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Conclusions from WMAP:

Angular Scale

If you want to explain this
data, the simplest way is ...
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If you want to explain this
data, the simplest way is ...

@ A spatially-flat Universe

@ Dark matter and dark
energy

@ Initial perturbations
which are gaussian,
adiabatic and nearly
scale-invariant,

e.g. as given by inflation.

Wi )Cp2m (pKF)

Conclusions from WMAP:

Angular Scale

Page 9/109



What is inflation?

Inflation is any period of the
Universe's evolution during which
the Universe is accelerating




What is inflation?

Inflation is any period of the
Universe's evolution during which
the Universe is accelerating




Inflation is any period of the
Universe's evolution during which
the Universe is accelerating

This can also be written in terms
of the comoving Hubble length as

What is inflation?




Inflation is any period of the
Universe's evolution during which
the Universe is accelerating

This can also be written in terms
of the comoving Hubble length as

Early Universe inflation is the
most plausible exlanation we have
forr the origin of structure.

What is inflation?
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Predictions of the simplest models

The simplest models of inflation predict
spectra of
density perturbations and
, in their
Ina Universe.

WMAP does not provide any evidence against any of
these, and gives support to all but the gravitational waves.
As such, it gives strong general support to the
inflationary paradigm (but not uniquely to inflation).
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observations:

@ Fit to data compilation of
WMAP, other CMB
experiments (VSA, CBI
and ACBAR), and 2dF

galaxy survey.

@ Use CAMB plus CosmoMC
plus WMAP likelihood
code plus slow-roll
inflation module.
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n—0.99+0.04

(for a power-law fit to the data)

Good fit to data assuming these dominate.

No unambiguous evidence of primordial
non-gaussianity.

Not detected: r < (.43
(for a power-law fit to the data)

Good fit to data assuming no decaying mode.
Temperature-polarization anti-correlation.

Qo = 1.02+0.02

Conclusion: the simplest inflation models are doing very well!




More complicated models

There is presently no observational need to consider more
complicated models, but here's some possibilities:




More complicated models

There is presently no observational need to consider more
complicated models, but here's some possibilities:

These allow isocurvature perturbations, which
may be correlated with the usual adiabatic ones.




More complicated models

There is presently no observational need to consider more
complicated models, but here's some possibilities:

These allow isocurvature perturbations, which
may be correlated with the usual adiabatic ones.

In this model, negligible adiabatic perturbations are
produced during inflation, being later generated from isocurvature
perturbations generated during inflation. This is a natural way to
infroduce some non-gaussianity.




More complicated models

There is presently no observational need to consider more
complicated models, but here's some possibilities:

These allow isocurvature perturbations, which
may be correlated with the usual adiabatic ones.

In this model, negligible adiabatic perturbations are
produced during inflation, being later generated from isocurvature
perturbations generated during inflation. This is a natural way to
infroduce some non-gaussianity.

In standard braneworld inflation, the form of
perturbations generated from a given potential changes, though the
general predictions are unharmed.



More complicated models

There is presently no observational need to consider more
complicated models, but here's some possibilities:

These allow isocurvature perturbations, which
may be correlated with the usual adiabatic ones.

In this model, negligible adiabatic perturbations are
produced during inflation, being later generated from isocurvature
perturbations generated during inflation. This is a natural way to
infroduce some non-gaussianity.

In standard braneworld inflation, the form of
perturbations generated from a given potential changes, though the
general predictions are unharmed.

tven if effects from these more complex models are never seen,
they infroduce degeneracies in interpretfting observations.
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What is the Standard Cosmological Model?

While there is broad consensus that the standard
cosmological model gives an excellent description of the
observed data, there isn't actually agreement on what the

standard cosmological model is!

The precise constraints obtained depend on

There have been a variety of choices made for both of these.
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In parameter estimation, the choice of parameters has already
been made and we aim to constrain their values, for example by a
likelihood analysis.
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In parameter estimation, the choice of parameters has already
been made and we aim to constrain their values, for example by a

likelihood analysis.
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The maximum likelihood gives the best values for the parameters,
and the neighbouring behaviour gives the confidence limits.
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In model selection, we aim to distinguish different cosmological
models, meaning dif ferent choices of the parameters to be varied.
In particular we need to allow for model dimensionality: that

dif ferent models may have different numbers of parameters.

