Title: Microstates for BPS black holes and black rings

Date: Nov 01, 2005 02:00 AM

URL: http://pirsa.org/05110000

Abstract:

Pirsa: 05110000

Microstates for BPS Black Holes and Black Rings

Thomas S. Levi

University of Pennsylvania

tslevi@sas.upenn.edu

P. Berglund, E.G. Gimon and TSL, hep-th/0505167

Pirsa: 05110000 Page 2/110

 The fuzzball conjecture offers a promising approach to the black hole information paradox

Pirsa: 05110000 Page 3/110

- The fuzzball conjecture offers a promising approach to the black hole information paradox
- So far, only geometries for two-charge microstates have been found.
 These geometries have classically vanishing horizon area.

Pirsa: 05110000 Page 4/110

- The fuzzball conjecture offers a promising approach to the black hole information paradox
- So far, only geometries for two-charge microstates have been found.
 These geometries have classically vanishing horizon area.
- Want to find geometries that could be microstates for three-charge black holes and the new black ring solutions, which have classically finite horizons.

Pirsa: 05110000 Page 5/110

- The fuzzball conjecture offers a promising approach to the black hole information paradox
- So far, only geometries for two-charge microstates have been found.
 These geometries have classically vanishing horizon area.
- Want to find geometries that could be microstates for three-charge black holes and the new black ring solutions, which have classically finite horizons.
- Find new, smooth, stable SUGRA backgrounds

Pirsa: 05110000 Page 6/110

- The fuzzball conjecture offers a promising approach to the black hole information paradox
- So far, only geometries for two-charge microstates have been found.
 These geometries have classically vanishing horizon area.
- Want to find geometries that could be microstates for three-charge black holes and the new black ring solutions, which have classically finite horizons.
- Find new, smooth, stable SUGRA backgrounds
- Offer fresh insights into ideas surrounding quantum foam and geometric transitions

Pirsa: 05110000 Page 7/110

- The fuzzball conjecture offers a promising approach to the black hole information paradox
- So far, only geometries for two-charge microstates have been found.
 These geometries have classically vanishing horizon area.
- Want to find geometries that could be microstates for three-charge black holes and the new black ring solutions, which have classically finite horizons.
- Find new, smooth, stable SUGRA backgrounds
- Offer fresh insights into ideas surrounding quantum foam and geometric transitions

Pirsa: 05110000 Page 8/110

Outline

- 1. The fuzzball hypothesis
- 2. The Bena-Warner ansatz
- 3. Solving the equations for a three-charge system
 - Solve ansatz
 - Lay out conditions for a causal, smooth spacetime
- 4. Examples
- 5. Geometric transitions and quantum foam
- 6. Discussion and conclusions

Pirsa: 05110000 Page 9/110

Outline

- 1. The fuzzball hypothesis
- 2. The Bena-Warner ansatz
- 3. Solving the equations for a three-charge system
 - Solve ansatz
 - Lay out conditions for a causal, smooth spacetime
- 4. Examples
- 5. Geometric transitions and quantum foam
- 6. Discussion and conclusions

Pirsa: 05110000 Page 10/110

The fuzzball hypothesis

 In the usual black hole picture we have a horizon, empty space and all interesting physics concentrated at the singularity

Pirsa: 05110000 Page 11/110

The fuzzball hypothesis

 In the usual black hole picture we have a horizon, empty space and all interesting physics concentrated at the singularity

- In the fuzzball, the region between the "horizon" and the singularity is not empty. Instead there is interesting geometry and physics in this region
- The singular black hole geometry with a horizon is an emergent phenomenon that results from coarse graining. Each microstate is smooth and horizon free.

Pirsa: 05110000 Page 12/110

The fuzzball hypothesis

 In the usual black hole picture we have a horizon, empty space and all interesting physics concentrated at the singularity

- In the fuzzball, the region between the "horizon" and the singularity is not empty. Instead there is interesting geometry and physics in this region
- The singular black hole geometry with a horizon is an emergent phenomenon that results from coarse graining. Each microstate is smooth and horizon free.

Pirsa: 05110000 Page 13/110

More on fuzzballs

 Each microstate looks the same asymptotically. Closer in we see differences

Pirsa: 05110000 Page 14/110

More on fuzzballs

- Each microstate looks the same asymptotically. Closer in we see differences
- Our three-charge solutions will replace a core region of singular brane sources with a geometric transition to a bubbling foam of two-cycles threaded by flux

Pirsa: 05110000 Page 15/110

More on fuzzballs

- Each microstate looks the same asymptotically. Closer in we see differences
- Our three-charge solutions will replace a core region of singular brane sources with a geometric transition to a bubbling foam of two-cycles threaded by flux
- The intricate geometry of these cycles will distinguish individual microstates
- Along the way we will find rules for arranging the cycles

Pirsa: 05110000 Page 16/110

The Bena-Warner ansatz

- Bena and Warner have laid out an anzatz for 1/8 BPS solutions with three charges in five dimensions. Each charge comes from wrapping membranes on three separate T^2 s
- The 5D space is time fibred over a hyperkahler base space, HK

$$\begin{split} ds_{11}^2 &= -(Z_1 Z_2 Z_3)^{-2/3} (dt+k)^2 + (Z_1 Z_2 Z_3)^{1/3} ds_{HK}^2 + ds_{T^6}^2, \\ ds_{T^6}^2 &= (Z_1 Z_2 Z_3)^{1/3} \left(Z_1^{-1} (dz_1^2 + dz_2^2) + Z_2^{-1} (dz_3^2 + dz_4^2) + Z_3^{-1} (dz_5^2 + dz_6^2) \right). \end{split}$$

Pirsa: 05110000 Page 17/110

The Bena-Warner ansatz

- Bena and Warner have laid out an anzatz for 1/8 BPS solutions with three charges in five dimensions. Each charge comes from wrapping membranes on three separate T²s
- The 5D space is time fibred over a hyperkahler base space, HK

$$\begin{split} ds_{11}^2 &= -(Z_1 Z_2 Z_3)^{-2/3} (dt+k)^2 + (Z_1 Z_2 Z_3)^{1/3} ds_{HK}^2 + ds_{T^6}^2, \\ ds_{T^6}^2 &= (Z_1 Z_2 Z_3)^{1/3} \left(Z_1^{-1} (dz_1^2 + dz_2^2) + Z_2^{-1} (dz_3^2 + dz_4^2) + Z_3^{-1} (dz_5^2 + dz_6^2) \right). \end{split}$$

The C-field is given by

$$C_{(3)} = -(dt+k) \left(Z_1^{-1} dz_1 \wedge dz_2 + Z_2^{-1} dz_3 \wedge dz_4 + Z_3^{-1} dz_5 \wedge dz_6 \right)$$

+2 $a_1 \wedge dz_1 \wedge dz_2 + 2 a_2 \wedge dz_3 \wedge dz_4 + 2 a_3 \wedge dz_5 \wedge dz_6.$

Pirsa: 05110000 Page 18/110

Bena-Warner ansatz continued

Define $G_i = da_i$. The BW ansatz solves the EOM if

$$G_i = \star G_i,$$

$$d \star dZ_i = 2s^{ijk}G_j \wedge G_k,$$

$$dk + \star dk = 2G_iZ_i.$$

Where $s^{ijk}=|\epsilon^{ijk}|$ is the symmetric tensor and the Hodge dual is only on HK.

