Title: Positive Linear Maps on Matrix Algebras

Date: Sep 21, 2005 04:00 PM

URL: http://pirsa.org/05090009

Abstract:

 M_n = the algebra of all n x n complex matrices

 M_n = the algebra of all n x n complex matrices M_n^h = the real space of all n x n hermitian matrices

 M_n = the algebra of all n x n complex matrices

 M_n^h = the real space of all n x n hermitian matrices

 M_n^+ = the cone of all n x n positive semidefinite matrices.

Pirsa: 05090009 Page 4/68

 M_n = the algebra of all n x n complex matrices

 M_n^h = the real space of all n x n hermitian matrices

 M_n^+ = the cone of all n x n positive semidefinite matrices.

Def: A linear map $\Phi: M_n \to M_m$ is a *positive* linear map when $\Phi(M_n^+) \subseteq M_m^+$.

 M_n = the algebra of all n x n complex matrices

 M_n^h = the real space of all n x n hermitian matrices

 M_n^+ = the cone of all n x n positive semidefinite matrices.

Def: A linear map $\Phi: M_n \to M_m$ is a positive linear map when $\Phi(M_n^+) \subseteq M_m^+$.

M_n = the algebra of all n x n complex matrices
 M_n h = the real space of all n x n hermitian matrices
 M_n + = the cone of all n x n positive semidefinite matrices.

Def: A linear map $\Phi: M_n \to M_m$ is a *positive* linear map when $\Phi(M_n^+) \subseteq M_m^+$.

 Φ is completely positive when Φ is of the form $\Phi(A) = \sum V_j^* A V_j$ for all A in M_n .

 In many natural setup, the positive linear maps are considered as the natural morphisms.

Pirsa: 05090009 Page 9/68

- In many natural setup, the positive linear maps are considered as the natural morphisms.
- The main question: Are there any tractable structure theory for positive linear maps?

Pirsa: 05090009 Page 10/68

- In many natural setup, the positive linear maps are considered as the natural morphisms.
- The main question: Are there any tractable structure theory for positive linear maps?
- Must each positive linear map (restricted to real symmetric matrices) be realized as a completely positive linear map?

Pirsa: 05090009 Page 11/68

The simplest counter-example of a positive linear map that does not have completely positive effect

The promised counter-example

is a linear map

$$\Phi: M_3 \to M_3$$
 such that

$$\Phi \begin{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & -\alpha_{12} & -\alpha_{13} \\ -\alpha_{21} & \alpha_{22} & -\alpha_{23} \\ -\alpha_{31} & -\alpha_{32} & \alpha_{33} \end{bmatrix} + \begin{bmatrix} \alpha_{33} & 0 & 0 \\ 0 & \alpha_{11} & 0 \\ 0 & 0 & \alpha_{22} \end{bmatrix}$$

Pirsa: 05090009

Page 12/68

Pirsa: 05090009 Page 13/68

- Consider $\mathbf{R}[\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n] = \{\text{all real coefficient polynomials in n real variables}\}.$
- $f = \Sigma g_j^2 \implies f \ge 0$

- Consider $\mathbf{R}[\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n] = \{\text{all real coefficient polynomials in n real variables}\}.$
- $f = \Sigma g_j^2 \implies f \ge 0$

- Consider $\mathbf{R}[\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n] = \{\text{all real coefficient polynomials in n real variables}\}.$
- $f = \sum g_i^2 \implies f \ge 0$
- Conversely, if f ≥ 0, does it follow that f is a sum of squares of polynomials?

- Consider $\mathbf{R}[\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n] = \{\text{all real coefficient polynomials in n real variables}\}.$
- $f = \Sigma g_j^2 \implies f \ge 0$
- Conversely, if f ≥ 0, does it follow that f is a sum of squares of polynomials?
- Upon homogenization, it is sufficient to consider this problem in forms (homogeneous polynomials). In the context of forms, Hilbert (1888) has solved the problem completely.

Are positive forms sums of squares?

Pirsa: 05090009 Page 19/68

Pirsa: 05090009 Page 20/68

Exercise: Write $X^4 + Y^4 + X^2W^2 + Y^2W^2$

Pirsa: 05090009 Page 21/68

Exercise: Write $X^4 + Y^4 + X^2W^2 + Y^2W^2$ as sum of 3 squares.

Exercise: Write $X^4 + Y^4 + X^2W^2 + Y^2W^2$ as sum of 3 squares.

Write $X^4 + Y^4 + X^2 + Y^2$ as sum of 3 squares.

 Hilbert proved that in other cases, it is possible, in principle, to construct a positive form that is not sum of squares of other forms.

Pirsa: 05090009 Page 24/68

- Hilbert proved that in other cases, it is possible, in principle, to construct a positive form that is not sum of squares of other forms.
- But, Hilbert's method is very complicated, with no hope of practical construction.

