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v Abstract

Bohmuian trajectories and Feynman paths are conceptually different objects from
radically different views of quantum mechanics. Both offer different “particle
pictures' in a subject that 1s based on wave mechanics. Some recent models of
subquantum dynamical processes underlying the Dirac equation suggest that there
may be an unexplored link between the two concepts via the quantum potential.
We sketch the qualitative ideas mvolved and view some simple implementations
that quantitatively illustrate the suggested hink.
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' 1. What 1s this talk about?

2. What 1s the relevance to interpretations of quantum mechanics?
3. Example: nodes in the double slit experiment
4. Whence Phase?
5. Counting wath negative integers in classical statistical mechanics.
6. The Dirac Equation for Accountants
7. What 1s different about this * derivation” of the Dirac Equation?
8. Building Complex numbers.
9. Questions

10. Conclusions
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1 What is this talk about?

The domain of this talk 1s propagation 1n elementary, single particle quantum mechanics. The tools are
simple but non-standard for discussions of quantum mechanics. We shall use only classical statistical

mechanics The target of the talk are solutions of equations like:

¥ (D

Where H s a ssmple Hamiltoman From a quantum mechamical perspective, i 1s important as an element of
a probability calculus. However there 1s no agreement within the physics community as to whether ¢

represents anything in an external physical reality

In classical statistical mechanics the task 1s ssmply to count recogmzable objects. If we can arrive at Eqn (1)
using only statistical mecharnical tools, we will have a context in which ¥ itself 1s recogmizable 1n its own

right
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2. What is the relevance to interpretations of quantum
mechanics?

Roughly speaking, there are two categornies of “pictures’ in the interpretation of quantum mechanics, based
on whether there 1s an external reality that contains objects resembling classical particles.

1. The wave-only picture
e Here the objects of study are waves. Particles are wave-packets and are a derived concept.

2. The pilot-wave picture
e The object of study here 1s a real (smooth) particle trajectory
e Agrees wath intuitive 1deas of particles and paths.
e Explains nodes and quantum mterference through the quantum potential

e Solutions of wave equation determune particle paths through the quantum potential
e Waves are a necessary but adjunct concept

3. A particle-only picture

e Is there a picture 1n which the particle is the object of study and waves are a derived concept?
(complementary to 1 above)?

% We'shall establish one. B el a
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2. What is the relevance to interpretations of quantum
mechanics?

Roughly speaking, there are two categories of “pictures’ in the interpretation of quantum mechanics, based
on whether there 1s an external reality that contains objects resembling classical particles.

1. The wave-only picture

r °® Here the objects of study are waves. Particles are wave-packets and are a derived concept.
e This picture 1s fine up to measurement Measurement poses the problem of wavefunction collapse.
e “Theory as explanation ~ very questionable
e External reality 77

2. The pilot-wave picture
e The object of study here 1s a real (smooth) particle trajectory.
e Agrees wath intuitive ideas of particles and paths.
e Explains nodes and quantum mterference through the quantum potential

e Solutions of wave equation determine particle paths through the quantum potential
e Waves are a necessary but adjunct concept.

3."A'pdrticle-only picture R .
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2. What is the relevance to interpretations of quantum
mechanics?

Roughly speaking, there are two categories of "pictures’ in the interpretation of quantum mechanics, based
on whether there 1s an external reality that contains objects resembling classical particles.

1. The wave-only picture
r @ Here the objects of study are waves. Farticles are wave-packets and are a derived concept.

2. The pilot-wave picture

e The object of study here 1s a real (smooth) particle trajectory.

e Agrees wath intuitive 1deas of particles and paths.

e Explains nodes and quantum mterference through the quantum potential

e Solutions of wave equation determune particle paths through the quantum potential

e Waves are a necessary but adjunct concept

3. A particle-only picture

e Is there a picture in which the particle is the object of study and waves are a derived concept?
(complementary to 1 above)?

% We'shall establish one. Sl a
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3. Example: Nodes in the double slit experiment

1. The experiment with electrons.

Fig. 21.4 (a) Arrangement for the two-slit experiment. One electron is emitted at n
a time, ammed at the screen through the pair of slits. (b) Pattern on thcscra:nwhﬂls&
the right-hand slit is covered. (¢) The same, when the left-hznd slit is covered. '-5
(d) Interference occurs when both slits are open. Some regions on the screen
re-gammAot now be reached despite the fact that they can be with just one F’fii‘i'9’7i:|:|.l= 5‘

other echt namnen '
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construct a quantum potential The potential establishes path-rich and path-poor areas in a wave pattern.
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2. Pilot-wave

How do you obtain nodes in a particle-based theory? Bohms theory uses solutions of the wave equation to
5.1 Imterference by division of wavefromt 181
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3. Feynman Paths

What about Feynman paths? These are not considered real, as Bohm paths are, however it 1s interesting to

see how wave patterns are built. In particular, in terms of Feynman paths, nodal regions are not path-poor,
they are path-paired where the opposite phase of pairr members cancel.