Pirsa: 05110000 Page 19/110

The Bena-Warner ansatz

- Bena and Warner have laid out an anzatz for 1/8 BPS solutions with three charges in five dimensions. Each charge comes from wrapping membranes on three separate T²s
- The 5D space is time fibred over a hyperkahler base space, HK

$$\begin{split} ds_{11}^2 &= -(Z_1 Z_2 Z_3)^{-2/3} (dt+k)^2 + (Z_1 Z_2 Z_3)^{1/3} ds_{HK}^2 + ds_{T^6}^2, \\ ds_{T^6}^2 &= (Z_1 Z_2 Z_3)^{1/3} \left(Z_1^{-1} (dz_1^2 + dz_2^2) + Z_2^{-1} (dz_3^2 + dz_4^2) + Z_3^{-1} (dz_5^2 + dz_6^2) \right). \end{split}$$

The C-field is given by

$$C_{(3)} = -(dt+k) \left(Z_1^{-1} dz_1 \wedge dz_2 + Z_2^{-1} dz_3 \wedge dz_4 + Z_3^{-1} dz_5 \wedge dz_6 \right)$$

+2 $a_1 \wedge dz_1 \wedge dz_2 + 2 a_2 \wedge dz_3 \wedge dz_4 + 2 a_3 \wedge dz_5 \wedge dz_6.$

Pirsa: 05110000 Page 20/110

Bena-Warner ansatz continued

Define $G_i = da_i$. The BW ansatz solves the EOM if

$$G_i = \star G_i,$$

$$d \star dZ_i = 2s^{ijk}G_j \wedge G_k,$$

$$dk + \star dk = 2G_iZ_i.$$

Where $s^{ijk}=|\epsilon^{ijk}|$ is the symmetric tensor and the Hodge dual is only on HK.

Pirsa: 05110000 Page 21/110

The Bena-Warner ansatz

- Bena and Warner have laid out an anzatz for 1/8 BPS solutions with three charges in five dimensions. Each charge comes from wrapping membranes on three separate T²s
- The 5D space is time fibred over a hyperkahler base space, HK

$$\begin{split} ds_{11}^2 &= -(Z_1 Z_2 Z_3)^{-2/3} (dt+k)^2 + (Z_1 Z_2 Z_3)^{1/3} ds_{HK}^2 + ds_{T^6}^2, \\ ds_{T^6}^2 &= (Z_1 Z_2 Z_3)^{1/3} \left(Z_1^{-1} (dz_1^2 + dz_2^2) + Z_2^{-1} (dz_3^2 + dz_4^2) + Z_3^{-1} (dz_5^2 + dz_6^2) \right). \end{split}$$

The C-field is given by

$$C_{(3)} = -(dt+k) \left(Z_1^{-1} dz_1 \wedge dz_2 + Z_2^{-1} dz_3 \wedge dz_4 + Z_3^{-1} dz_5 \wedge dz_6 \right)$$

+2 $a_1 \wedge dz_1 \wedge dz_2 + 2 a_2 \wedge dz_3 \wedge dz_4 + 2 a_3 \wedge dz_5 \wedge dz_6.$

Pirsa: 05110000 Page 22/110

Bena-Warner ansatz continued

Define $G_i = da_i$. The BW ansatz solves the EOM if

$$G_i = \star G_i,$$

$$d \star dZ_i = 2s^{ijk}G_j \wedge G_k,$$

$$dk + \star dk = 2G_iZ_i.$$

Where $s^{ijk}=|\epsilon^{ijk}|$ is the symmetric tensor and the Hodge dual is only on HK.

Pirsa: 05110000 Page 23/110

Solving the EOM: The HK metric

- ullet We relax the hyperkahler condition to allow a psuedo-hyperkahler HK so long as the total space is smooth
- We write the metric in Gibbons-Hawking form as

$$ds_{HK}^2 = H^{-1}\sigma^2 + H(dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2)$$

$$\sigma = d\tau + f_a dx^a$$
, $\tau \sim \tau + 4\pi$, $\star_3 d\sigma = dH$

Pirsa: 05110000 Page 24/110

Solving the EOM: The HK metric

- ullet We relax the hyperkahler condition to allow a psuedo-hyperkahler HK so long as the total space is smooth
- We write the metric in Gibbons-Hawking form as

$$ds_{HK}^2 = H^{-1}\sigma^2 + H(dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2)$$

$$\sigma = d\tau + f_a dx^a, \ \tau \sim \tau + 4\pi, \ \star_3 d\sigma = dH$$

• Our full solution will be completely encoded by a set of 8 harmonic functions on $\mathbb{R}^3: H, h_i, M_i$ and K

Pirsa: 05110000 Page 25/110

 When we relax the hyperkahler condition we can have more general candidates for H, which is harmonic on R³

$$H = \sum_{p=1}^{N} \frac{n_p}{r_p}, \qquad r_p = |\vec{r_p}| = |\vec{x} - \vec{x_p}|, \qquad \sum_{p=1}^{N} n_p = 1$$

Pirsa: 05110000 Page 26/110

• When we relax the hyperkahler condition we can have more general candidates for H, which is harmonic on ${\bf R}^3$

$$H = \sum_{p=1}^{N} \frac{n_p}{r_p}, \qquad r_p = |\vec{r_p}| = |\vec{x} - \vec{x_p}|, \qquad \sum_{p=1}^{N} n_p = 1$$

- This potential divides ${f R}^3$ into regions $I:\, H>0$ and $II:\, H<0$ and a domain wall at H=0
- ullet The metric HK is singular at the domain wall, but the time fibration keeps the overall metric smooth

Pirsa: 05110000 Page 27/110

 When we relax the hyperkahler condition we can have more general candidates for H, which is harmonic on R³

$$H = \sum_{p=1}^{N} \frac{n_p}{r_p}, \qquad r_p = |\vec{r}_p| = |\vec{x} - \vec{x}_p|, \qquad \sum_{p=1}^{N} n_p = 1$$

- This potential divides ${f R}^3$ into regions $I:\, H>0$ and $II:\, H<0$ and a domain wall at H=0
- ullet The metric HK is singular at the domain wall, but the time fibration keeps the overall metric smooth
- We now have a set of non-singular two-cycles S^{pq} , coming from the fiber σ over each interval from $\vec{x_p}$ to $\vec{x_q}$

Pirsa: 05110000 Page 28/110

Solving the EOM: The HK metric

- ullet We relax the hyperkahler condition to allow a psuedo-hyperkahler HK so long as the total space is smooth
- We write the metric in Gibbons-Hawking form as

$$ds_{HK}^2 = H^{-1}\sigma^2 + H(dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2)$$

$$\sigma = d\tau + f_a dx^a$$
, $\tau \sim \tau + 4\pi$, $\star_3 d\sigma = dH$

• Our full solution will be completely encoded by a set of 8 harmonic functions on \mathbb{R}^3 : H, h_i, M_i and K

Pirsa: 05110000 Page 29/110

Solving the EOM: The HK metric

- ullet We relax the hyperkahler condition to allow a psuedo-hyperkahler HK so long as the total space is smooth
- We write the metric in Gibbons-Hawking form as

$$ds_{HK}^2 = H^{-1}\sigma^2 + H(dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2)$$

$$\sigma = d\tau + f_a dx^a, \ \tau \sim \tau + 4\pi, \ \star_3 d\sigma = dH$$

• Our full solution will be completely encoded by a set of 8 harmonic functions on \mathbb{R}^3 : H, h_i, M_i and K

