, May 05.
H. Barnum, “No-signaling-based version of Zurek’s derivation of
quantum probabilities”, quant-ph/0312150; M. Schlosshauer & A. Fine,
quant-ph...: M. Schlosshauer, Rev. Mod. Phys, Oct "04 issue...




Axioms of Quantum Theory

The Universe consists of systems

Pure state 1s a vector in the Hilbert space of a system

Composite pure state is a vector in a tensor product of constituent
Hilbert spaces

Evolutions of isolated systems are unitary

Observables are associated with Hermitean operators

The only possible outcome of a measurement 1s an eigenstate
(and the corresponding eigenvalue) of such an operator™
Probabilities of various outcomes are given by
Born’s Rule.”

*Can be explained by decoherence and einselection, but that
means relying on Born's Rule

“Need to derive without circularity!




Copy from a translation. p. 52-57 m “Quantum
Theory and Measurement”. John Archibald

Wheeler & WHZ. eds. (Princeton U. Press. 1983)
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EINSELECTION* leads to POINTER STATES

(same states appear on the diagonal of p () for times long compared
to the decoherence time)

*Environment INduced superSELECTION




IMPLICATIONS OF DECOHERENCE AND
EINSELECTION
1. MEASUREMENTS
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2. DYNAMICS

* States in Hilbert space “censored”, restricted to localized quantum
approximations of points

* Classical equations of motion
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POINTER STATES FROM THE PREDICTABILITY SIEVE

States 1n the Hilbert space of the open system evolve from pure

into mixed under the influence of both the self-Hamiltonian and

the interaction Hamiltonian. They can be sorted according to

predictability (e.g. measured by entropy or by purity Aa(r)).
)= p, (1) h(p, (1) =Trp, ()

|q) = p (1) ...... h(p_(1)= Trpjm

)= p.(0) ... h(p.()=Trp(t)




DECOHERENCE AND EINSELECTION
Thesis: Quantum theory can explain emergence of the classical
Principle of superposition loses its validity in “open”™ systems, that is,

systems interacting with their environments.

Decoherence restricts stable states (states that can persist, and, therefore,
“exist”) to the exceptional. ..

Pointer states that exist or evolve predictably in spite of the immersion
of the system in the environment.

Predictability sieve can be used to “sift’ through the Hilbert space
of the open system in search of these pointer states.

EINSELECTION (or Environment INduced superSELECTION) 1s
the process of selection of these preterred pointer states.

For macroscopic systems, decoherence and einselection can be very effective,
enforcing a ban on Schroedinger cats.

Einselection enforces an effective border that divides quantum from classical, making

a point of view similar to Bohr's Copenhagen Interpretation possible. although starting

from a rather different standpoint (i. ., no ab mnitio classical domain of the universe).
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EINSELECTION*, POINTER BASIS,
AND DECOHERENCE / \
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REDUCED IjENSITY MATRIX
Depends on Born ¢ Rule!!!
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EINSELECTION* leads to POINTER STATES

(same states appear on the diagonal (]tp ( )mr times long compared
to the decoherence time)

*Environment INduced superSELECTION




EINSELECTION*, POINTER BASIS,
AND DECOHERENCE
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BORN’S RULE

a

‘IP>= Ew,{‘sk):» Pr = I%\_
k=1

This 1s how trace and reduced density matrices

are justified (since introduction by Landau, 1927).
Gleason (1956) proved (using elements of Bohr's
Copenhagen interpretation) that Born’s rule 1s

the right measure on the subspaces of Hilbert space.
Gleason’s proot gives no insight into physical
significance of Born’s rule.




ENVARIANCE

Environment - Assisted Invariance

DEFINITION:

Consider a composite quantum object consisting of system S
and environment £ When the combined state ¥ << is transformed
by:

U.=u_®1,

but can be “untransformed” by acting solely on £, that is, if

there exists:
Ug = 1s ® U,

then Y. is ENVARIANT with respect to U, -

U (U, ‘wsg >) =U, (Psz) = ‘wss)

Envariance is a property of the joint state Y . of two systems, S & E.