Pirsa: 05100011
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4. Whence Phase?

e The physical onigin of phase 1s unknown .. it 1s a wave concept grafted onto the particle paradigm

(Compare Feynman phase factor ¢*S*®lyath the Wiener integral Boltzman factor ¢~5**] The
Boltzman factor 1s the result of just counting trajectories, the Feynman phase appears to be counting
wave amphtudes)

e The function of phase 1s to propagate subtraction .. this appears to be outside the statistical
mechanics of classical particles.
(eg. If we wanted the lighting lowered in this room we would request that the lights be dimmed, we
would not expect that a’darkness projector” be turned up to reduce the ambient light )

Page 12/77
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3. Feynman Paths

What about Feynman paths? These are not considered real, as Bohm paths are, however 1t 1s interesting to
see how wave patterns are built. In particular, in terms of Feynman paths, nodal regions are not path-poor,
they are path-paired where the opposite phase of pairr members cancel.
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5.Counting with negative integers in classical statistical mechanics.

1. Simple paths

Suppose we assume paths (world-hines) that are continuous, begin before t =0 and end beyond the time
scale of interest. These simple paths, where x 1s a single-valued function of t, are counted wath the natural
numbers N The diffusion equation may be shown to be a continuum limit of a counting process for a
particular kind of such paths.

I 1 i -
f
L [
L | 1
\ /
.\: y
s |
II"I 1 1]
&
// : I'1 '
F
|
I;ll ; 1 ;

FIG. 4: Two simple paths. Only positive integers required to count the number of paths.
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they can double back! Now x 1s not a single-valued function of t anymore. If we want to count such paths,
we have to count taking into account the direction of traversal! In the iigure below, the path 1s colour coded
to indicate direction of traversal, blue for forward in t, red for backwards in t If we associate a +1 with blue
and a -1 wath red, the sum of all contributions at fixed t will count the number of paths. Note we now need
the integers Z to do our counting.

’ \

wec
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2. Non-simple paths
Suppose however that paths are continuous and traverse a particular ime interval of interest, but this time

FIG. 5: Continuous paths with reversed segments require the negative integers for counting paths. Atfixed tthe num-
Irsa. age

bero Cﬂl"llﬁl"ll..IDLlS paths is the number of blue contributions minus the number of red.

4 »l
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6. The Dirac Equation for Accountants

Can we construct a single non-simple path in such a way that it mumics solutions of the Dirac equation? If
we can, we have a chance to understand quantum propagation in a way that 1s simular to Einstein’s
explanation of diffusion in terms of Brownian motion.

Dirac Version

The Dirac Equation 1s usually produced by arguments that begin by requiring a PDE of the
Schrodinger form ( # = 1)

; oY

é‘t = H . (Input waves here) (2)

This 1s followed by the relativistic requirement that
E? =m* + p* (Input Special Relativity here) (3)

where m 1s the rest mass of the electron and p 1s the momentum Combiming these requirements lead Dirac
to propose

Iﬂ 5100011 Page 16/77 -
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2. Non-simple paths
Suppose however that paths are continuous and traverse a particular ime interval of interest, but this time

they can double back! Now x 1s not a single-valued function of t anymore. If we want to count such paths,
we have to count taking into account the direction of traversal! In the iigure below, the path 1s colour coded
to indicate direction of traversal, blue for forward in t, red for backwards in t If we associate a +1 with blue

and a -1 wath red, the sum of all contributions at fixed t will count the number of paths. Note we now need
the integers Z to do our counting.

FIG. 5: Continuous paths with reversed segments require the negative integers for counting paths. At fixed tthe num-
Irsa. age

ber o Cﬂl"llﬁl"lUDUS paths is the number of blue contributions minus the number of red.
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6. The Dirac Equation for Accountants

Can we construct a single non-simple path in such a way that it mumics solutions of the Dirac equation? If
we can, we have a chance to understand quantum propagation 1n a way that 1s ssmular to Einstein’s
explanation of diffusion in terms of Brownian motion.