Pirsa: 05110000 Page 31/110

The dipole fields

- The M5-brane charge can be read off from the components of $\star dC_{(3)}$ which have a leg in the time direction. These are proportional to the G_i
- ullet We need these to fall off faster than 1/r so there is no net M5-brane charge at infinity
- We will also want to ensure that the G_i have no singularities except at H=0

Pirsa: 05110000 Page 32/110

• When we relax the hyperkahler condition we can have more general candidates for H, which is harmonic on ${\bf R}^3$

$$H = \sum_{p=1}^{N} \frac{n_p}{r_p}, \qquad r_p = |\vec{r}_p| = |\vec{x} - \vec{x}_p|, \qquad \sum_{p=1}^{N} n_p = 1$$

- This potential divides ${f R}^3$ into regions $I:\, H>0$ and $II:\, H<0$ and a domain wall at H=0
- ullet The metric HK is singular at the domain wall, but the time fibration keeps the overall metric smooth

Pirsa: 05110000 Page 33/110

The dipole fields

- The M5-brane charge can be read off from the components of $\star dC_{(3)}$ which have a leg in the time direction. These are proportional to the G_i
- ullet We need these to fall off faster than 1/r so there is no net M5-brane charge at infinity
- We will also want to ensure that the G_i have no singularities except at H=0

Pirsa: 05110000 Page 34/110

The dipole fields

- The M5-brane charge can be read off from the components of $\star dC_{(3)}$ which have a leg in the time direction. These are proportional to the G_i
- ullet We need these to fall off faster than 1/r so there is no net M5-brane charge at infinity
- We will also want to ensure that the G_i have no singularities except at H=0

$$G_i = d(h_i/H) \wedge \sigma - H \star_3 d(h_i/H), \quad h_i = \sum_{p=1}^N \frac{d_i^{(p)}}{4r_p}, \quad \sum_{p=1}^N d_i^{(p)} = 0$$

Pirsa: 05110000 Page 35/110

Small aside on notation

For convenience we define the following quantities:

$$\Pi^{r} = \prod_{p=1}^{N} r_{p}, \quad \Pi^{r}_{p} = \prod_{q \neq p} r_{q}, \quad \Pi^{r}_{ps} = \prod_{s \neq q \neq p} r_{q}, \qquad f = \sum_{p=1}^{N} n_{p} \Pi^{r}_{p}$$

Hence, H can be written as f/Π^r .

Pirsa: 05110000 Page 36/110

Small aside on notation

For convenience we define the following quantities:

$$\Pi^{r} = \prod_{p=1}^{N} r_{p}, \quad \Pi^{r}_{p} = \prod_{q \neq p} r_{q}, \quad \Pi^{r}_{ps} = \prod_{s \neq q \neq p} r_{q}, \qquad f = \sum_{p=1}^{N} n_{p} \Pi^{r}_{p}$$

Hence, H can be written as f/Π^r .

 We'll also find it very useful to define a global Dipole moment and more locally relative dipole moments

$$d_i^{pq} = n_p d_i^{(q)} - n_q d_i^{(p)} \Rightarrow d_i^{(p)} = -\sum_{q=1}^{N} d_i^{pq}, \quad \vec{D}_i = -\frac{1}{2} \sum_{pq} d_i^{pq} (\vec{x}_p - \vec{x}_q)$$

$$Q_i = \sum_{p,q} Q_i^{pq}$$
, where $Q_i^{pq} = -\frac{s^{ijk} d_j^{pq} d_k^{pq}}{4n_p n_q}$

Pirsa: 05110000 Page 37/110

Small aside on notation

For convenience we define the following quantities:

$$\Pi^{r} = \prod_{p=1}^{N} r_{p}, \quad \Pi^{r}_{p} = \prod_{q \neq p} r_{q}, \quad \Pi^{r}_{ps} = \prod_{s \neq q \neq p} r_{q}, \qquad f = \sum_{p=1}^{N} n_{p} \Pi^{r}_{p}$$

Hence, H can be written as f/Π^r .

 We'll also find it very useful to define a global Dipole moment and more locally relative dipole moments

$$d_i^{pq} = n_p d_i^{(q)} - n_q d_i^{(p)} \Rightarrow d_i^{(p)} = -\sum_{q=1}^{N} d_i^{pq}, \quad \vec{D}_i = -\frac{1}{2} \sum_{pq} d_i^{pq} (\vec{x}_p - \vec{x}_q)$$

$$Q_i = \sum_{p,q} Q_i^{pq}$$
, where $Q_i^{pq} = -\frac{s^{ijk} d_j^{pq} d_k^{pq}}{4n_p n_q}$

Pirsa: 05110000 Page 39/110

The monopole fields

- The membrane charge at infinity can be read off from the C-field components with a time component
- Looking at C₍₃₎ the Z_i encode the three membrane charges Q_i

Pirsa: 05110000 Page 40/110

The monopole fields

- The membrane charge at infinity can be read off from the C-field components with a time component
- Looking at C₍₃₎ the Z_i encode the three membrane charges Q_i
- To get the right membrane charge we need a falloff (note the asymptotic \mathbb{R}^4 radial coordinate is $R=2r^{\frac{1}{2}}$)

$$Z_i \to 1 + \frac{Q_i}{4r}$$
 as $r \to \infty$

Pirsa: 05110000 Page 41/110

The monopole fields

- The membrane charge at infinity can be read off from the C-field components with a time component
- Looking at C₍₃₎ the Z_i encode the three membrane charges Q_i
- To get the right membrane charge we need a falloff (note the asymptotic \mathbb{R}^4 radial coordinate is $R = 2r^{\frac{1}{2}}$)

$$Z_i \to 1 + \frac{Q_i}{4r}$$
 as $r \to \infty$

· Correcting a bit to satisfy the equations of motion we find

$$Z_i = M_i + 2H^{-1}s^{ijk}h_jh_k, \quad M_i = 1 + \sum_{p=1}^N \frac{Q_i^{(p)}}{4r_p}, \quad \sum_{p=1}^N Q_i^{(p)} = Q_i$$

Pirsa: 05110000 Page 42/110

The angular momentum

- ullet The angular momentum is determined by the 1-form, k
- A natural basis for k is

$$k = k_0 \sigma + k_a dx^a$$

Pirsa: 05110000 Page 43/110

The angular momentum

- The angular momentum is determined by the 1-form, k
- A natural basis for k is

$$k = k_0 \sigma + k_a dx^a$$

Our ansatz is

$$k_0 = K + 8H^{-2}h_1h_2h_3 + H^{-1}M_1h_1 + H^{-1}M_2h_2 + H^{-1}M_3h_3$$

$$= K - 4H^{-2}h_1h_2h_3 + Z_i(h_i/H) = \bar{K} + Z_i(h_i/H)$$

$$\star_3 d(k_a dx^a) = H dK - K dH + h_i dM_i - M_i dh_i$$

$$= H d\bar{K} - \bar{K} dH + h_i dZ_i - Z_i dh_i$$

where we have defined a new harmonic function K and its partner function $ar{K}$

$$K = \sum_{p=1}^{N} \left(\frac{\ell_p}{r_p}\right), \quad \bar{K} = K - 4H^{-2}h_1h_2h_3$$

Pirsa: 05110000 Page 44/110

ullet We need k to be a regular, globally defined 1-form that only has singularities where H=0 and falls off like 1/r asymptotically

Pirsa: 05110000 Page 45/110

- ullet We need k to be a regular, globally defined 1-form that only has singularities where H=0 and falls off like 1/r asymptotically
- We can do this if we use the freedom to add any closed form to $k_a dx^a$ and demand

$$\ell_p = \frac{d_1^{(p)} d_2^{(p)} d_3^{(p)}}{16n_p^2}, \qquad k_0|_{r_p=0} = 0$$

• The first condition removes the poles in \bar{K} and the second condition insures that $d^2(k_adx^a)=0$.