Pirsa: 05090009 Page 25/68

- Hilbert proved that in other cases, it is possible, in principle, to construct a positive form that is not sum of squares of other forms.
- But, Hilbert's method is very complicated, with no hope of practical construction.
- In 1967, Motzkin gave a concrete example of degree-6 form of 3 variables.

Pirsa: 05090009 Page 26/68

- Hilbert proved that in other cases, it is possible, in principle, to construct a positive form that is not sum of squares of other forms.
- But, Hilbert's method is very complicated, with no hope of practical construction.
- In 1967, Motzkin gave a concrete example of degree-6 form of 3 variables.
- In 1973, R.M. Robinson gave a concrete example of degree-4 form of 4 variables.

• A biquadratic form in two set of variables $x = (x_1, x_2, ...) y = (y_1, y_2, ...)$ is a quadratic expression

Pirsa: 05090009 Page 29/68

- A biquadratic form in two set of variables $x = (x_1, x_2, ...) y = (y_1, y_2, ...)$ is a quadratic expression
- $B(x, y) = \sum b_{i,j}^{p,q} x_i x_j y_p y_q.$

Pirsa: 05090009 Page 30/68

- A biquadratic form in two set of variables x =
 (x₁, x₂, ..) y = (y₁, y₂, ..) is a quadratic
 expression
- $B(x, y) = \sum b_{i j}^{pq} x_i x_j y_p y_q.$
- The class of such forms arise naturally in several different connections.

Pirsa: 05090009 Page 31/68

- A biquadratic form in two set of variables x =
 (x₁, x₂, ..) y = (y₁, y₂, ..) is a quadratic
 expression
- $B(x, y) = \sum b_{i j}^{pq} x_i x_j y_p y_q.$
- The class of such forms arise naturally in several different connections.
- In particular, each linear map $\Phi: M_n \to M_m$ determines a biquadratic form $y^*\Phi(xx^*)y$.

- A biquadratic form in two set of variables $x = (x_1, x_2, ...) y = (y_1, y_2, ...)$ is a quadratic expression
- $B(x, y) = \sum b_{i j}^{pq} x_i x_j y_p y_q.$
- The class of such forms arise naturally in several different connections.
- In particular, each linear map $\Phi: M_n \to M_m$ determines a biquadratic form $y * \Phi(xx*)y$.
- Thus positive linear maps induce positive biquaratic forms while completely positive linear maps induce sums of squares.

 1968, Koga stated a certain result in circuit theory, implying each positive biquadratic form must be a sum of squares. 1968, Koga stated a certain result in circuit theory, implying each positive biquadratic form must be a sum of squares.

• This was false as I worked out the case of a positive biquadratic form

$$B(\mathbf{x}, \mathbf{y}) = (x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2)$$

$$-2(x_1 x_2 y_1 y_2 + x_2 x_3 y_2 y_3 + x_3 x_1 y_3 y_1)$$

$$+(x_1^2 y_2^2 + x_2^2 y_3^2 + x_3^2 y_1^2)$$

associated with the special positive linear maps.

Pirea: 05000000

In B(
$$\mathbf{x}$$
, \mathbf{y}) = B(x_1 , x_2 , x_3 ; y_1 , y_2 , y_3),
letting $x_1 = X$, $x_2 = W$, $x_3 = Z$,
 $y_1 = Y$, $y_2 = Z$, $y_3 = W$,

we get

$$Q(X, Y, Z, W) = W4 + X^{2}Y^{2} + Y^{2}Z^{2} + Z^{2}X^{2}$$
$$-4XYZW$$

which is a positive degree 4 form but not sum of squares.

(Proof) Q is positive because arithmetic mean \geq geometric mean.

$$Q(X, Y, Z, W) = W4 + X^{2}Y^{2} + Y^{2}Z^{2} + Z^{2}X^{2}$$
$$-4XYZW$$

$$Q(X, Y, Z, W) = W4 + X^{2}Y^{2} + Y^{2}Z^{2} + Z^{2}X^{2}$$
$$-4XYZW$$

• If $Q = \sum q_i^2$ where each q_i is a quadratic form, then, each q_i cannot have the terms X^2 , Y^2 , Z^2 .

- If $Q = \sum q_i^2$ where each q_i is a quadratic form, then, each q_i cannot have the terms X^2 , Y^2 , Z^2 .
- Hence, each q_i cannot have the terms XW,YW,
 ZW.

- If $Q = \sum q_i^2$ where each q_i is a quadratic form, then, each q_i cannot have the terms X^2 , Y^2 , Z^2 .
- Hence, each q_i cannot have the terms XW,YW, ZW.
- Thus each q_i is a linear combination of XY, YZ, ZX, and W².

- If $Q = \sum q_i^2$ where each q_i is a quadratic form, then, each q_i cannot have the terms X^2 , Y^2 , Z^2 .
- Hence , each q_i cannot have the terms XW,YW, ZW.
- Thus each q_i is a linear combination of XY, YZ, ZX, and W².
- Then there is no way to get the term XYZW in Q = Σq_i^2 .