ENVARIANCE

Entanglement - Assisted Invariance

DEFINITION:
Consider a composite quantum object consisting of system S
and environment £ When the combined state ¥ << is transformed
by:

U.=u_®1,

but can be “untransformed” by acting solely on £, that is, if

there exists:
Ug — ls ® U,

then Y. iIs ENVARIANT with respect to U, -

U (U, ‘wsg >) =4, 9955) = wsz—:)

Envariance is a property of the joint state Y . of two systems, S & E.




ENTANGLED STATE AS AN
EXAMPLE OF ENVARIANCE:
LEMMALI

Schmidt decomposition:

|1P5¢,) Eaﬁ\‘s ‘5

Above Schmidt states Ig) |;;) dl‘t orthonormal and ¢, complex.

Lemma 1: Unitary transformations with Schmidt eigenstates:

Us (5, ) = E exp(ig,)|s )s.|

_ k=1
leave Y. envariant.

Proof:

u (s )wz)= Ea exp(ig,)|s Je.) u-(e,)= Eexp{i{-@ +2m 1)} e Xe, |

k =]

=] 3
u(g,){u. )}=2a expii(¢, ¢, +2xl,) [ XE) Et_’f explio, J| >|E)




ENVARIANCE -- SOME PROPERTIES
U (U, "1/)55 )) =U, |(}955> - ‘exp( iq()ﬂwsg )

* Envariant Y<¢ is an eigenstate of two unitary
transtformations with a unit (or{unimodular|) eigenvalue.

Envariance can be defined for density matrices of S£, but
this will not be necessary, as one can instead purify the

state of SE in the usual way, by introducing £, so the
density matrix of S£ i1s given by: =Tr ‘ x
Censin cisgivenby: oo =Tr |Woeo AWeee

A product of envariant transformations of Y/ . 1s an
[
envariant transformation of /...

* All envanant transformations have Schmidt eigenstates.

For additional discussion, see WHZ, quant-ph/0211037, PRL, 90, 120404 (2003);
Decokerence, einselection, and the quantum onigin of the clasaical RMP, 75,715 (2003);
and especially Probabilitics from entanglement. .., quant-ph/0405161, PRA May ‘05




ENTANGLED STATE AS AN EXAMPLE
OF ENVARIANCE: LEMMA 2
Schmidt decomposition:

.. )= Zm\f e )

Schmidt s ) |£ L) are (}rthﬂnnrmdl and X complex.

Lemma 2: ALL envariant transformations have Schmidt
eigenstates, that is, have the form of:

us(s,) = 2 exp(ig)|s )s.|
k=1
Proof (by contradiction): Consider a unitary transformation that does not

have Schmidt eigenstates. It will change the Schmidt states of the system
in Y . But a change of Schmidt states cannot be undone by any
transformation acting only on the environment. QED.
Remark: When absolute values of some of the coefficients are equal,
Schmidt basis 1s not unique 1n the corresponding subspace. ..




PHASE ENVARIANCE THEOREM
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Moreover, “entanglement happens™:

N
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THEOREM 1: Probabilities of the system S alone can depend only on
the absolute values of Schmidt coefficients k‘al and not on their phases.

Proot: Phases of (¢, can be changed by acting on S alone. But the
state of the whole can be restored by acting only on £. So the change
of the phases of Schmidt coefficients could not have affected S! QED.
.". By phase envariance, {|z,|. |s, )} must provide a complete local
description of the system alone. NOTE: Same info as

111

density matrix!!!




Envariance of entangled states:
the case of equal coefficients
‘w5£> * Eexp( i‘f}ﬁ;)‘h“'k)lgk)

k=1
In this case ANY orthonormal basis 1s Schmidt. In particular, in the

Hilbert subspace spanned by any two {|? ) |5;>} one can define a

Hadamard basis:
‘i>= (‘ L';k)i |S€ ))/\/2
This can be used to generate ‘new kind’ of envariant transformations:

ASWAP: u_(k <= 1) =exp(ig,, )|S£ XS; |+ hc.

: Can be ‘undone’ by the COUNTERSWAP:
| u(k <= ) =exp{i(—@p,, —@, + qoj,)}|af3!F XEA_ |+ hc.