Pirsa: 05110000 Page 46/110

The angular momentum

- The angular momentum is determined by the 1-form, k
- A natural basis for k is

$$k = k_0 \sigma + k_a dx^a$$

Our ansatz is

$$k_0 = K + 8H^{-2}h_1h_2h_3 + H^{-1}M_1h_1 + H^{-1}M_2h_2 + H^{-1}M_3h_3$$

$$= K - 4H^{-2}h_1h_2h_3 + Z_i(h_i/H) = \bar{K} + Z_i(h_i/H)$$

$$\star_3 d(k_a dx^a) = H dK - K dH + h_i dM_i - M_i dh_i$$

$$= H d\bar{K} - \bar{K} dH + h_i dZ_i - Z_i dh_i$$

where we have defined a new harmonic function K and its partner function $ar{K}$

$$K = \sum_{p=1}^{N} \left(\frac{\ell_p}{r_p}\right), \quad \bar{K} = K - 4H^{-2} h_1 h_2 h_3$$

Pirsa: 05110000 Page 47/110

- ullet We need k to be a regular, globally defined 1-form that only has singularities where H=0 and falls off like 1/r asymptotically
- We can do this if we use the freedom to add any closed form to $k_a dx^a$ and demand

$$\ell_p = \frac{d_1^{(p)} d_2^{(p)} d_3^{(p)}}{16n_p^2}, \qquad k_0|_{r_p=0} = 0$$

• The first condition removes the poles in \bar{K} and the second condition insures that $d^2(k_a dx^a) = 0$.

Pirsa: 05110000 Page 48/110

The angular momentum

- The angular momentum is determined by the 1-form, k
- A natural basis for k is

$$k = k_0 \sigma + k_a dx^a$$

Our ansatz is

$$k_0 = K + 8H^{-2}h_1h_2h_3 + H^{-1}M_1h_1 + H^{-1}M_2h_2 + H^{-1}M_3h_3$$

$$= K - 4H^{-2}h_1h_2h_3 + Z_i(h_i/H) = \bar{K} + Z_i(h_i/H)$$

$$\star_3 d(k_a dx^a) = H dK - K dH + h_i dM_i - M_i dh_i$$

$$= H d\bar{K} - \bar{K} dH + h_i dZ_i - Z_i dh_i$$

where we have defined a new harmonic function K and its partner function $ar{K}$

$$K = \sum_{p=1}^{N} \left(\frac{\ell_p}{r_p}\right), \quad \bar{K} = K - 4H^{-2}h_1h_2h_3$$

Pirsa: 05110000 Page 49/110

The angular momentum

- The angular momentum is determined by the 1-form, k
- A natural basis for k is

$$k = k_0 \sigma + k_a dx^a$$

Our ansatz is

$$k_0 = K + 8H^{-2}h_1h_2h_3 + H^{-1}M_1h_1 + H^{-1}M_2h_2 + H^{-1}M_3h_3$$

$$= K - 4H^{-2}h_1h_2h_3 + Z_i(h_i/H) = \bar{K} + Z_i(h_i/H)$$

$$\star_3 d(k_a dx^a) = H dK - K dH + h_i dM_i - M_i dh_i$$

$$= H d\bar{K} - \bar{K} dH + h_i dZ_i - Z_i dh_i$$

where we have defined a new harmonic function K and its partner function $ar{K}$

$$K = \sum_{p=1}^{N} \left(\frac{\ell_p}{r_p}\right), \quad \bar{K} = K - 4H^{-2} h_1 h_2 h_3$$

Pirsa: 05110000 Page 51/110

- ullet We need k to be a regular, globally defined 1-form that only has singularities where H=0 and falls off like 1/r asymptotically
- We can do this if we use the freedom to add any closed form to $k_a dx^a$ and demand

$$\ell_p = \frac{d_1^{(p)} d_2^{(p)} d_3^{(p)}}{16n_p^2}, \qquad k_0|_{r_p=0} = 0$$

• The first condition removes the poles in \bar{K} and the second condition insures that $d^2(k_a dx^a) = 0$.

Pirsa: 05110000 Page 52/110

- We need k to be a regular, globally defined 1-form that only has singularities where H=0 and falls off like 1/r asymptotically
- We can do this if we use the freedom to add any closed form to k_adx^a and demand

$$\ell_p = \frac{d_1^{(p)} d_2^{(p)} d_3^{(p)}}{16n_p^2}, \qquad k_0|_{r_p=0} = 0$$

• The first condition removes the poles in \bar{K} and the second condition insures that $d^2(k_adx^a)=0$. The second condition can be solved giving

$$0 = \sum_{i} d_{i}^{(p)} + \sum_{q} \frac{1}{4n_{p}^{2}n_{q}^{2}} \prod_{pq} \prod_{i} d_{i}^{pq}$$

where $r_{pq} = |\vec{x}_p - \vec{x}_q|$

ullet This condition puts at most N-1 constraints on the relative pole positions

Pirsa: 05110000 Page 53/110

- We need k to be a regular, globally defined 1-form that only has singularities where H=0 and falls off like 1/r asymptotically
- We can do this if we use the freedom to add any closed form to $k_a dx^a$ and demand

$$\ell_p = \frac{d_1^{(p)} d_2^{(p)} d_3^{(p)}}{16n_p^2}, \qquad k_0|_{r_p=0} = 0$$

• The first condition removes the poles in \bar{K} and the second condition insures that $d^2(k_adx^a)=0$. The second condition can be solved giving

$$0 = \sum_{i} d_{i}^{(p)} + \sum_{q} \frac{1}{4n_{p}^{2}n_{q}^{2}} \prod_{r_{pq}} \prod_{i} d_{i}^{pq}$$

where $r_{pq} = |\vec{x}_p - \vec{x}_q|$

ullet This condition puts at most N-1 constraints on the relative pole positions

Pirsa: 05110000 Page 54/110

- We can also integrate the EOM to get an expression for k_adx^a (too complex to display here)
- The 2-form dk naturally splits into a self-dual and anti-self-dual part

$$dk_L = (dk + \star dk)/2 = Z_i G_i$$

$$dk_R = (dk - \star dk)/2 = (dK \wedge \sigma + H \star_3 dK) + (h_i/H) (dM_i \wedge \sigma + H \star_3 dM_i)$$

$$= (d\bar{K} \wedge \sigma + H \star_3 d\bar{K}) + (h_i/H) (dZ_i \wedge \sigma + H \star_3 dZ_i)$$

Pirsa: 05110000 Page 55/110

- We can also integrate the EOM to get an expression for k_adx^a (too complex to display here)
- The 2-form dk naturally splits into a self-dual and anti-self-dual part

$$dk_L = (dk + \star dk)/2 = Z_i G_i$$

$$dk_R = (dk - \star dk)/2 = (dK \wedge \sigma + H \star_3 dK) + (h_i/H) (dM_i \wedge \sigma + H \star_3 dM_i)$$

$$= (d\bar{K} \wedge \sigma + H \star_3 d\bar{K}) + (h_i/H) (dZ_i \wedge \sigma + H \star_3 dZ_i)$$

 Using the asymptotics of these forms we can read off the angular momenta at infinity to be

$$J_L = \frac{4G_5}{\pi} j_L = |4\sum_i \vec{D}_i|$$
 $J_R = \frac{4G_5}{\pi} j_R = 16\sum_{p=1}^N \ell_p$

where the $j_{L,R} \in \mathbf{Z}$

Pirsa: 05110000 Page 57/110

Small aside on notation

For convenience we define the following quantities:

$$\Pi^{r} = \prod_{p=1}^{N} r_{p}, \quad \Pi^{r}_{p} = \prod_{q \neq p} r_{q}, \quad \Pi^{r}_{ps} = \prod_{s \neq q \neq p} r_{q}, \qquad f = \sum_{p=1}^{N} n_{p} \Pi^{r}_{p}$$

Hence, H can be written as f/Π^r .

