Title: The problem of vacuum energy from a particle physics perspective

Date: Oct 05, 2005 02:00 PM

URL: http://pirsa.org/05100010

Abstract: The problem of vacuum energy is reviewed. The observational evidence in favor of a non-zero cosmological constant is described. I then discuss several possible explanations for how a theoretically natural huge value of vacuum energy could be adjusted down to the unnaturally tiny but observed value.

Pirsa: 05100010 Page 1/76

October

- 5 Alexander Dolgov The dark energy problem from a particle physicists perespective
- 12 Paul Busch (TBA)
- 19 Reka Albert Lessons from modeling the dynamics of genetic regulatory networks
- 26 Charlie Bennett Assisted Capacities of Quantum Channels and the Reverse Shannon Theorem

November

2

4 (special date) Evelyn Fox Keller

9 Sundance Bilson-Thompson Preon models

16

23 Phillip Manheim

30

2. Majority point of view during long time and maybe even now:

$$\infty = 0$$

"Corrections are infinite but small" (R. Feynman).

- 3. New independent pieces of data: EMPTY SPACE (ANTI)GRAVITATES
- 4. Close proximity of $\rho_{vac} = const$ to $\rho_c \sim 1/t^2$ exactly today.
- 5. If antigravitating substance is not vacuum energy then WHAT?

CONTENT

- 1. Definition and history.
- 2. Data in favor of $\rho_{\text{vac}} \neq 0$ (or $\rho_{\text{DE}} \neq 0$).
- 3. Cosmology with $\Lambda \neq 0$.
- 4. Almost infinite contributions into ρ_{vac} .
- 5. Possible ways out.

Page 27/76

Pirsa: 05100010

$$\ddot{\phi} + 3H\dot{\phi} + U'(\phi, R) = 0$$

with e.g. $U = \xi R \phi^2 / 2$.

Solutions are unstable if $\xi R < 0$.

Asymptotically:

$$\phi \sim t$$

and DS turns into Friedman, but

$$\mathbf{T}_{\mu\nu}(\phi) \neq \mathbf{F}\mathbf{g}_{\mu\nu}$$