Dirac Version

The Dirac Equation 1s usually produced by arguments that begin by requiring a FDE of the
Schrodinger form ( # = 1)

; oY

3: = H . (Input waves here) 2)

This 1s followed by the relativistic requirement that

E? =m* + p* (Input Special Relativity here) (3)

where m 1s the rest mass of the electron and p 1s the momentum Combiming these requirements lead Dirac
to propose

Iﬂ 5100011 Page 18/77 -
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we can, we have a chance to understand quantum propagation 1n a way that 1s ssmilar to Einstein’s
explanation of diffusion 1n terms of Browman motion.

Dirac Version
The Dirac Equation 1s usually produced by arguments that begin by requiring a PDE of the
Schrodinger form ( # = 1)

] Z—': = H . (Input waves here) (2)

This 1s followed by the relatinstic requirement that

E* =m” + p” (Input Special Relativity here) 3)

where m 1s the rest mass of the electron and p 1s the momentum Combining these requirements lead Dirac
to propose

i ‘;—: = (a.p + fm) V. €))

Iteraung Equation 2 , using Equation 3 suggested the usual anicommutation relations for the matrices a
and 5 Much as the original argument was brilhant and insightful, there was no sense in which the resulting
equation described a wavefunction § that had a prior physical meaming.
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6. The Dirac Equation for Accountants

Can we construct a single non-simple path in such a way that 1t mumics solutions of the Dirac equation? If
we can, we have a chance to understand quantum propagation in a way that 1s ssmular to Einstein’s
explanation of diffusion in terms of Browmian motion.

Dirac Version

The Dirac Equation 1s usually produced by arguments that begin by requiring a PDE of the
Schrodinger form ( # = 1)

; oY

3: = H . (Input waves here) (2)

This 1s followed by the relativistic requirement that
E? =m” + p* (Input Special Relativity here) 3)

where m 1s the rest mass of the electron and p 1s the momentum Combiming these requirements lead Dirac
to propose
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Accountant Version I

Here we imagine dernving the Dirac equation in 1+1 dimension for an accountant who 1s of course famibar
with ssmple anthmetic, notably counting with integers and using rational numbers when a reason for
dmsion of integers 1s explamned.

Equation 1 would have httle meaning for our accountant. 1 =+ —1 1s outside common arithmetic as are Real

numbers and the calculus. However, counting configurations of a stochastic process on a lattice 1s wathin
the domain of accountancy tools. Consider the stochastic walk considered in Fig. 6
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Here we imagine deriving the Dirac equation in 1+1 dimension for an accountant who 1s of course famihar
with ssmple anthmetic, notably counting with integers and using rational numbers when a reason for
dimision of integers 1s explained.

Equation 1 would have httle meaning for our accountant 1=+ —1 1s outside common arithmetic as are Real
numbers and the calculus. However, counting configurations of a stochastic process on a lattice 1s wathin
the domain of accountancy tools. Consider the stochastic walk considered in Fig 6

A - L%
r.'. -\,‘-“‘ ‘-I\.-k "\‘\‘-‘
£ - e 3 P
. - A
\ | "% | ¢
o & o -
X ¥
JJI % ‘
s ) . 3 :
P < ¢
£ il po
\ , ;
" v s
Fhvsical Fath Oriented A REs Enumerative Path
Pirsa: 05100011 Page 22/77

¥

FIG. 6: On the left is a single “entwined path’ in the (r, ¥) plane. The colour indicaties the direction of traversal, blue for
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Walk description

Oriented Areas. 1

Enumerative Paths

Counting Oriented Areas

Now our task to count onented rectangles 1s reduced to counting the contributions of enumerative paths
on the lathce. We can do this using the structure of the walks to deduce what the equilibrium pattern,

assumung there 1s one, must be.

Let us label the lattice sites by + = me, and y = ne where m and n are integers. We consider a two
component density u.(t, y) where i, counts the number of (1, 1) and (-1, —1) directed links and u_
counts the number of (=1, 1) and (1, —1) directed links by orientation. We need a 2-component density
here because our enumerative paths continually shuffle orientation counts between the two directions.

Now any hink at (x, y+¢€) in the +(1, 1) direction either follows a link of the same direction and colour at
(x—e, y) or follows a link of the opposite direction and colour at (x +¢€, y). The former occurs with
probability (1 —em), the latter with probability em. Thus if an equilibrium density 1s reached 1t must satisfy:

. (x,v+e)=(1—-emu,(x—€v)—emu_(x+e¢€v) (5)

Nouce here the subtraction mnvolved in the second term. Thus 1s because whenever our enumeratve path
“tlirns Aght' it switches orientation, thus changing the sign of its contribution. Since this happens for ail

s, Tl p— - . F s, Ry [, T AN [ S, [ Ve | | A, (NI, [N, (N [T, Y, Rp— P Py S ——
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Enumerative Paths

Counting Oriented Areas

Now our task to count oriented rectangles 1s reduced to counting the contributions of enumerative paths
on the lathice. We can do this using the structure of the walks to deduce what the equuilibrium pattern,
assumng there 1s one, must be.