 We'll also find it very useful to define a global Dipole moment and more locally relative dipole moments

$$d_i^{pq} = n_p d_i^{(q)} - n_q d_i^{(p)} \Rightarrow d_i^{(p)} = -\sum_{q=1}^N d_i^{pq}, \quad \vec{D}_i = -\frac{1}{2} \sum_{pq} d_i^{pq} (\vec{x}_p - \vec{x}_q)$$

$$Q_i = \sum_{p,q} Q_i^{pq}$$
, where $Q_i^{pq} = -\frac{s^{ijk} d_j^{pq} d_k^{pq}}{4n_p n_q}$

Pirsa: 05110000 Page 58/110

- We can also integrate the EOM to get an expression for k_adx^a (too complex to display here)
- The 2-form dk naturally splits into a self-dual and anti-self-dual part

$$dk_L = (dk + \star dk)/2 = Z_i G_i$$

$$dk_R = (dk - \star dk)/2 = (dK \wedge \sigma + H \star_3 dK) + (h_i/H) (dM_i \wedge \sigma + H \star_3 dM_i)$$

$$= (d\bar{K} \wedge \sigma + H \star_3 d\bar{K}) + (h_i/H) (dZ_i \wedge \sigma + H \star_3 dZ_i)$$

 Using the asymptotics of these forms we can read off the angular momenta at infinity to be

$$J_L = \frac{4G_5}{\pi} j_L = |4\sum_i \vec{D}_i|$$
 $J_R = \frac{4G_5}{\pi} j_R = 16\sum_{p=1}^N \ell_p$

where the $j_{L,R} \in \mathbf{Z}$

Pirsa: 05110000 Page 59/110

Smoothness of the Solution

- Having solved the EOM, we need to check that our solution is smooth, regular and globally well defined
- These requirements will put further constraints on our choice of relative pole location, charge and dipole charge

Pirsa: 05110000 Page 60/110

Smoothness of the Solution

- Having solved the EOM, we need to check that our solution is smooth, regular and globally well defined
- These requirements will put further constraints on our choice of relative pole location, charge and dipole charge
- Since our base space HK is singular when H → 0 it seems natural
 to check that the full metric and the C-field are free of singularities
 near this domain wall (we have already insured that they are
 singularity free at poles up to orbifold singularities)

Pirsa: 05110000 Page 61/110

Smoothness of the Solution

- Having solved the EOM, we need to check that our solution is smooth, regular and globally well defined
- These requirements will put further constraints on our choice of relative pole location, charge and dipole charge
- Since our base space HK is singular when H → 0 it seems natural
 to check that the full metric and the C-field are free of singularities
 near this domain wall (we have already insured that they are
 singularity free at poles up to orbifold singularities)
- One can easily show that in general, the metric and C-field are regular as $H \to 0$, so this puts no further constraints on our solution

Pirsa: 05110000 Page 62/110

Zeros of the Z_i

 To avoid singularities we need the determinant of the metric and its inverse to be well defined and non-vanishing

$$\sqrt{-g_{11}} = (Z_1 Z_2 Z_3)^{1/3} H \sqrt{g_{\mathbb{R}^3}}$$

Pirsa: 05110000 Page 63/110

Zeros of the Z_i

 To avoid singularities we need the determinant of the metric and its inverse to be well defined and non-vanishing

$$\sqrt{-g_{11}} = (Z_1 Z_2 Z_3)^{1/3} H \sqrt{g_{\mathbf{R}^3}}$$

• We see that to avoid singularities we need $Z_i \neq 0$. Our simple tactic for enforcing this is to everywhere demand

$$Z_i H > 0 \quad \forall i \in 1, 2, 3$$

We can rewrite this condition as

$$4f - s^{ijk} \sum_{p,q} \frac{d_j^{pq} d_k^{pq} \Pi_{pq}^r}{4n_p n_q} > 0 \quad \forall i \in 1, 2, 3$$

Pirsa: 05110000 Page 64/110

 To exclude CTCs in our 5D reduced space we require our spacetime to be stably causal

Pirsa: 05110000 Page 65/110

Zeros of the Z_i

 To avoid singularities we need the determinant of the metric and its inverse to be well defined and non-vanishing

$$\sqrt{-g_{11}} = (Z_1 Z_2 Z_3)^{1/3} H \sqrt{g_{\mathbf{R}^3}}$$

• We see that to avoid singularities we need $Z_i \neq 0$. Our simple tactic for enforcing this is to everywhere demand

$$Z_i H > 0 \quad \forall i \in 1, 2, 3$$

We can rewrite this condition as

$$4f - s^{ijk} \sum_{p,q} \frac{d_j^{pq} d_k^{pq} \Pi_{pq}^r}{4n_p n_q} > 0 \quad \forall i \in 1, 2, 3$$

Pirsa: 05110000 Page 66/110

 To exclude CTCs in our 5D reduced space we require our spacetime to be stably causal

Pirsa: 05110000 Page 67/110

- To exclude CTCs in our 5D reduced space we require our spacetime to be stably causal
- For a spacetime to be stably causal it must admit a globally defined, smooth function whose gradient is everywhere timelike. We call this a time function

Pirsa: 05110000 Page 68/110

- To exclude CTCs in our 5D reduced space we require our spacetime to be stably causal
- For a spacetime to be stably causal it must admit a globally defined, smooth function whose gradient is everywhere timelike. We call this a time function
- Our candidate function is simply the coordinate t, which is a time function if

$$-g^{\mu\nu}\partial_{\mu}t\partial_{\nu}t = -g^{tt} = (Z_1Z_2Z_3)^{-1/3}H^{-1}\left((Z_1Z_2Z_3)H - H^2k_0^2 - g_{\mathbf{R}^3}^{ab}k_ak_b\right) > 0$$

In general, this is a complicated function and we have not analyzed this in detail. It
is possible that this will place further constraints on the relative pole positions

Pirsa: 05110000 Page 69/110

Horizons

ullet Given our time function t, we can show there are no event horizons. The vector ∂_r has norm

$$g_{rr} = (Z_1 Z_2 Z_3)^{-2/3} \left((Z_1 Z_2 Z_3) H - k_r^2 \right) \ge -g^{tt}$$

which is positive everywhere so long as there are no CTCs.

Pirsa: 05110000 Page 70/110

Horizons

• Given our time function t, we can show there are no event horizons. The vector ∂_r has norm

$$g_{rr} = (Z_1 Z_2 Z_3)^{-2/3} \left((Z_1 Z_2 Z_3) H - k_r^2 \right) \ge -g^{tt}$$

which is positive everywhere so long as there are no CTCs.