A suitable baseline cosmological model to consider is the simplest
one giving an adequate fit to current data. It is a spatially-flat
adiabatic ACDM model with five fundamental parameters and two
phenomenological ones.

lm matter density
(), barvon density
radiation density

hubble parameter

adiabatic density perturbation amplitude

relonization optical depth

bias parameter (or parameters



There are many, many ways in which this.
base cosmological model can be extended.




Table 2. Candidate parameters: those which might be relevant for cosmological observations, but for which there is presently
Ao convincing evidence requinng them. They are listed so as o take the value zero in the base cosmological model. Those
above the line are parameters of the backeround homogeneous cosmology. and those below describe the perturbations. Of the
latter set the frst six refer to adiabanc perturbanons. the next three to tensor perturbations . and the remander to isocurvature

perturbalions

LEF spaiial curvature

s effective number of neutnno species (CMBFAST defimton)
neuinno mass for species ‘1
or more complex neutrino properties)
iwarm) dark maftter mass
i 1 dark energy equalion of staie
fur = redshift dependence of w
[or more complex parametrization of dark energy evolution|
effects of dark enerzy sound speed
L/ reog topological dentificanon scale
or more complex parametrization of non-trivial topology]
fex /o= redshuft dependence of the One structure constant
dils / d= redshuit dependence of the gravitaional constant

1 scalar spectral index
in/dlnk runming of the scalar spectral index
| - large-scale cut-off n the spectrum
F. F— amphitude of spectral feature (peak. dip or step) ..
- .. andd s scale
or adiabanc power spectrum amplitude parametrized m .V bins]
fxL guadranc contmbution o primordial non-gaussianity
[or more complex parametrizaiion of non-gaussianty |
r lensor-io-scalar rafio
r o+ B violation of the inflanonary consistency equaiion
dnr/dlnk runming of the ensor spectral mdex
g CDM socurvature perturbaiion
ns .. andd 115 spectral index
Psr .. and s correlanon with adiabatic perturbations
ngg — Ny -.. and the spectral ndex of that correlation
100041 [or more complicated multi-component isocurvature perturbation | Page 47/10
T cosmic string component of perturbanions
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How do we compare different cosmological models
(i.e. different choices of fundamental parameters)?
Can we say which model is best?

if we add extra parameters, typically the
maximum likelihood will increase, even if the new
parameter actually has no physical relevance.

as we add extra parameters, the
uncertainties on existing parameters increase, and
eventually we learn nothing useful about anything.

We need a way of penalizing use of extra
parameters - an implementation of Ockham's razor
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Akaike information criterion (Akaike 1974)

Bayesian information criterion (schwarz1978)

Bayesian evidence (Jeffreys 1961 etc)

The preferred model is the one which minimizes the
information criterion, or maximizes the evidence.
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The is the most powerful of these. It is a full
implementation of Bayesian inference, and literally gives the
probability of the data given the model (note not the probability of
particular parameter values). If multiplied by the prior model
probability it gives the posterior model probability. However it can
be hard to calculate, being a highly-peaked multi-dimensional integral.

The was derived using Bayesian
statistics. It gives a crude approximation to the Bayesian evidence.
While it can give guidance, the assumptions of its validity are
questionable in cosmological applications (eg parameter degeneracies).

The was derived using information
theory techniques. It gives an approximate minimization of the
so-called Kullback-Leibler information entropy, which is a
measure of the difference between two probability distributions.
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WMAP says

This has been widely interpretted as supporting the idea of a flat
Universe, but actually favouring a slightly closed Universe.

Assuming that the density is the only parameter, with a uniform
prior from 0.1 to 2, and likelihood

Flat:

Curved:

According to the evidence, the flat model is a better description
of the data, with odds of about 20:1 against the curved model.
Note that this assumes flat and curved were thought equally likely
before the data came along.
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A simple example: spatial curvature

WMAP says

This has been widely interpretted as supporting the idea of a flat
Universe, but actually favouring a slightly closed Universe.

Assuming that the density is the only parameter, with a uniform
prior from 0.1 to 2, and likelihood

Flat:
Curved:
1’:“25
tven if parameter estimation had given Q,,, = 1.05+0.02 the flat case would still
nave been preferred

Semeone adamantly insisting before WMAP that the total density was 1.02. o the

exclusion of all other values, could claim WMAP supported them better than flat.
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New physics from low quadrupole??

If you want to explain
this with new physics,
you have to infroduce
new parameters, for
which you will be penalized. As the
discrepancy is only at the 95%
level, the gain in fit will never
compensate for this penalty.