Let us label the lattice sites by r = me, and y = ne where m and n are integers. We consider a two
component density u.(x, y) where u,. counts the number of (1, 1) and (-1, —1) directed hnks and u_
counts the number of (-1, 1) and (1, —1) directed links by orientation. We need a Z-component density
here because our enumerative paths continually shuffle orientation counts between the two directions.

Now any link at (x, y+¢€) in the £(1, 1) direction either follows a link of the same direction and colour at
(x —e, y) or follows a link of the opposite direction and colour at (x +¢€, y). The former occurs with
probability (1 —em), the latter wath probability em. Thus if an equulibrium density 1s reached 1t must satisfy:

., (x.v+e)=(1—-emu_ (x—€v)—emu_(x+e€,v) (5)

Notice here the subtraction involved in the second term. This 1s because whenever our enumerative path
“turns right' it swatches onentation, thus changing the sign of its contribution. Since this happens for all
paths, it must happen for the equilibrium distribution We can similarty deduce that the i_ density must
obey the difference equation:

Pirsa: 05100011 Page 24/77

u_(x,v+e=(1-emu_x+evyv)+emu . (x—¢y) (6) ;
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Walk description

Oriented Areas.

Enumerative Paths

Counting Oriented Areas

Now our task to count onented rectangles 1s reduced to counting the contributions of enumerative paths

on the lathce. We can do this using the structure of the walks to deduce what the equilibrium pattern,

assumung there 1s one, must be.

Let us label the lattice sites by + = me, and y = ne where m and n are integers. We consider a two
component density u.(t, y) where i, counts the number of (1, 1) and (-1, —1) directed links and u_
counts the number of (=1, 1) and (1, —1) directed links by orientation. We need a 2-component density
here because our enumerative paths continually shuffle orientation counts between the two directions.

Now any hink at (x, y+€) in the +(1, 1) direction exther follows a link of the same direction and colour at
(x—e, y) or follows a link of the opposite direction and colour at (x +€, y). The former occurs with
probability (1 —em), the latter with probability em. Thus if an equilibrium density 1s reached 1t must satisfy:

. (x,v+e)=(1-emu,(x—€v)—emu_(x+e¢€v) (5)

Notice here the subtraction involved in the second term. This 1s because whenever our enumerative path

“tlfns fight' it switches orientation, thus changing the sign of its contribution. Since this happens for aff
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Counting Oriented Areas

Now our task to count oriented rectangles 1s reduced to counting the contributions of enumerative paths
on the lattice. We can do this using the structure of the walks to deduce what the equulibrium pattern,
assumng there 1s one, must be.

Let us label the lattice sites by .t = me, and y = ne where m and n are integers. We consider a two
component density u.(x, y) where u, counts the number of (1, 1) and (-1, —1) directed hnks and u_
counts the number of (-1, 1) and (1, —1) directed links by orientation. We need a 2-component density
here because our enumerative paths continually shuffle orientation counts between the two directions.

Now any link at (x, y+¢€) in the +(1, 1) direction exther follows a link of the same direction and colour at
(x —e, y) or follows a hink of the opposite direction and colour at (x +¢€, y). The former occurs with
probability (1 —em), the latter with probability em. Thus if an equilibrium density 1s reached 1t must satisfy:

., (x,v+e)=(1—-emu_(x —€v)—emu_(x+¢€v) (5)

Notice here the subtraction involved 1n the second term. This 1s because whenever our enumerative path
“turns right' it swatches onentation, thus changing the sign of its contribution. Since this happens for all
paths, it must happen for the equilibrium distribution. We can similarly deduce that the u_ density must
obey the difference equation:

w_(x,v+e)=(1—-emu_(x+ev)+emu,(x—¢€y) (6)

The.pasiive sign for the second term reflects the fact that the change of direction for a “left turn' on.gn. ., "
enumerative path does not change orientation.
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on the latice. We can do this using the structure of the walks to deduce what the equulibrium pattern, N

assumng there 1s one, must be.

Let us label the lattice sites by r = me, and y = ne where m and n are integers. We consider a two
component density u.(x, y) where i, counts the number of (1, 1) and (-1, —1) directed links and u_
counts the number of (-1, 1) and (1, —1) directed links by orientation. We need a 2-component density
here because our enumerative paths continually shuffle orientation counts between the two directions.