Consider the vector field

$$\xi = \left(\frac{g_{rr}}{-g^{tt}}\right)^{1/2} g^{t\mu} \partial_{\mu} + \epsilon \, \partial_{r}$$

whose norm is

$$\|\xi\| = -g_{rr}\left(1 - \epsilon^2\right)$$

Pirsa: 05110000 Page 71/110

Horizons

Given our time function t, we can show there are no event horizons. The vector ∂_r
has norm

$$g_{rr} = (Z_1 Z_2 Z_3)^{-2/3} \left((Z_1 Z_2 Z_3) H - k_r^2 \right) \ge -g^{tt}$$

which is positive everywhere so long as there are no CTCs.

Consider the vector field

$$\xi = \left(\frac{g_{rr}}{-g^{tt}}\right)^{1/2} g^{t\mu} \partial_{\mu} + \epsilon \, \partial_{r}$$

whose norm is

$$\|\xi\| = -g_{rr}\left(1 - \epsilon^2\right)$$

• If we choose $0<\epsilon<1$ then ξ is always timelike and trajectories generated by it always eventually reach asymptotic infinity. Hence, there are no event horizons

Pirsa: 05110000 Page 72/110

Topology of the σ fibration

- ullet The ${f R}^3$ base metric has orbifold points with identification on the σ fiber
- For a given two-sphere we calculate the c_1 of the σ fibration U(1) bundle by integrating $d\sigma$ over it

$$\int_{S^2} d\sigma = \int_{S^2} \star_3 dH = \int_{B^3} d \star_3 dH = \sum_p \int_{B^3} n_p \, \delta^3(\vec{r} - \vec{r_p})$$

- This yields an integer which counts the poles inside the two sphere. If this integer is zero, the topology of the σ -fiber over this S^2 is $S^2 \times S^1$, if the integer is ± 1 then the topology is that of S^3 . Any larger integer m will give the topology S^3/Z_m .
- This topology receives no corrections in the full metric

Pirsa: 05110000 Page 73/110

Topology of the gauge fields: Membrane probes

Consider a probe membrane M_i wrapped on the torus T_i. This effectively yields
a charged particle in the 5D reduced space with charge

$$e_i = V_i \, \tau_2 = \frac{V_i}{(2\pi)^2 \ell_P^3}$$

which experiences a gauge field

$$A_i = 2a_i - Z_i^{-1}(dt + k), \qquad F_i = dA_i$$

- The compact two-cycles in our geometry, S^{pq} , are represented by line segments on \mathbb{R}^3 between two points \vec{x}_p and \vec{x}_q , where H blows up, along with the fiber σ
- For quantum consistency of the probe charge's wavefunction we require the field strength be an integral cohomology class on the universal cover of S^{pq} , i.e. $n_p \cdot n_q$ time our original cycle. We thus define an integer for each two-cycle

$$m_i^{(pq)} = n_p \, n_q \frac{e_i}{2\pi} \int_{\vec{x}_p}^{\vec{x}_q} \int_{\sigma} F_i d\tau ds = 2n_p \, n_q \, e_i \, \mathcal{A}_i \bigg|_p^q = e_i d_i^{pq}$$

Pirsa: 05110000 Page 74/110

Topology of the gauge fields:Dirac strings

- Near each point p the local geometry is a cone over $S^3/{\bf Z}_{n_p}$
- This has $\pi_1 = \mathbf{Z}_{n_p}$ and implies that we have the possibility of a Dirac string for each gauge field.
- Consider the gauge field near one of the orbifold points, we see that the Dirac string phase is

$$2\pi \left(4e_i h_i/H\right)\Big|_p = 2\pi \, m_i^{(p)}/n_p$$

This implies a quantization of dipole and conserved membrane charge

$$d_i^{(p)} = m_i^{(p)}/e_i, \quad N_i = \frac{\pi}{4e_i G_5} Q_i = -\sum_{p,q} s^{ijk} \frac{m_j^{pq} m_k^{pq}}{4n_p n_q}$$

Pirsa: 05110000 Page 75/110

Topology of the gauge fields: Membrane probes

Consider a probe membrane M_i wrapped on the torus T_i. This effectively yields
a charged particle in the 5D reduced space with charge

$$e_i = V_i \, \tau_2 = \frac{V_i}{(2\pi)^2 \ell_P^3}$$

which experiences a gauge field

$$A_i = 2a_i - Z_i^{-1}(dt + k), \qquad F_i = dA_i$$

- The compact two-cycles in our geometry, S^{pq} , are represented by line segments on \mathbb{R}^3 between two points \vec{x}_p and \vec{x}_q , where H blows up, along with the fiber σ
- For quantum consistency of the probe charge's wavefunction we require the field strength be an integral cohomology class on the universal cover of S^{pq} , i.e. $n_p \cdot n_q$ time our original cycle. We thus define an integer for each two-cycle

$$m_i^{(pq)} = n_p \, n_q \frac{e_i}{2\pi} \int_{\vec{x}_p}^{\vec{x}_q} \int_{\sigma} F_i d\tau ds = 2n_p \, n_q \, e_i \, \mathcal{A}_i \bigg|_p^q = e_i d_i^{pq}$$

Pirsa: 05110000 Page 76/110

Topology of the gauge fields:Dirac strings

- Near each point p the local geometry is a cone over $S^3/{\bf Z}_{n_p}$
- This has $\pi_1 = \mathbf{Z}_{n_p}$ and implies that we have the possibility of a Dirac string for each gauge field.
- Consider the gauge field near one of the orbifold points, we see that the Dirac string phase is

$$2\pi \left(4e_i h_i/H\right)\Big|_p = 2\pi \, m_i^{(p)}/n_p$$

This implies a quantization of dipole and conserved membrane charge

$$d_i^{(p)} = m_i^{(p)}/e_i, \quad N_i = \frac{\pi}{4e_i G_5} Q_i = -\sum_{p,q} s^{ijk} \frac{m_j^{pq} m_k^{pq}}{4n_p n_q}$$

Pirsa: 05110000 Page 77/110

Topology of the gauge fields:Dirac strings

- Near each point p the local geometry is a cone over $S^3/{\bf Z}_{n_p}$
- This has $\pi_1 = \mathbf{Z}_{n_p}$ and implies that we have the possibility of a Dirac string for each gauge field.
- Consider the gauge field near one of the orbifold points, we see that the Dirac string phase is

$$2\pi \left(4e_i h_i/H\right)\Big|_p = 2\pi \, m_i^{(p)}/n_p$$

This implies a quantization of dipole and conserved membrane charge

$$d_i^{(p)} = m_i^{(p)}/e_i, \quad N_i = \frac{\pi}{4e_i G_5} Q_i = -\sum_{p,q} s^{ijk} \frac{m_j^{pq} m_k^{pq}}{4n_p n_q}$$

Pirsa: 05110000 Page 78/110

Summary of conditions

- Our solution is completely parameterized by a set of poles on ${\bf R}^3$ with quantized residues n_p and quantized fluxes $m_i^{pq}=n_pm_i^{(q)}-n_qm_i^{(p)}$
- These and the quantities that depend on them must satisfy the following conditions for us to have a smooth (up to orbifold points) and regular solution free of CTCs and horizons to 11D SUGRA with three membrane charges and 4 supersymmetries:

$$1) \quad \sum_i \, d_i^{(p)} \, + \sum_q \frac{1}{4 n_p^2 n_q^2} \frac{1}{r_{pq}} \prod_i \, d_i^{pq} = 0,$$

2) $Z_i H > 0$ $\forall i \in 1, 2, 3,$

3) $(Z_1 Z_2 Z_3) H - H^2 k_0^2 - g_{\mathbf{R}^3}^{ab} k_a k_b > 0$

Pirsa: 05110000 Page 79/110

 The 2-pole solutions give the solution previously found via spectral flow by Mathur et. al (hep-th/0405017)

