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« Introduction:

Different stages in the early universe:

1- Inflation (solves flatness and ISOLropy problem
creates seeds for structure formation).

2_ Inflaton domination (universe cold and empty).

3- Hot big bang (thermal bath of elementary part
cles).

Reheating: Transition from 2 to 3, creation
matter. Cosists of:

- Inflaton decay.

- Thermalization of the resulting plasma.
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Inflation (solves flatness and ISOTropy problems,
creates seeds for structure formation).

Inflaton domination (universe cold and empty).

Hot big bang (thermal bath of elementary parti-
cles).

Reheating: Transition from 2 to 3, creation of
matter. Cosists of:

Inflaton decay.

T hermalization of the resulting plasma.

Implications for cosmology:

Tracing inhomogeneities back to inflationary epo

Generation of adiabatic perturbations.



Implications for particle physics:

Thermal and non-thermal prodcution of stable
of long-lived particles.

Constraints on the reheat temperture Tg:

BBN gives a model-independent lower bound:

Other but model-depnedent bounds:
Electroweak baryogenesis = T
Leptogenesis = T

Gravitino production for mg/» ~ O(TeV) =
NMIE < 1019 Gev.




Thermal and non-thermal prodcution of stable

of long-lived particles.

Constraints on the reheat temperture Tr:

BBN gives a model-independent lower bound:

— e

Other but model-depnedent bounds:

_ Electroweak baryogenesis = Tg = 100 GEV.

_ Leptogenesis = Tg > 107 Ge

_ Gravitino production for mg,», ~ O(T€V) =

F, - il

Te < 1010 G




Last stage of inflaton decay perturpative Ir.

Full equilibrium:

Upon inflaton decay:

Dilute plasma formed.
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n € E° (3)

P

Composition of the plasm




« | hermalizauion sfter Inflation:

one-particle decay rate.

m. inflaton mMass, [ g:
perturbative if:

| ast stage of inflaton decay

- _ (1)
Full equilibrium:

n~ B (2)

Upon inflaton decay:




e | hermalization after Inflation:
one-particle decay rat

A

inflaton mass, [ 4:
Last stage of inflaton decay perturbative if:
(1

Full equilibrium:




e | hermalization after inflation:

m.: inflaton mass, M4: one-particle decay rate.
L ast stage of inflaton decay perturbative if:

K (1)

Full equilibrium:

Ece3T — neik: (2)
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m.. inflaton mass, [ 4: one-particle decay rat
L ast stage of inflaton decay perturbative if:

(1

Full equilibrium:

E~3r — weailt (2
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Last stage of inflaton decay Der'turbatwe if:

Full equilibrium:

E ~ m — n < E°.




(1)

Full equilibrium-

|

B s s (2)

Upon inflaton decay:

‘,E:' ~ m —_ n << E:’- (3)

Dilute plasma formed. Com position

of the plasma
model-dependent.
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Note:
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coupled inflaton.

_ Example: gravitationauy
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Deviation from equilibrium quantified by

w - (4)

Note:

. (5)

- Example: gravitationally coupled inflaton.
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- Example: gravitationally coupled inflaton.




Deviation from equilibrium quantified Dy

= — aMp (4)

Note:

o (5)

- Example: gravitationally coupled inflaton.

= B BT (6)




Deviation from equilibrium quantified Dy

= — ap (4)

Note:

gl (5)

- Example: gravitationally coupled inflaton.




- (4)

Note:

(5)

_ Example: gravitationally coupled inflaton.

= A ~ 107 (6)

. must INCREASE by a factor of 10°.




Evolution towards full equilibrium:

— Number-conserving processes = kinetic equiliD-
rium, rate [ gkin-

- Number-violating processes = chemical equilib-
rium, rate I ¢p,-

T hree time scales involved:

—1 —1 —1
|—__ : |-_-_.r“- ’ l_thr'

_—

For particles with gauge interactions:

Cene ~ 0 (—F ) g, (7)

a ~ 10~ 2: gauge fine structure constant, m_ <
1012 GeV = My > M.




