Title: Thermalization after Inflation and Supersymmetery

Date: Sep 20, 2005 11:00 AM

URL: http://pirsa.org/05090006

Abstract: tba

Pirsa: 05090006

Thermalization after inflation and subersymmet

Thermalization after inflation.

Late thermalization in supersymmetry.

Quasi-thermal phase.

Modifications to particle production

Thermalization after inflation.

Late thermalization in supersymmetry.

Quasi-thermal phase.

Modifications to particle production

- Conclusion.

Speculative 1° K= ImeV Formation Electroweak Phase Transition End of Big Bang Nucleo synthesis Now Quark-Hadron Phase Transition Matter Domination

Different stages in the early universe:

- 1- Inflation (solves flatness and isotropy problems creates seeds for structure formation).
- 2- Inflaton domination (universe cold and empty).
- 3- Hot big bang (thermal bath of elementary particles).

Reheating: Transition from 2 to 3, creation of matter. Cosists of:

- Inflaton decay.
- Thermalization of the resulting plasma.

Different stages in the early universe:

- 1- Inflation (solves flatness and isotropy problems creates seeds for structure formation).
- 2- Inflaton domination (universe cold and empty).
- 3- Hot big bang (thermal bath of elementary particles).

Reheating: Transition from 2 to 3, creation of matter. Cosists of:

- Inflaton decay.

- Thermalization of the resulting plasma.

Different stages in the early universe:

- 1- Inflation (solves flatness and isotropy problems, creates seeds for structure formation).
- 2- Inflaton domination (universe cold and empty).
- 3- Hot big bang (thermal bath of elementary particles).

Reheating: Transition from 2 to 3, creation of matter. Cosists of:

- Inflaton decay.
- Thermalization of the resulting plasma.

Different stages in the early universe:

- 1- Inflation (solves flatness and isotropy problems, creates seeds for structure formation).
- 2- Inflaton domination (universe cold and empty).
- 3- Hot big bang (thermal bath of elementary particles).

Reheating: Transition from 2 to 3, creation of matter. Cosists of:

- Inflaton decay.
- Thermalization of the resulting plasma.

Pirsa: 05090006

Different stages in the early universe:

- 1- Inflation (solves flatness and isotropy problems, creates seeds for structure formation).
- 2- Inflaton domination (universe cold and empty).
- 3- Hot big bang (thermal bath of elementary particles).

Reheating: Transition from 2 to 3, creation of matter. Cosists of:

- Inflaton decay.
- Thermalization of the resulting plasma.

Implications for cosmology:

- Tracing inhomogeneities back to inflationary epoch

- 1- Inflation (solves flatness and isotropy problems, creates seeds for structure formation).
- 2- Inflaton domination (universe cold and empty).
- 3- Hot big bang (thermal bath of elementary particles).

Reheating: Transition from 2 to 3, creation of matter. Cosists of:

- Inflaton decay.
- Thermalization of the resulting plasma.

Implications for cosmology:

Tracing inhomogeneities back to inflationary epoc

Pirsa: 05090006

Implications for particle physics:

Thermal and non-thermal production of stable of long-lived particles.

Constraints on the reheat temperture T_R :

BBN gives a model-independent lower bound: $T_R \gtrsim \mathcal{O}(\text{MeV})$.

Other but model-depnedent bounds:

- Electroweak baryogenesis $\Rightarrow T_R \gtrsim 100$ GeV.
- Leptogenesis $\Rightarrow T_{\rm R} > 10^9$ GeV.
- Gravitino production for $m_{3/2} \sim \mathcal{O}(\text{TeV}) \Rightarrow$ $T_{\text{R}} \leq 10^{10} \text{ GeV}.$

Thermal and non-thermal production of stable of long-lived particles.

Constraints on the reheat temperture T_R :

BBN gives a model-independent lower bound: $T_R \gtrsim \mathcal{O}(\text{MeV})$.

Other but model-depnedent bounds:

- Electroweak baryogenesis $\Rightarrow T_{R} \gtrsim 100$ GeV.
- Leptogenesis $\Rightarrow T_{\rm R} > 10^9$ GeV.
- Gravitino production for $m_{3/2} \sim \mathcal{O}(\text{TeV}) \Rightarrow$ $T_{\text{R}} \leq 10^{10} \text{ GeV}.$

Last stage of inflaton decay perturbative it:

$$\Gamma_{\rm d} \ll \frac{m_\phi^2}{M_{\rm P}}.$$
 (1)

Full equilibrium:

$$\rho = \frac{\pi^2}{30} g_* T^4 , \quad n = \frac{\zeta(3)}{\pi^2} g_* T^3$$

$$E \simeq 3T \rightarrow n \sim E^3. \tag{2}$$

Upon inflaton decay:

$$\rho \sim \Gamma_{\rm d}^2 M_{\rm p}^2 \ , \ n \sim \frac{\Gamma_{\rm p}^2 M_{\rm p}^2}{m_{\phi}}$$

$$E \simeq m_{\phi} \rightarrow n \ll E^3. \tag{3}$$

Dilute plasma formed. Composition of the plasma

· Thermalization after Inflation:

 m_ϕ : inflaton mass, $\Gamma_{\rm d}$: one-particle decay rate. Last stage of inflaton decay perturbative if:

$$\Gamma_{\rm d} \ll \frac{m_\phi^2}{M_{\rm P}}. \tag{1}$$

Full equilibrium:

$$\rho = \frac{\pi^2}{30} g_* T^4 , n = \frac{\zeta(3)}{\pi^2} g_* T^3$$

$$E \simeq 3T \rightarrow n \sim E^3.$$
 (2)