Pirsa: 05110000 Page 80/110

- The 2-pole solutions give the solution previously found via spectral flow by Mathur et. al (hep-th/0405017)
- The simplest 3-pole scenario is for H to have two poles with residue $n_1 = n_2 = 1$ and one with $n_3 = -1$. This makes the solution completely smooth everywhere
- We also choose dipoles that are diagonal in the three U(1)'s so that the dipole vector $\vec{D_i}$ are all parallel so we can compare with BPS black rings. We choose $d_i^{(1)}=d_i^{(2)}=d$ and $d_i^{(3)}=-2d$

Pirsa: 05110000 Page 81/110

- The 2-pole solutions give the solution previously found via spectral flow by Mathur et. al (hep-th/0405017)
- The simplest 3-pole scenario is for H to have two poles with residue $n_1 = n_2 = 1$ and one with $n_3 = -1$. This makes the solution completely smooth everywhere
- We also choose dipoles that are diagonal in the three U(1)'s so that the dipole vector $\vec{D_i}$ are all parallel so we can compare with BPS black rings. We choose $d_i^{(1)}=d_i^{(2)}=d$ and $d_i^{(3)}=-2d$
- The condition for k to be globally defined reduces to

$$r_{13} = r_{23} = \frac{d^2}{12}$$

Pirsa: 05110000 Page 82/110

- The 2-pole solutions give the solution previously found via spectral flow by Mathur et. al (hep-th/0405017)
- The simplest 3-pole scenario is for H to have two poles with residue $n_1 = n_2 = 1$ and one with $n_3 = -1$. This makes the solution completely smooth everywhere
- We also choose dipoles that are diagonal in the three U(1)'s so that the dipole vector $\vec{D_i}$ are all parallel so we can compare with BPS black rings. We choose $d_i^{(1)}=d_i^{(2)}=d$ and $d_i^{(3)}=-2d$

Pirsa: 05110000 Page 83/110

- The 2-pole solutions give the solution previously found via spectral flow by Mathur et. al (hep-th/0405017)
- The simplest 3-pole scenario is for H to have two poles with residue $n_1 = n_2 = 1$ and one with $n_3 = -1$. This makes the solution completely smooth everywhere
- We also choose dipoles that are diagonal in the three U(1)'s so that the dipole vector $\vec{D_i}$ are all parallel so we can compare with BPS black rings. We choose $d_i^{(1)}=d_i^{(2)}=d$ and $d_i^{(3)}=-2d$
- The condition for k to be globally defined reduces to

$$r_{13} = r_{23} = \frac{d^2}{12}$$

Pirsa: 05110000 Page 84/110

- The 2-pole solutions give the solution previously found via spectral flow by Mathur et. al (hep-th/0405017)
- The simplest 3-pole scenario is for H to have two poles with residue $n_1 = n_2 = 1$ and one with $n_3 = -1$. This makes the solution completely smooth everywhere
- We also choose dipoles that are diagonal in the three U(1)'s so that the dipole vector $\vec{D_i}$ are all parallel so we can compare with BPS black rings. We choose $d_i^{(1)} = d_i^{(2)} = d$ and $d_i^{(3)} = -2d$
- The condition for k to be globally defined reduces to

$$r_{13} = r_{23} = \frac{d^2}{12}$$

• We must also satisfy $Z_i H > 0$ which becomes

$$4(r_2r_3 + r_1r_3 - r_1r_2) + d^2(r_1 + r_2) > 0$$

ullet One can show analytically that this condition is satisfied at each of the poles and asymptotic infinity. A numerical analysis confirms it is satisfied everywhere for any value of r_{12}

Pirsa: 05110000 Page 85/110

• Without loss of generality we choose to place pole 3 at the origin, and pole 1 on the z-axis. Then, since there are no restrictions on r_{12} we are free to place it anywhere on a circle of radius $r_{23}=r_{13}=d^2/12$. Let the angle 132 between segments 13 and 23 be called ψ , then we find

$$\vec{D}_i = \frac{d^3}{12} [\hat{z}(1 + \cos \psi) + \hat{x} \sin \psi]$$

One can now easily read off the asymptotic charges

$$Q_1 = Q_2 = Q_3 = 2d^2$$
, $J_R^2 = 36d^6$, $J_L^2 = 2d^6(1 + \cos \psi)$

Pirsa: 05110000 Page 86/110

• Without loss of generality we choose to place pole 3 at the origin, and pole 1 on the z-axis. Then, since there are no restrictions on r_{12} we are free to place it anywhere on a circle of radius $r_{23}=r_{13}=d^2/12$. Let the angle 132 between segments 13 and 23 be called ψ , then we find

$$\vec{D}_i = \frac{d^3}{12} [\hat{z}(1 + \cos \psi) + \hat{x} \sin \psi]$$

One can now easily read off the asymptotic charges

$$Q_1 = Q_2 = Q_3 = 2d^2$$
, $J_R^2 = 36d^6$, $J_L^2 = 2d^6(1 + \cos \psi)$

- One can easily see that while Q_i and J_R are independent of our pole arrangement, J_L is very sensitive to it
- By varying ψ we can find solutions that are microstates for black rings with finite-sized horizon areas (modulo the CTC condition)

Pirsa: 05110000 Page 88/110

• Without loss of generality we choose to place pole 3 at the origin, and pole 1 on the z-axis. Then, since there are no restrictions on r_{12} we are free to place it anywhere on a circle of radius $r_{23}=r_{13}=d^2/12$. Let the angle 132 between segments 13 and 23 be called ψ , then we find

$$\vec{D}_i = \frac{d^3}{12} [\hat{z}(1 + \cos \psi) + \hat{x} \sin \psi]$$

One can now easily read off the asymptotic charges

$$Q_1 = Q_2 = Q_3 = 2d^2$$
, $J_R^2 = 36d^6$, $J_L^2 = 2d^6(1 + \cos \psi)$

- One can easily see that while Q_i and J_R are independent of our pole arrangement, J_L is very sensitive to it
- By varying ψ we can find solutions that are microstates for black rings with finite-sized horizon areas (modulo the CTC condition)

Pirsa: 05110000 Page 89/110

Features of the general solution

- We have seen that our solutions replace a core region, which naively would have a naked singularity or a horizon with a core region containing a "foam" of new topologically nontrivial cycles. This draws interesting parallels with work by Vafa et. al. on geometric transitions and melting crystal space-time foam
- These cycles actually live in the non-compact space, which is a new phenomenon
- Because the n_p can be positive or negative, we actually have BPS solutions with branes and anti-branes. This can still be supersymmetric because of flux
- We anticipate that higher pole solutions can be microstates for black holes and rings
- This greatly broadens this class of supersymmetric solutions

Pirsa: 05110000 Page 90/110

- ullet We have demonstrated a solution generating technique for general U(1) invariant, BPS, three-charge microstates
- These solutions replaced a singular core region with an intricate geometry of two-cycles threaded by electric and magnetic flux

Pirsa: 05110000 Page 91/110

Features of the general solution

- We have seen that our solutions replace a core region, which naively would have a naked singularity or a horizon with a core region containing a "foam" of new topologically nontrivial cycles. This draws interesting parallels with work by Vafa et. al. on geometric transitions and melting crystal space-time foam
- These cycles actually live in the non-compact space, which is a new phenomenon
- Because the n_p can be positive or negative, we actually have BPS solutions with branes and anti-branes. This can still be supersymmetric because of flux
- We anticipate that higher pole solutions can be microstates for black holes and rings
- This greatly broadens this class of supersymmetric solutions