How do we compare different cosmological models
(i.e. different choices of fundamental parameters)?
Can we say which model is best?
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Statistical fluke: By definition important only if people
do their error analysis wrongly.

Publication bias: Only positive results get published,
enhancing their apparent statistical significance
(recognised as a major problem in clinical trials).

Inappropriate "a posteriori” reasoning: choosing
“interesting” features from the data and assessing their
significance via Monte Carlo analyses.

Neglect of model dimensionality: using parameter
estimation rather than model selection.
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Model Selection and Isocurvature Modes

Even if the real perturbations are adiabatic, some level of
isocurvature perturbations will always be allowed.

While parameter estimation techniques can only place upper
limits on the isocurvature modes, model selection can give
positive support to simpler models.

We consider the three observationally-distinct classes of

isocurvature mode, , and . Only one type of mode
is permitted per model, but with arbitrary spectral index and
correlation to adiabatic: . We compare

with two adiabatic models, one with n=1 and one with n varying.




The Bayesian Evidence was computed using a technique called
thermodynamic integration. This is an MCMC method where
the chains are heated in order to fully explore the prior space
(parameter estimation chains sample the posterior which is

usually localized to a small fraction of the prior).

We tested several variants on this scheme. Accurate determinatio

of the evidence required approximately 107 likelihood evaluations
per model, making it a supercomputer class problem.




The Bayesian Evidence was computed using a technique called
thermodynamic integration. This is an MCMC method where
the chains are heated in order to fully explore the prior space
(parameter estimation chains sample the posterior which is

usually localized to a small fraction of the prior).

We tested several variants on this scheme. Accurate determinatio

of the evidence required approximately 107 likelihood evaluations
per model, making it a supercomputer class problem.

Jeffreys Scale:
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Model Selection and Isocurvature Modes

Note that the results depend on the priors chosen. Our prior range covers the
complete range from all adiabatic to all isocurvature using the relative fraction.
We use two different parametrizations to test robustness.

In(Evidence)”

Parametrization 1 | Parametrization 2

0.0+0.1
0.0 £ 0.1
-1.0+£ 0.2
-1.0+£ 0.2
-1.0+ 0.3
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Nested Sampling

Skilling (2004) rewrote the evidence as
. g

E— /Lcﬂ‘rprtﬂ]dfﬂ:/ £(X)dX

Jo
where X is the fractional prior mass.

This can then be evaluated using Monte
Carlo samples to trace the variation of __
likelihood with prior mass, peeling away N
thin nested isosurfaces of equal ;
likeiikiood. s AR
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The method "walks’ a set of points (eg 300) into the high-likelihood
region using replacement. The main difficulty in implementing the
algorithm successfully is in ef ficiently generating replacement points
which are uniformly sampled from the remaining prior volume.
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A model selection example

We used the Bayesian evidence to compare various
cosmological models with the simplest one.

Model ACDM+HZ| ACDM+ns | ACDM+ng HZ+w w + ng
(wide prior)

__ M—H _ a8

—1 16 £ 0.08] 0,45 £ 0.08] 1,52 £ 0.08

At the moment the more complex models
are not excluded, but they are mildly
disfavoured against the simplest model.
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Model selection for survey
comparison/design

As well as applying to present data, a powerful tool
is forecasts of the model selection capabilities of
upcoming experiments, eg dark energy surveys.

simulate data for a fiducial model (eg LambdaCDM);
estimate expected parameter uncertainties about that model;
interpret as excluding models outside the contours

simulate data at each point in parameter plane;
compute Bayes factor (ie evidence ratio) of full model versus
e¢g LambdaCDM at each point.
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Fisher information matrix drawbacks

Upcoming experiments are usually motivated not by their
ability to constrain parameters, but by their ability to
discover new physical effects, requiring new parameters
(eg dark energy evolution).

Usually interpretted as giving an experiment's ability to rule
out LambdaCDM in favour of a dark energy model whose
data is however not that simulated.

The criterion for ruling out LambdaCDM is exactly the
same as that used to rule out any other value in the plane,
eg w=-0.99. Special status of LambdaCDM is not recognised.

Fisher matrix approach assumes a gaussian likelihood.
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A rigorous approach to defining the Standard Cosmological
Model requires Model Selection techniques. Such
techniques can positively support simpler models, and set
more stringent conditions for inclusion of new parameters.

The Bayesian evidence is the most powerful available tool.
It is challenging to compute but nested sampling makes it
feasible.
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