Evolution towards full equilibrium:

Number-conserving processes = kinetic equilib-
rium, rate I kin-

Number-violating processes = chemical equiliD-
rium, rate I ¢xr.
T hree time scales involved:

E o .l

d ) Kin ’ thr-
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o ~ 10~ 2: gauge fine structure constant, m_
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T hree time scales involved:

B . as . e

d thr-

e

ICles with gauge interactions:

(7)

~ 10~ 2: gauge fine structure constant, m_ <
D13 GeV = My > Mg

ot

niverse thermalizes IMMEDIAT ELY after infla-
n decay:

(8)

Favitational decay: 7w ~ 1010 Gev.




rum, rate [ ¢hr-

T hree time scales involved:

= =" -3
g Tl |

For particles with gauge interactions:

rawe ~ o3 (=2 )F ")

& ~ 10~ 2: gauge fine structure constant, m, <
1013 GeV = My > My

Universe thermalizes IMMEDIAT ELY after infla-
ton decay:

2 ~ (TaMg (8)

Gravitational decay: Ty ~ 1019 Gev.




e | ate thermalization in supersymmetry:

SUSY theories have a large number of flat direc-
tions. Massless in unbroken SUSY, lifted by soft
term mg ~ O(TeV) after SUSY breaking.

~ 300 directions made up of squark, slepton and
Higgs fields.

Flat directions are light, acquire a large VEV g
during inflation.

¥0o-

— Spontaneously breaks gauge symmetries.

= Induces a large mass ~ g for gauge fields in the -
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SUSY theories have a large number of flat dire
tions. Massless in unbroken SUSY, lifted by so
term mg ~ O(TeV) after SUSY breaking.

~ 300 directions made up of squark, slepton an
Higgs fields.

Flat directions are light, acquire a large VEV &
during inflation.

- Spontaneously breaks gauge symmetries.

- Induces a large mass ~ pg for gauge fields in th
early universe.

= T hermalization rate suppressed.
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~ 300 directions made up of squark, slepton an

T,

Higgs fields.

Elat directions are light, acquire 3 large VEV ¢
during inflation.

LN

aks gauge symmetries.

h

- Spontaneously Dr

_ Induces a large mass ~ gg for gauge fields in th
early universe.

— T hermalization rate suppressed.
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" tr (9)

F : (10)

independent from [ 4, generically very low.

te:
- (11)

~ Mp natural if an R-symmetry protects su-
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L (9)

Now:
= B = ¢ (10)

T independent from 4, generically very low.

Note:
(11)

wo ~ Mp natural if
perpotential.

-symmetry protects su-




Now:
F ) (10)

Tr independent from 4, generically very low.

Note:
(11)

pg ~ AMp natural if an R-symmetry protects su-
perpotential.

I ~ 1 TeV, regardless of how fast inflaton de-.
cavys!




e Quasi-thermal phase:

Typical situation:-

r_t'h_r << r-, A . r_rq_

Universe enters 3 long period of quasi-ther
phase after inflaton decay.

Fthe < H < Iy: Comoving number density a

dverage energy of particles remains constant.

netic equilibrium reached.

In this epoch:
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In this epoch:
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e Quasi-thermal phase:

‘Typical situation:

T™hr - Ale = a

Universe enters a long period of quasi-therm
phase after inflaton decay.

F'thr < H < My: Comoving number density an
dVe€rage energy of particles remains constant, k
netic equilibrium reached.

In this epoch:

(12




Typical situation:

e owb Fae F

Universe enters a long period of quasi-therma
phase after inflaton decay.

thr < H < I'4: Comoving number density an
average energy of particles
netic equilibrium reached.

remains constant, ki

In this epoch:

1 (12

For the -th degree of freedom:




Universe enters a long period of quasi-therma
phase after inflaton decay.

Nthr < H < M4: Comoving number density an

dvVe€rage energy of particles remains constant ki
netic equilibrium reached.

In this epoch:

_ (12)

For the i-th degree of freedom-

|

(13)




The Hubble expansion rate is given by:

(14

Highest temperature Tmax ~ m_, just after infla
ton decay.

Lowest temperature T, ~ E;-—~ | " e

- H >~ I tp: Number of particles increases rapidly,
full equilibrium established. Temperature sharpl

drops from 7T,,.;, to Tp.

Final entropy density:
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T hermal production of pzc
considerably modified.