Pirsa: 05110000 Page 92/110

• Without loss of generality we choose to place pole 3 at the origin, and pole 1 on the z-axis. Then, since there are no restrictions on r_{12} we are free to place it anywhere on a circle of radius $r_{23}=r_{13}=d^2/12$. Let the angle 132 between segments 13 and 23 be called ψ , then we find

$$\vec{D}_i = \frac{d^3}{12} [\hat{z}(1 + \cos \psi) + \hat{x} \sin \psi]$$

One can now easily read off the asymptotic charges

$$Q_1 = Q_2 = Q_3 = 2d^2$$
, $J_R^2 = 36d^6$, $J_L^2 = 2d^6(1 + \cos \psi)$

Pirsa: 05110000 Page 93/110

- The 2-pole solutions give the solution previously found via spectral flow by Mathur et. al (hep-th/0405017)
- The simplest 3-pole scenario is for H to have two poles with residue $n_1 = n_2 = 1$ and one with $n_3 = -1$. This makes the solution completely smooth everywhere
- We also choose dipoles that are diagonal in the three U(1)'s so that the dipole vector $\vec{D_i}$ are all parallel so we can compare with BPS black rings. We choose $d_i^{(1)} = d_i^{(2)} = d$ and $d_i^{(3)} = -2d$
- The condition for k to be globally defined reduces to

$$r_{13} = r_{23} = \frac{d^2}{12}$$

• We must also satisfy $Z_i H > 0$ which becomes

$$4(r_2r_3 + r_1r_3 - r_1r_2) + d^2(r_1 + r_2) > 0$$

• One can show analytically that this condition is satisfied at each of the poles and asymptotic infinity. A numerical analysis confirms it is satisfied everywhere for any value of r_{12}

Pirsa: 05110000 Page 94/110

- The 2-pole solutions give the solution previously found via spectral flow by Mathur et. al (hep-th/0405017)
- The simplest 3-pole scenario is for H to have two poles with residue $n_1 = n_2 = 1$ and one with $n_3 = -1$. This makes the solution completely smooth everywhere
- We also choose dipoles that are diagonal in the three U(1)'s so that the dipole vector $\vec{D_i}$ are all parallel so we can compare with BPS black rings. We choose $d_i^{(1)}=d_i^{(2)}=d$ and $d_i^{(3)}=-2d$
- The condition for k to be globally defined reduces to

$$r_{13} = r_{23} = \frac{d^2}{12}$$

• We must also satisfy $Z_i H > 0$ which becomes

$$4(r_2r_3 + r_1r_3 - r_1r_2) + d^2(r_1 + r_2) > 0$$

• One can show analytically that this condition is satisfied at each of the poles and asymptotic infinity. A numerical analysis confirms it is satisfied everywhere for any value of r_{12}

Pirsa: 05110000 Page 95/110

- We have demonstrated a solution generating technique for general U(1) invariant, BPS, three-charge microstates
- These solutions replaced a singular core region with an intricate geometry of two-cycles threaded by electric and magnetic flux

Pirsa: 05110000 Page 96/110

- ullet We have demonstrated a solution generating technique for general U(1) invariant, BPS, three-charge microstates
- These solutions replaced a singular core region with an intricate geometry of two-cycles threaded by electric and magnetic flux

Pirsa: 05110000 Page 97/110

- We have demonstrated a solution generating technique for general U(1) invariant, BPS, three-charge microstates
- These solutions replaced a singular core region with an intricate geometry of two-cycles threaded by electric and magnetic flux
- How do we invert our conditions so that we can find and count all microstates for given conserved charges?
- What are the dual CFT states? How can the CFT encode our microscopic variables?
- These solutions with some modification can be reduced to four-dimensions. What are the relations to the OSV conjecture on the black hole partition function and topological strings?
- Our cycles live in the non-compact space (though they also affect the size of the torii cycles), what is their relation to situations where the cycles live in the compact space?

Pirsa: 05110000 Page 98/110

- We have demonstrated a solution generating technique for general U(1) invariant, BPS, three-charge microstates
- These solutions replaced a singular core region with an intricate geometry of two-cycles threaded by electric and magnetic flux
- How do we invert our conditions so that we can find and count all microstates for given conserved charges?
- What are the dual CFT states? How can the CFT encode our microscopic variables?
- These solutions with some modification can be reduced to four-dimensions. What are the relations to the OSV conjecture on the black hole partition function and topological strings?
- Our cycles live in the non-compact space (though they also affect the size of the torii cycles), what is their relation to situations where the cycles live in the compact space?

Pirsa: 05110000 Page 99/110

= 0 1

Μ,

CI EMEC 5H+H hie Shithing
Mi=SM+Mne K= SK+MX Page 101/110

The angular momentum continued

- We need k to be a regular, globally defined 1-form that only has singularities where H=0 and falls off like 1/r asymptotically
- We can do this if we use the freedom to add any closed form to k_adx^a and demand

$$\ell_p = \frac{d_1^{(p)} d_2^{(p)} d_3^{(p)}}{16n_p^2}, \qquad k_0|_{r_p=0} = 0$$

• The first condition removes the poles in \bar{K} and the second condition insures that $d^2(k_adx^a)=0$. The second condition can be solved giving

$$0 = \sum_{i} d_{i}^{(p)} + \sum_{q} \frac{1}{4n_{p}^{2}n_{q}^{2}} \frac{1}{r_{pq}} \prod_{i} d_{i}^{pq}$$

where $r_{pq} = |\vec{x}_p - \vec{x}_q|$

ullet This condition puts at most N-1 constraints on the relative pole positions

Pirsa: 05110000 Page 102/110

llup

dipg + Elluping (onst. hi- Shit Kt

The angular momentum continued

- We need k to be a regular, globally defined 1-form that only has singularities where H=0 and falls off like 1/r asymptotically
- We can do this if we use the freedom to add any closed form to k_adx^a and demand

$$\ell_p = \frac{d_1^{(p)} d_2^{(p)} d_3^{(p)}}{16n_p^2}, \qquad k_0|_{r_p=0} = 0$$

• The first condition removes the poles in \bar{K} and the second condition insures that $d^2(k_adx^a)=0$. The second condition can be solved giving

$$0 = \sum_{i} d_{i}^{(p)} + \sum_{q} \frac{1}{4n_{p}^{2}n_{q}^{2}} \prod_{i} d_{i}^{pq}$$

where $r_{pq} = |\vec{x}_p - \vec{x}_q|$

ullet This condition puts at most N-1 constraints on the relative pole positions

Pirsa: 05110000 Page 105/110

- We have demonstrated a solution generating technique for general U(1) invariant, BPS, three-charge microstates
- These solutions replaced a singular core region with an intricate geometry of two-cycles threaded by electric and magnetic flux
- How do we invert our conditions so that we can find and count all microstates for given conserved charges?
- What are the dual CFT states? How can the CFT encode our microscopic variables?
- These solutions with some modification can be reduced to four-dimensions. What are the relations to the OSV conjecture on the black hole partition function and topological strings?
- Our cycles live in the non-compact space (though they also affect the size of the torii cycles), what is their relation to situations where the cycles live in the compact space?

Pirsa: 05110000 Page 106/110

04 0 17-70

Page 109/110

En- n- Edge at Pirsa: 05110000