Now any hnk at (x, y+¢€) in the +(1, 1) direction either follows a link of the same direction and colour at
(x —¢, y) or follows a link of the opposite direction and colour at (x +¢€, y). The former occurs with
probability (1 —em), the latter with probability em_ Thus if an equahbrium density is reached 1t must satisfy:
., (x.v+e)=(1—-emu,(x —e.v)—emu_(x+e¢€v) (5)
Notice here the subtraction involved in the second term. This 1s because whenever our enumerative path
“turns right' it swmatches orientation, thus changing the sign of its contribution. Since this happens for all

paths, it must happen for the equilibrium distnbution. We can similarly deduce that the u_ density must
obey the difference equation:

uw_(x,v+e)=(1—-emu_x+€v)+emu_(x—¢€v)

(6)

The positive sign for the second term reflects the fact that the change of direction for a "left turn' on an
enumerative path does not change orientation.

Pirsa: 05100011 Page 27/77
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Walk description
Oriented Areas.
Enumerative Paths
Counting Oriented Areas
Now our task to count onented rectangles 1s reduced to counting the contributions of enumerative paths
on the lathce. We can do this using the structure of the walks to deduce what the equulibrium pattern,

assumung there 1s one, must be.

Let us label the lattice sites by * = me, and y = ne where m and n are integers. We consider a two
component density u.(t, y) where i, counts the number of (1, 1) and (—1, —1) directed links and u_
counts the number of (-1, 1) and (1, —1) directed links by orientation. We need a 2-component density
here because our enumerative paths continually shuffle orientation counts between the two directions.

Now any hink at (x, y+€) in the +(1, 1) direction exther follows a link of the same direction and colour at
(x—e¢, y) or follows a link of the opposite direction and colour at (x +€, y). The former occurs with
probability (1 —em), the latter with probability em. Thus if an equilibrium density 1s reached 1t must satisfy:

. (x,v+e)=(1-emu,(x—ev)—emu_(x+e¢€yv) (5)

Notice here the subtraction involved in the second term. This 1s because whenever our enumerative path

“tlirns Aght' it switches orientation, thus changing the sign of its contribution. Since this happens for ail
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4 »l

VSRS, Ry |, TP ANING [ S Y Ve | | A, (NI, TN, (S [y, Y, R— . P S ——




ﬁ' Publicon File Edit Format Insert Cell View Window Help O Wed 4:06 PM 9%)

»oe PIQuDos05.6
EIEERYER wor>

Solutions of the difference equations.

Remove decay and rewrite
Write
wi(x.ne)=wilx,ne)(l—em)”
then w, satisfies the equations:

W.,_(.I,}? +€) = W_,_(.I—e,}!) —Emw_(x+e,y)
WY+ =w_(+€)) +emw.(x —€Y)

to lowest order in €.

Solutions Rational, counting process mundane.

Page 29/77
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Solutions of the difference equations.
Remove decay and rewrite
Write
wis(x.ne)=wilx,ne)(l-—em)”
then w, satisfies the equations:

w, (,y+e)=w. . (x—€V) —emw_(x +€Y)
w_(r,y+e =w_(x+€y) +€mw, (x —€Yy)

to lowest order in €.

Solutions Rational, counting process mundane.
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If we subtract w.(x, y) from both sides of (7), divide by € and take the hmit as € - 0" we find that
6},“,_'_ (I-r F) e 1“’4— (’I'I' y) —lnw—a! )’)

Byw_ (x,v)= o,w_(x,¥v)+mw_(x,V)

We
-
|H'ili|ﬂ| 15 0f 23
Continuum Limit
We abandon the hmitations of arithmetic and approxumate the solutions of (8) by taking a continuum limit.

or writing
e
W= (U _1] Og = ( = —i0y
we have
OyW = —0, 9, W —imoyWw (9)

This may be recognized as a form of the Dirac equation wheree =fi=1and y=¢(Not 17 |Il). Note that if
we iterate this equation to get a second order form we have

:‘%w = aiw —m’w (10)

which 1s the Klein-Gordon equation.

Pirsa: 05100011 Page 31/77
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It we subtract w.(x, y) from both sides of (/), dinde by € and take the hmit as e - U™ we iind that ~

5),W+ (I, },) = — 1“’4— (I'I' }’) E= w—a! }’)

Byw_u', V)= dw_(x,v)+mw_(x,V)

or writing
u‘—(“.+) ] o ( = -0
7 e 0 —IF " 4 .
we have
oW = —0, 9w —imoyw (9)

This may be recognmized as a form of the Dirac equation whereec =fi=1and y=¢(Not 17 |Il). Note thatif
we iterate this equation to get a second order form we have

az),w = aiw —m’w (10)

whuch 1s the Klein-Gordon equation.