Consider a weakly coupled particle x, with mass
My

+ 3 = | (16)

e <T <Tpr=>n~T3, H~LI—

Cosmologically interesting particles: gravitino,
right-handed (s)neutrino, supersymmetric dark
matter, etc.




Production dominant around the highest tem
perature:

(17

(18)

mg o ~ O(TeV): gravitinos decay during or afte
BBN, decay prodcuts dissociate light elements.
Constraint from BBN:
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perature:
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ms o ~ O(TeV): gravitinos decay during or aft
BBN, decaj prodcuts dissociate light elemen
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(18

mg o ~ O(TeV): gravitinos decay during or aft
BBN. decay prodcuts dissociate light elemen
Constraint from BBN:
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(18)

mz o ™~ O(TeV): gravitinos decay during or after

BBN, decay prodcuts dissociate light elements.

Constraint from BBN:
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malization guarantees T IS Suff|C|ent1y low.

Quasi-thermal phase: nO upper bound on Tmax
alone.

iy

Trnax ~ m, < 1013 Gev = production in the

quasi-thermal phase under control, if:

(19)

thermalization treated

s obtained from the dark matter
INO is stable.
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malization guarantees Ty is sufficiently low.

Quasi-thermal phase: no upper bound on Tmax
alone.

Tmax ~ ms < 102 GeV = production in the

quasi-thermal phase under control, if:

(19)

lermalization treated

obtained from the dark matter
O is stable.
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malization guarantees Tk IS SuffICIer‘ltly low.

Quasi-thermal phase: no upper bound on Tmax
alone.

-~

Tmax ~ m, < 1013 GeVv = production in the

guasi-thermal phase under control, if:

(19)

No gravitino problem if thermalization treated
properly!

Similar bounds obtained from the dark matter
limit if gravitino is stable.




5”"‘_}(‘-’_"]‘{7 N __{.-L’JLE?‘ l??*ﬂ,h&a';‘fﬁﬂ -

h>>h&q P Eﬂq

= Nomber of gaviicles most DE CRERASE.

- Lﬂ’"ja OCCOﬁ’quinh num be TrS.

b Lame efective Mmasses.

— Neo GS}D‘IL/')LD".';L S+ates.

Init ally , u,”ram‘qnm#ch M classial +ields
Kihetic e QUi libriom reached very qui{:kl)/)

R, equi i b rum estabished moch more Slow)

Late +imes, occufation humbders beCome sk

qxf"ﬂﬂ'!mﬂ *?an )::r’c,m_ks d o wh- p
l} ™. - i = N y




n oy hﬂq : E < Eeq
= Number of garhicles mos+ UECKEASE.

- Large occogation numbers.
_ Lame eflective Mmasses.

- No GS)J’?}JJ#FT}L States.

Initially, L\Hram\nm#nh M classial) tields
Kinetic eqoilibriom reached very quic kly,

‘s‘u” EQL}HH}J’-”JUI}W estabished moch more slow)

L ate f"'rmgs; DCCUJJM‘{GH N;th}ref.! bf.Cc-H'?& S
PagpTMMa tion breaks down

PYQU'E?' Field Yhe ore i ca) +rea+ me n+ }'e,qmrt&

'hnh_e.ﬁx\u} )iJDr;ru)n qumh%um ‘F}F.H —Hto}'V.

P




anm hela Hien = Massire c)os

o closed string

Thlla+tior— IL*“_.,. )3_

String mode: —> Kk modes

‘Tunnal'mj +0
s Ypeat: et ective 3)”'"”_3 scnle M
| S

—_—

Lk modes deqay 1o ymatter

Forther consideyation =

B b i e i ldomre el S

P




Ihllation—» j:}_;g); anm hila tion — MASSiTe Clos

S’?Lﬂ'hj modes — Kk modles of closed S+7ing s

T;_}hhf;1'lhj 40
_ 3M Mvoeat: effective strim saale M
y s

kk odes AE-CQI}’ 4o }nﬂ.'}"?}'&h

. FUT'L)IL?‘ Cons) _r_f&‘mﬂ}*_fgh <.
Kk 0 ‘ | 7

h QJES Ih -H'\E Iﬂ‘nﬁl‘fghﬂ}")/ ’}L.Ynf'«+ r_jhtl
%}lﬂyﬁlﬂ.)iam‘}{m@‘ P




}~ =
P, D,

— T | » i I
T .Llf-' I Hh‘L ll“l
Lhllan n— L D.