LEMMA 3: Swaps of states are envariant when their
Schmidt coefficients have the same absolute value.
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Symmetries
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Probabilities from envariance

(Environment-assisted iNVARIANCE)
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Symmetries
can reflect
ignorance

Probabilities from envariance

(Environment-assisted iNVARIANCE)

H— swapin§ |1 R swap in E
sTle) —— }il.ﬂ.'.-:' Og) ""05.-" lg) —l) 1) +05) 0,




Symmetries

can reflect

ignorance
Probabilities from envariance

(Environment-assisted iNVARIANCE)
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Envariance of entangled states:
the case of equal coefficients

"ws;'g) % 2 exp(ip, )]s, )lex)

In this case ANY orthonormal basis is Schmidt. In particular, in the

Hilbert subspace spanned by any two {Ii ) |5,,>} one can define a

Hadamard basis: ‘i>= (‘ Sk>i |S€ ))/‘/5

This can be used to generate ‘new kind’ of envariant transformations:

A SWAP: u_(k <= 10) =exp(ig, )lf’l XS; |+ i

| Can be ‘undone” by the COUNTERSWAP:
ug(k <= I) =expli(-@, — @, + (p;’)}lgf XEI.- |+ h

LEMMA 3: Swaps of states are envariant when their
Schmidt coefficients have the same absolute value.




Probabilities of envarlantly swappable states

|wss> ECXP("@)l" )lgi)

By the Phase Envariance ThtDI‘tIH the set of pairs |C(L| | 5,1)
provides a complete description of S. But all |a [ are equal.

With additional assumption about probabilities, can prove

THEOREM 2: Probabilities of envariantly swappable states are equal.
(a) “pedantic assumption; when states get swapped, so do probabilitites;
(b) when the state of the system does not change under any unitary in

a part of its Hilbert space, probabilities of any set of basis states are equal.
(¢) When there 1s one-to-one correlation between |s, ).| =, > (Barnum “03).

Therefore, by normalization:
I

1
pk:ﬁ V;—

Moreover:

pﬁcl vk v ... .v k,

i
N




Special case with unequal coetficients
Consider system S with two states {|0).|2)}
The environment £ has three states {j0)Ji)[2)} and [+)=(/0) + )2
2 1
RN

An auxilliary environment £ interacts with £ so that:

\qsg o)=Y + JERiI0) = [EioMloNed« ) ‘f P -

= (j0)oYo)+ [oX)i) +[2)2)2)) 3

States [0)0), [0)1), |2)2) have equal coefficients. Therefore,
Each of them has probability of 1/3. Consequently:
p(0) =p(0.0)+p(0,1)=2/3, and p(2)=1/3.

«eee. BORN’s RULE!!







Special case with unequal coetficients
Consider system S with two states {|0).|2)}
The environment £ has three states {o)J1)[2); and [+)=(j0) + [1))/+2
B 0

| e

An auxilliary environment £ interacts with £ so that:

“*55 Z0)-| \ﬂ” ) + J7|”)|” )o)= ‘/7|U){|{} o)+ [I)2 + ‘ﬂnua

— (000 + [oYy-+ [2)2)2)) V3

States [0)0), [0)1), |2)2) have equal coefficients. Therefore,
Each of them has probability of 1/3. Consequently:
p(0) =p(0,0)+p(0,1)=2/3, and p(2)=1/3.
... BORN’s RULE!!!
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Probabilities from Envariance

The case of commensurate probabilities: Ll; =s ZJW H‘ A>| >

e A

Attach the dumhdn environment s
/ \
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THEOREM 3: The case with commensurate probabilities can be
reduced to the case with equal probabilitiecs. BORN’s RULE follows:

p;\-=. e .==bkr

General incommensurate case follows by continuity. QED.




ENVARIANCE* -- SUMMARY

New symmetry - ENVARIANCE - of joint states of quantum
systems. It is related to causality.

In quantum physics perfect knowledge of the whole may imply

Ci"iﬁ.lg.ﬁ*lﬁfﬁ 1Z2N0rdnce ol a pdrt.

BORN’s RULE is a consequence of envariance.

Relative frequency interpretation of probabilities naturally
follows.

Envariance supplies a new foundation for environment - induced
superselection, decoherence, quantum statistical physics, etc., by
justifying the form and interpretation of reduced density matrices.

*WHZ. PRL. 90, 120404; RMP 75,715 (2003): quant-ph/0405161, PRA May 05
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