Note, this means that the solutions of these “wave equations’ are a continuum hmit of a pattern formed by
the a counting process for a single “space-time’ trajectory |

Pirsa: 05100011 Page 32/77

T



@ Publicon File Edit Format Insert Cell View Window Help 9 Wed 4:08 PM 9% = wec
)66 PIQuDos05.6 =)
||1|1]\|H1 18 of 22

What we have Not Done

Notice that to obtain the Dirac and Klemn-Gordon equations above we have not invoked

(A) the uncertainty principle

(B) quantization or Schrodinger' s equation

(C) complex numbers

(D) special relatity

(E) any "interpretation' regarding quantum mechanics and the nature of reality.

We have simply taken the output of an “accounting argument' and written 1t in a language farmiliar in the
context of relativistic quantum mechamnics.

About the equation.

Now (9) is just a continuum limit of (8) written 1n a familiar form. (Notice that there has been no analytic
continuation forced on the system w is real and the i in (8) 1s present only because o, 1s imagnary ) The
pomnt here 1s that we can regard (8) either as a fundamental equation about the 'wavefunction' of an
electron, without knowing exactly what a wavefunction represents in the physical world, or we can take (8)
as the continuum limit of an equation describing an equilibrium distribution of a simple stochastic process.
The continuum language that we use does not tell us whether we are describing a “Dirac wavefunction in
one dimension' or a  spacetime that mamntains an accountancy ledger for the EP stochastic process'

Pirsa: 05100011 Page 33/77
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7. What is different about this ‘derivation’ of the Dirac Equation?

In the context of quantum mechanics, all * denvations™ of quantum mechanics from particle mechanics
mnvolve a formal analytic continuation (FAC), either explicit or forced by a global requirement. For example:
e the usual {p - -1 hd;, E -1 hd,;] 1s an expheit FAC that takes us from real dynamucal vanables to

complex operators.
e Nelson's work 1s a forced analytic continuation. There 1s no explicit invocation of complex numbers,
however Nelson's argument cleverly forces the diffusion equation into the complex domain by

requiring reversibility.
The above dernvation of the Dirac equation has no such analytic continuation, exther expheit or globally
forced. So what makes 1t work?77

Page 34/77
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If we subtract w.(x, y) from both sides of (7), divide by € and take the hmit as € - 0 we find that
w+(x-r F) sl 1w+ ('I'r }’) -"’w—(J: }’)

oyw_(,y)= o, w_(x,y)+mw_(x,y)

We
-
ERECEREE morzs
Continuum Limit
We abandon the imitations of arithmetic and approxumate the solutions of (8) by taking a continuum limit.

or wnting

w= (U —1] e g (1 75

we have

OyW = —0, 9, W —imoyw (9)

This may be recognmized as a form of the Dirac equation whereec =fi=1and y=¢(Not 17 |Il). Note thatif
we iterate this equation to get a second order form we have

a%w = éﬁw —m’w (10)

which 1s the Klein-Gordon equation.
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Accountant Version
Here we imagine dernving the Dirac equation in 1+1 dimension for an accountant who 1s of course famihar
with ssmple anthmetic, notably counting with integers and using rational numbers when a reason for
dmsion of integers 1s explamned.
Equation 1 would have httle meaning for our accountant. 1 =+ —1 1s outside common arithmetic as are Real
numbers and the calculus. However, counting configurations of a stochastic process on a lattice 1s wathin
the domain of accountancy tools. Consider the stochastic walk considered in Fig. 6
Fi : l"'\- ‘-\' y ‘-\--.
o \.\} 5 : H} \\a
-y A 4
4 ¢ ¢
e 7 P o
!:_f s
{,, Y Ve 4 4
b ) ¢
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Enumerative Paths

Counting Oriented Areas

Now our task to count onented rectangles 1s reduced to counting the contributions of enumerative paths
on the lathce. We can do this using the structure of the walks to deduce what the equilibrium pattern,

assumung there 1s one, must be.

Let us label the lattice sites by + = me, and y = ne where m and n are integers. We consider a two
component density u.(t, y) where i, counts the number of (1, 1) and (—1, —1) directed links and u_
counts the number of (=1, 1) and (1, —1) directed links by orientation. We need a 2-component density
here because our enumerative paths continually shuffle orientation counts between the two directions.