o » S“‘T; <
5"}'?'1.}13 MDQE.‘.‘.,——F— kk h‘]r_:vLE;‘: 0 CFFSE’A hj

Tunn&]"”ﬁ 10
. S\ .}H"mn‘i': Efurff_f““f“t 3'3"“"13 sonle "!*h‘smf-'

Kk modes decay 4o yatter

}'ur-ML}“ CphsH ;[E_‘rn_'?l_?.r;n =
. i . '1
— )(J( Thtdﬁj Ih —U\E |H~h§\%.‘gh[\}"? —}.-"‘!Yﬁﬂ—}- *-""r"“'p_!

Fherma)ization.

= T hevmalizadtion affer }he deqyy of kk mo
= dhe S ol

P




Ihflation—» fg,p anm hila +ion — massire Clos

Sf"?'ih_j modes —» KK modes of closed 54'””-_95
'Tunne_l’rnj 40

-— G’N\ _}H?'gn-}-_. c-rin‘fr-.i-'ﬂrﬁ ‘;"-_-,‘)!h'n SCI".’E’_ AA
; el j I "S‘Mp-l]

KE modes decay 4o ynatter
Fordher cons; deyation <.

kk MC‘QJES Ih 1“\& ‘lnﬂnfﬂ‘;qhﬂ}"y —}}"_}'GQJ-
- T

ahd

-Tj'IF'.-"}‘hn | "o



« Conclusion:

_ Thermalization is a Vvery slow pr
symmetry. Full equilibrium established very lat
resulting in reheat temperatures as low as O(Te

~ Right after inflaton decay, universe enters 4 lon
period of quasi-thermal phase during which it |
evolving quasi-adaiabatically.

- Typically this is the relevant epoch for therm
production of cosmologically interesting part
cles.

- Gravitino production i< well under control, ev
for temperatures as high as 1013 GeVv.

_ Careful treatment of thermalization suggests th
supersymmetry has a built in solution for the ws
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Conclusion:

Thermalization is a very slow process in super-
symmetry. Full equilibrium established very late
: - - ~c 3< |On W

resulting in reheat temperatures as low as ¢ (TeV.

Right after inflaton decay, universe enters a long
period of quasi-thermal phase during which 1t 1S
evolving quasi-adaiabatically.

Typically this is the relevant epoch for thermal
production of cosmologically interesting parti-
cles.

Gravitino production is well under control, even
for temperatures as high as 10'° GeV.

Careful treatment of thermalization suggests tha
supersymmetry has a built in solution for the wet
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_ Thermalization is a very Siow pr
symmetry. Full equilibrium establi
resulting in reheat temperatures d

—

- Right after inflaton decay, univ
period of quasi-thermal phase during which it iIs
evolving quasi-adaiabatically.

erse enters a long

_ Typically this is the relevant epoch for thermal
production of cosmologically interesting parti-
cles.

— Gravitino production is well under control, even
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for temperatures as high as 10~ GeV.

_ Careful treatment of thermalization suggests that
supersymmetry has a built in solution for the well
known gravitino probiem.
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— Right after inflaton decay, universe enters a long
period of quasi-thermal phase during which it IS
evolving quasi-adaiabatically.

— lypically this is the relevant epoch for thermal
production of cosmologically interesting parti-
cles.

— Gravitino production is well under control. even
for temperatures as high as 1013 GeVv.

- Careful treatment of thermalization suggests that
supersymmetry has a built in solution for the well
Known gravitino problem.

f- Lepto/baryogenesis in the quasi-thermal phase
not improved, but remains marginally compatible
with gravitino production.
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- Right after inflaton decay, universe enters a long
period of quf-ui—f*werrna- Dhase during which it iIs
evolving quasi-adaiabatically.

(D

- Typically this is the r
production of cosmologically int
cles.

(D

vant epoch for thermal
-

- Gravitino production is well under control. even
for temperatures as high as 1013 GeVv.

- Careful treatment of thermalization suggests that
supersymmetry has a built in solution for the well
Known gravitino problem.

- Lepto/baryogenesis in the quasi-thermal phase
not improved, but remains marginally compatible
with gravitino production. p