- If $Q = \sum q_i^2$ where each q_i is a quadratic form, then, each q_i cannot have the terms X^2 , Y^2 , Z^2 .
- Hence, each q_i cannot have the terms XW,YW, ZW.
- Thus each q_i is a linear combination of XY, YZ, ZX, and W².
- Then there is no way to get the term XYZW in Q = Σq_i^2 .
- Therefore Q is not sum of squares.

In B(
$$\mathbf{x}$$
, \mathbf{y}) = B(\mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 ; \mathbf{y}_1 , \mathbf{y}_2 , \mathbf{y}_3),

In B(
$$\mathbf{x}$$
, \mathbf{y}) = B(x_1 , x_2 , x_3 ; y_1 , y_2 , y_3),
letting x_1 = bc, x_2 = ca, x_3 = ab,

In B(
$$\mathbf{x}$$
, \mathbf{y}) = B(x_1 , x_2 , x_3 ; y_1 , y_2 , y_3),
letting x_1 = bc, x_2 = ca, x_3 = ab,
 y_1 =a, y_2 = b, y_3 =c,

In B(
$$\mathbf{x}$$
, \mathbf{y}) = B(x_1 , x_2 , x_3 ; y_1 , y_2 , y_3),
letting x_1 = bc, x_2 = ca, x_3 = ab,
 y_1 =a, y_2 = b, y_3 =c,

we get

$$S(a, b, c) = a^4b^2 + b^4c^2 + c^4b^2 - 3a^2b^2c^2$$

In B(
$$\mathbf{x}$$
, \mathbf{y}) = B(x_1 , x_2 , x_3 ; y_1 , y_2 , y_3),
letting x_1 = bc, x_2 = ca, x_3 = ab,
 y_1 =a, y_2 = b, y_3 =c,

we get

$$S(a, b, c) = a^4b^2 + b^4c^2 + c^4b^2 - 3a^2b^2c^2$$

which is a positive degree 6 form in 3 variables but not sum of squares.

In B(
$$\mathbf{x}$$
, \mathbf{y}) = B(x_1 , x_2 , x_3 ; y_1 , y_2 , y_3),
letting x_1 = bc, x_2 = ca, x_3 = ab,
 y_1 =a, y_2 = b, y_3 =c,

we get

$$S(a, b, c) = a^4b^2 + b^4c^2 + c^4b^2 - 3a^2b^2c^2$$

which is a positive degree 6 form in 3 variables but not sum of squares.

1

(Proof) S is positive because $arithmetic\ mean \ge geometric\ mean$.

$$S(a, b, c) = a^4b^2 + b^4c^2 + c^4b^2 - 3a^2b^2c^2$$

$$S(a, b, c) = a^4b^2 + b^4c^2 + c^4b^2 - 3a^2b^2c^2$$

• If $S = \sum q_i^2$ where each q_i is a cubic form, then, each q_i cannot have the terms a^3 , b^3 , c^3 . Hence, each q_i cannot have the terms a^2 , b^2 , a^2 .

$$S(a, b, c) = a^4b^2 + b^4c^2 + c^4b^2 - 3a^2b^2c^2$$

- If $S = \sum q_i^2$ where each q_i is a cubic form, then, each q_i cannot have the terms a^3 , b^3 , c^3 . Hence, each q_i cannot have the terms a^2 , b^2 , b^2 , b^2 , b^2 .
- Thus each q_i is a linear combination of a²b, b²c, c²a and abc. So the term a²b²c² in q_i² is nonnegative, but S has the term -3a²b²c².

Pirea: 05000000

$$S(a, b, c) = a^4b^2 + b^4c^2 + c^4b^2 - 3a^2b^2c^2$$

- If $S = \sum q_i^2$ where each q_i is a cubic form, then, each q_i cannot have the terms a^3 , b^3 , c^3 . Hence, each q_i cannot have the terms a^2 , b^2 , b^2 , b^2 , b^2 .
- Thus each q_i is a linear combination of a²b, b²c, c²a and abc. So the term a²b²c² in q_i² is nonnegative, but S has the term -3a²b²c².
- Therefore S is not sum of squares.

Let $L(M_n, M_m) = \{all \ linear \ maps: M_n + M_m\}$. There is a natural linear isomorphism between $L(M_n, M_m)$ and $M \otimes M \simeq M_m$, assigning each linear map $\Phi: M \to M$ to a big matrix $[\Phi(E_{jk})]_{j,k=1}^n \in M(M)$. Moreover, M_p is identifiable with {linear functionals on M_n } since each $A \in M_n$ induces a linear functional ρ_A by $\rho_A(X)$ = trace(AX). Henceforth, we get a chart showing natural correspondences among different classes.