Now any link at (x, y+€) in the +(1, 1) direction exther follows a link of the same direction and colour at
(x—e, y) or follows a link of the opposite direction and colour at (x +€, y). The former occurs with
probability (1 —em), the latter with probability em. Thus if an equilibrium density 1s reached 1t must satisfy:

. (x,v+e)=(1—-emu,(x—€v)—emu_(x+e€yv) (5)

Nouce here the subtraction mnvolved in the second term. This 1s because whenever our enumeratve path
“tlirns Aght' it switches orientation, thus changing the sign of its contribution. Since this happens for ail
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Enumerative Paths

Counting Oriented Areas

Now our task to count orniented rectangles 1s reduced to counting the contributions of enumerative paths
on the lattice. We can do this using the structure of the walks to deduce what the equulibrium pattern,
assumung there 1s one, must be.

Let us label the lattice sites by x = me, and y = ne where m and n are integers. We consider a two
component density u.(t, y) where i, counts the number of (1, 1) and (-1, —1) directed links and u_
counts the number of (-1, 1) and (1, —1) directed links by orientation. We need a 2-component density
here because our enumerative paths continually shuffle orientation counts between the two directions.

Now any link at (x, y+€) in the +(1, 1) direction either follows a link of the same direction and colour at
(x —e€, y) or follows a hink of the opposite direction and colour at (x +€, y). The former occurs with
probability (1 —em), the latter wath probability em. Thus if an equilibrium density 1s reached 1t must satisfy:

., (x,v+e)=(1—-emu,(x —€v) TEI’HH_(.I+E,?) (3)

Notice here the subtraction involved in the second term. This 1s because whenever our enumerative path
“turns right' it swmitches ornientation, thus changing the sign of its contribution. Since this happens for all
paths, it must happen for the equilibrium distribution. We can similarly deduce that the u_ density must
obey the difference equation:

u_(x,v+e)=(1—-emu_(x+e€v)+emu,(x—¢€v) (6)

THEpa4tive sign for the second term reflects the fact that the change of direction for a "left turn' orf4#r®”
enumerative nath doe< not chanoe orientation

-
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What we have Not Done

Notice that to obtain the Dirac and Klemn-Gordon equations above we have not invoked

(A) the uncertamnty principle

(B) quantization or Schrodinger' s equation

(C) complex numbers

(D) special relatwity

(E) any "interpretation' regarding quantum mechanics and the nature of reality.

We have ssmply taken the output of an “accounting argument' and written 1t in a language familiar in the
context of relativistic quantum mechamnics.

About the equation.

Now (9) is just a continuum limit of (8) written 1n a familiar form. (Notice that there has been no analytic
continuation forced on the system w is real and the i in (8) 1s present only because o, 1s 1imagnary) The
pomnt here 1s that we can regard (8) either as a fundamental equation about the 'wavefunction' of an
electron, without knowing exactly what a wavefunction represents in the physical world, or we can take (8)
as the continuum limit of an equation describing an equilibrium distribution of a simple stochastic process.
The continuum language that we use does not tell us whether we are describing a “Dirac wavefunction in
one dimension' or a  spacetime that mamntamns an accountancy ledger for the EP stochastic process'
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7. What is different about this ‘derivation’ of the Dirac Equation?

In the context of quantum mechanics, all * denvations” of quantum mechanics from particle mechanics
mvolve a formal analytic continuation (FAC), either explicit or forced by a global requirement. For example:
e the usual {p » —1 %8, E —» 1 hd,;] 1s an expheit FAC that takes us from real dynamucal vanables to

complex operators.
e Nelson's work 1s a forced analytic continuation. There 1s no explicit invocation of complex numbers,
however Nelson's argument cleverly forces the diffusion equation into the complex domain by

requiring reversibility.
The above dernvation of the Dirac equation has no such analytic continuation, exther expheit or globally
forced. So what makes 1t work?7?
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8. Constructing Complex Numbers
Histonically and to a certamn extent logically, the evolution of number systems 1s something like:
N->Z-Q-R->C

N, Z, and Q are appropriate number systems for the counting problems of classical statistical mechanics.
However in making the transition from classical mechanics to quantum mechanics, we habitually start in R
(we need a smooth continuum for classical mechanics) and we are forced into € by “wave-particle duahty'

In the * Accountant version” we started wath a counting problem for non-simple curves. This forced us to use
Integers for the primary number system. The geometry (counting oriented areas) requuired that the
counting have a 2-component structure with a built-in periodicity. The continuum hmit of the counting
process then contamned the algebra of the complex numbers, not just the Reals. The logical structure 1s
something hke:

