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The fuzzball hypothesis

e In the usual black hole picture we have a horizon, empty space and
all interesting physics concentrated at the singularity
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More on fuzzballs

e Each microstate looks the same asymptotically. Closer in we see
differences

e Qur three-charge solutions will replace a core region of singular
brane sources with a geometric transition to a bubbling foam of
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The Bena-Warner ansatz

e Bena and Warner have laid out an anzatz for 1/8 BPS solutions with

three charges in five dimensions. Each charge comes from
wrapping membranes on three separate 7°s

e The 3D space is time fibred over a hyperkahler base space, H k'
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Bena-Warner ansatz continued

Define &; = da;. The BW ansatz solves the EOM if
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Bena-Warner ansatz continued

Define &; = da;. The BW ansatz solves the EOM if




Solving the EOM: The H A metric

e We relax the hyperkahler condition to allow a psuedo-hyperkahler
HK so long as the total space is smooth

e We write the metric in Gibbons-Hawking form as
ds? . — H 'o? + H(dr? + r’df? + r*sin’ 0d¢?)
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The function H

e When we relax the hyperkahler condition we can have more general
candidates for H, which is harmonic on R*
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The dipole fields

e The M3-brane charge can be read off from the components of
*dC'(3) which have a leg in the time direction. These are proportional
to the Gi

e We need these to fall off faster than 1/ so there is no net M5-brane
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The monopole fields

e The membrane charge at infinity can be read off from the C'-field
components with a time component

e Looking at (' 3) the Z; encode the three membrane charges @),
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asymptotic R* radial coordinate is R = 2%)




The monopole fields

e The membrane charge at infinity can be read off from the C'-field
components with a time component

e Looking at (' 3) the Z; encode the three membrane charges @),

* To get the right membrane charge we need a falloff (note the
asymptotic R* radial coordinate is R = 2%)

Qi

Zs—*l




The angular momentum

e The angular momentum is determined by the 1-form, &
e A natural basis for & is

k = koo + k,dx”
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The angular momentum continued

o We need & to be a regular, globally defined 1-form that only has singularities
where H = 0 and falls off like 1/ asymptotically




The angular momentum continued

We need /- to be a regular, globally defined 1-form that only has singularities
where H = 0 and falls off like 1/ asymptotically
We can do this if we use the freedom to add any closed form to k. d+" and

) 4(p) 4(p)
v dﬁ";{éﬂ;—fy » kolrp—0 =0




The angular momentum

e The angular momentum is determined by the 1-form, &
e A natural basis for / is

k = koo + k,dx"

J ORIV gy O U WU gy ) OO NG ey 20 WG geey | 29 B

—4H " hihohs + Zi (hi/H) = K + Z: (h:/H) |

T 3 g AT P

b o
Pt Al preUiR Jy




The angular momentum continued

We need /- to be a regular, globally defined 1-form that only has singularities
where H — 0 and falls off like 1/ asymptotically

We can do this if we use the freedom to add any closed form to k,d=" and
demand
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The angular momentum

e The angular momentum is determined by the 1-form, k&
e A natural basis for /& is

k = koo + k,dx”
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The angular momentum continued

We need /- to be a regular, globally defined 1-form that only has singularities
where H — 0 and falls off like 1/ asymptotically

We can do this if we use the freedom to add any closed form to k., d=" and
demand
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The angular momentum continued

We need /- to be a regular, globally defined 1-form that only has singularities
where H — 0 and falls off like 1/ asymptotically

We can do this if we use the freedom to add any closed form to k,d+" and
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The angular momentum continued
e We can also integrate the EOM to get an expression for k,dx" (too complex to
display here)
e The 2-form dk naturally splits into a self-dual and anti-self-dual part
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The angular momentum continued
e We can also integrate the EOM to get an expression for k,dx" (too complex to
display here)
e The 2-form dk naturally splits into a self-dual and anti-self-dual part
dkrp — (dk +xdk) /2 = Z;G;
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The angular momentum continued

e We can also integrate the EOM to get an expression for k,dx" (too complex to
display here)

e The 2-form dk naturally splits into a self-dual and anti-self-dual part
dkr — (dk +xdk)/2 — Z;G;

dkr = (dk — xdk)/2 = (dK Ao + Hx3dK) + (hi/H) (dM; A o + Hx3dM;)
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Smoothness of the Solution

e Having solved the EOM, we need to check that our solution is
smooth, regular and globally well defined
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Smoothness of the Solution

e Having solved the EOM, we need to check that our solution is
smooth, regular and globally well defined

e These requirements will put further constraints on our choice of

~ © Since our base space H K is singular when H — 0 it seems natural
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Horizons