Z, - Q -C(- R)

where Z, and @, are essentially subsets of Cwith discrete phase and modulus The difference here from
other derivations of the Dirac equation 1s that the Algebra of complex numbers 1s built by a combination of
the local geometry of the trajectory and the counting process that detects oriented areas. The natural
extension of the counting process 1s to €, not R. Unfortunately the connection between the *subquantum
dynamuical process” and the resulting “wavefunction’ is lost 1n the continuum hmit because the process
1tsglf 15 hglow the resolution of the resulting partial differential equation. ( compare thermodynamics gnd,
stat. mech) 3
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p problems of classical statistical mechanics.
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8. Constructing Complex Numbers

Histonically and to a certamn extent logically, the evolution of number systems 1s something like:

N-Z-Q->R-C

N, Z, and Q are appropriate number systems for the counting problems of classical statistical mechanics.
However in making the transition from classical mechanics to quantum mechanics, we habitually start in R
(we need a smooth continuum for classical mechanics) and we are forced into € by “wave-particle duahty'

In the * Accountant version’ we started wath a counting problem for non-simple curves. This forced us to use
Integers for the primary number system. The geometry (counting onented areas) requuired that the A
counting have a 2-component structure with a built-in periodicity. The continuum hmit of the counting

process then contamed the algebra of the complex numbers, not just the Reals. The logical structure is
something hke:

Z, - Q -C(- R)

where Z, and @Q, are essentially subsets of Cwith discrete phase and modulus The difference here from
other derivations of the Dirac equation 1s that the Algebra of complex numbers 1s built by a combmnation of
the local geometry of the trajectory and the counting process that detects oriented areas. The natural
extension of the counting process 1s to €, not R. Unfortunately the connection between the *subquantum
dynamuical process” and the resulting “wavefunction’ is lost in the continuum hmit because the process
1tsglf 15 hglow the resolution of the resulting partial differential equation. ( compare thermodynamics gagd,
stat. mech)
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9. Questions ...

Q. How robust 1s this? Does the Dirac equation depend on minute details in the geometry and/or the
stochastic process?

A Apparently not The geometry has to be periodic, and there has to be a strict pairing of forward and
return paths. The dynamucal process can be stochastic, but it 1s vastly more efficient to have the dynamics
determumistic and input the stochastic element at the imtial conditions.

Q. The argument was for 1+1 dimensions. What about 3+1

A  This seems to be a fairly straight-forward extension .. but it has not received a cnitical appraisal by
anyone else yet.

(Q What 1s the analog of superposition 1n this context?

A Concatenation Any two space-time patterns A and B formed by entwined paths from the same ongin
form the pattern A+B when the trajectories are concatenated.

Qrilkiboniown that the real difficulty with quantum mechanics 1s “'measurement’. The toy model onbgogers -
propagation. Why would this be an advantage given we already understand propagation in terms of waves.
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return paths The dynamlc:al process can be stochastlc butitis vas'tly more eﬂiclent to have the dynamms
determumistic and input the stochastic element at the imtial conditions.

(2. The argument was for 1+1 dimensions. What about 3+1.

A This seems to be a fairly straight-forward extension . but it has not received a critical appraisal by
anyone else yet.

(Q What 1s the analog of superposition in this context?

A Concatenation. Any two space-ume patterns A and B formed by entwined paths from the same onigin
form the pattern A+B when the trajectones are concatenated.

Q. It 1s known that the real difhiculty wath quantum mechanics 1s “'measurement’. The toy model only covers
propagation. Why would this be an advantage given we already understand propagation in terms of waves.

A The problem with waves 1s that you are hard pressed to figure out why measurement favours particles. If,
as mn the toy model, the underlying dynamical process produces a particle-like trajectory, the hope 1s that
the measurement problem will be lessened.
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Q. What about relevance to the Bohm picture.

A At this pomnt they could be connected 1n a rather artificial way A (determuinistic) entwined path can
‘write’ the appropriate wavefunction on a region of spacetime given the correct imtial condition. To mimuic
Bohm we could instruct the particle to so write the appropriate wavefunction and at then finally exat the
spacetime region via the Bohm path determined by the prewiously written wavefunction.

Q. What about multi-particle quantum mechanics?
A Sull to be looked at.
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10. Pictures
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Conclusions

ENERCAEN 2oz

e Developed a particle-only picture of propagation
e Waves appear as a derved concept
e No physics involved ... only path counting and geometry
e Derived Dirac equation in 1+1 dimension
This assumed:
e Path 1s non-simple stochastically produced entwined curve and counting 1s for oriented areas
e Path 15 long enough to produce an equilibrium distribution
e Self-interference appears to be generic and robust (there will be many models that will produce
“waves')
e Deterministic versions that satisfy the uncertainty principle through mitial conditions are vastly more
efficient than completely stochastic versions
e There 1s much to explorel!!
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