¢ Given our time function ¢, we can show there are no event horizons. The vector .
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Topology of the ¢ fibration

¢ The R’ base metric has orbifold points with identification on the - fiber
e For a given two-sphere we calculate the ¢, of the o fibration U/ (1) bundle by
integrating do over it

fute = fyon= =5 [ e




Topology of the gauge fields:Membrane probes

e Consider a probe membrane ,\; wrapped on the torus 7. This effectively yields
a charged particle in the 5D reduced space with charge

Ai =2a; — Z7N(dt + k), Fi—=dA;
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Topology of the gauge fields:Dirac strings

e Near each point p the local geometry is a cone over 5°/Z,,

e This has m, = Z,,, and implies that we have the possibility of a Dirac string for
each gauge field.

¢ Consider the gauge field near one of the orbifold points, we see that the Dirac
string phase is
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Summary of conditions

e Our solution is completely parameterized by a set of poles on R* with quantized
residues n, and quantized fluxes /" — npm?} — nqmgp}

¢ These and the quantities that depend on them must satisfy the following
conditions for us to have a smooth (up to orbifold points) and regular solution free
of CTCs and horizons to 11D SUGRA with three membrane charges and 4
supersymmeiries:
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A simple 3-pole example

e The 2-pole solutions give the solution previously found via spectral flow by Mathur
et. al (hep-th/0405017)

e The simplest 3-pole scenario is for /1 to have two poles with residue ny = n> = 1
and one with n; = — 1. This makes the solution completely smooth everywhere
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¢ The condition for /: to be globally defined reduces to




3-pole solution continued

o Without loss of generality we choose to place pole 3 at the origin, and pole 1 on
the z-axis. Then, since there are no restrictions on r,, we are free to place it
anywhere on a circle of radius .3 = 3 :d2/12- Let the angle 132 between
segments 13 and 23 be called «, then we find
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3-pole solution continued

o Without loss of generality we choose to place pole 3 at the origin, and pole 1 on
the z-axis. Then, since there are no restrictions on r,, we are free to place it
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Features of the general solution

¢ We have seen that our solutions replace a core region, which naively would have
a naked singularity or a horizon with a core region containing a “foam” of new
topologically nontrivial cycles. This draws interesting parallels with work by Vafa
et. al. on geometric transitions and melting crystal space-time foam

e These cycles actually live in the non-compact space, which is a new phenomenon
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Conclusions and future directions

e We have demonstrated a solution generating technique for general [7( 1)
invariant, BPS, three-charge microstates

e These solutions replaced a singular core region with an intricate geomeiry of
two-cycles threaded by electric and magnetic flux
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3-pole solution continued

o Without loss of generality we choose to place pole 3 at the origin, and pole 1 on
the z-axis. Then, since there are no restrictions on r,, we are free to place it
anywhere on a circle of radius 23 = 13 :d2/12- Let the angle 132 between
segments 13 and 23 be called «, then we find

— d3
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The angular momentum continued

We need /- to be a regular, globally defined 1-form that only has singularities
where H — 0 and falls off like 1/ asymptotically

We can do this if we use the freedom to add any closed form to k., d+" and
demand
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The angular momentum continued

We need /- to be a regular, globally defined 1-form that only has singularities
where H — 0 and falls off like 1/ asymptotically
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Conclusions and future directions

e We have demonstrated a solution generating technique for general ' (1)
invariant, BPS, three-charge microstates

e These solutions replaced a singular core region with an intricate geomeiry of
two-cycles threaded by electric and magnetic flux

¢ How do we invert our conditions so that we can find and count all microstates for
given conserved charges?
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