Upon inflaton decay:

$$\rho \sim \Gamma_{\rm d}^2 M_{\rm P}^2 \;,\; n \sim \frac{\Gamma_{\rm P}^2 M_{\rm P}^2}{m_\phi} \label{eq:rho_potential}$$

• Thermalization after Inflation:

 m_{ϕ} : inflaton mass, $\Gamma_{\rm d}$: one-particle decay rate Last stage of inflaton decay perturbative if:

$$\Gamma_{\rm d} \ll \frac{m_\phi^2}{M_{\rm P}}.$$
 (1

Full equilibrium:

$$\rho = \frac{\pi^2}{30} g_* T^4 , \quad n = \frac{\zeta(3)}{\pi^2} g_* T^3$$

$$E \simeq 3T \rightarrow n \sim E^3. \tag{2}$$

Upon inflaton decay:

$$\rho \sim \Gamma_{\rm d}^2 M_{\rm P}^2 \ , \ n \sim \frac{\Gamma_{\rm P}^2 M_{\rm P}^2}{m_\phi}$$

Page 17/80

· Thermalization after Inflation:

 m_{ϕ} : inflaton mass, $\Gamma_{\rm d}$: one-particle decay rate. Last stage of inflaton decay perturbative if:

$$\Gamma_{\rm d} \ll \frac{m_\phi^2}{M_{\rm P}}.$$
 (1)

Full equilibrium:

$$\rho = \frac{\pi^2}{30} g_* T^4 , \quad n = \frac{\zeta(3)}{\pi^2} g_* T^3$$

$$E \simeq 3T \rightarrow n \sim E^3. \tag{2}$$

Upon inflaton decay:

$$\rho \sim \Gamma_{\rm d}^2 M_{\rm P}^2 \; , \; n \sim \frac{\Gamma_{\rm P}^2 M_{\rm P}^2}{m_\phi} \label{eq:rho_power}$$

 $F \sim m$ $\rightarrow n \ll F^3$

Pirsa: 05090006

 m_{ϕ} : inflaton mass, $\Gamma_{\rm d}$: one-particle decay rate Last stage of inflaton decay perturbative if:

$$\Gamma_{\rm d} \ll \frac{m_\phi^2}{M_{\rm P}}.$$
 (1

Full equilibrium:

$$\rho = \frac{\pi^2}{30} g_* T^4 , \quad n = \frac{\zeta(3)}{\pi^2} g_* T^3$$

$$E \simeq 3T \rightarrow n \sim E^3. \tag{2}$$

Upon inflaton decay:

$$\rho \sim \Gamma_{\rm d}^2 M_{\rm p}^2 \ , \ n \sim \frac{\Gamma_{\rm p}^2 M_{\rm p}^2}{m_{\phi}}$$

$$E \simeq m_{\phi} \ \rightarrow \ n \ll E^3 . \tag{3}$$

Page 19/80

 m_{ϕ} : inflaton mass, $\Gamma_{\rm d}$: one-particle decay rate Last stage of inflaton decay perturbative if:

$$\Gamma_{\rm d} \ll \frac{m_\phi^2}{M_{\rm P}}.$$
 (1

Full equilibrium:

$$\rho = \frac{\pi^2}{30} g_* T^4 , \quad n = \frac{\zeta(3)}{\pi^2} g_* T^3$$

$$E \simeq 3T \rightarrow n \sim E^3. \tag{2}$$

Upon inflaton decay:

$$\rho \sim \Gamma_{\rm d}^2 M_{\rm p}^2 \ , \ n \sim \frac{\Gamma_{\rm p}^2 M_{\rm p}^2}{m_{\phi}}$$

$$E \simeq m_{\phi} \ \rightarrow \ n \ll E^3 \ . \tag{3}$$

Page 204

 m_{ϕ} : inflaton mass, $\Gamma_{\rm d}$: one-particle decay rate Last stage of inflaton decay perturbative if:

$$\Gamma_{\rm d} \ll \frac{m_\phi^2}{M_{\rm P}}.$$
 (1

Full equilibrium:

$$\rho = \frac{\pi^2}{30} g_* T^4 , \quad n = \frac{\zeta(3)}{\pi^2} g_* T^3$$

$$E \simeq 3T \rightarrow n \sim E^3. \tag{2}$$

Upon inflaton decay:

$$\rho \sim \Gamma_{\rm d}^2 M_{\rm P}^2 \ , \ n \sim \frac{\Gamma_{\rm P}^2 M_{\rm P}^2}{m_{\phi}}$$

$$E \simeq m_{\phi} - n \ll E^3. \tag{3}$$

Page 21/80

mo. Illiacon mass, 1 d. one portion

Last stage of inflaton decay perturbative if:

$$\Gamma_{\rm d} \ll \frac{m_\phi^2}{M_{\rm P}}.$$

Full equilibrium:

$$\rho = \frac{\pi^2}{30} g_* T^4 , \quad n = \frac{\zeta(3)}{\pi^2} g_* T^3$$

$$E \simeq 3T \rightarrow n \sim E^3.$$

Upon inflaton decay:

$$\rho \sim \Gamma_{\rm d}^2 M_{\rm P}^2 \ , \ n \sim \frac{\Gamma_{\rm P}^2 M_{\rm P}^2}{m_{\phi}}$$

$$E \simeq m_{\phi} \ \rightarrow \ n \ll E^3.$$

Pirea: 05000006

$$\Gamma_{\rm d} \ll \frac{\varphi}{M_{\rm P}}$$
 (1)

Full equilibrium:

$$\rho = \frac{\pi^2}{30} g_* T^4 , \quad n = \frac{\zeta(3)}{\pi^2} g_* T^3$$

$$E \simeq 3T \rightarrow n \sim E^3. \tag{2}$$

Upon inflaton decay:

$$\rho \sim \Gamma_{\rm d}^2 M_{\rm p}^2 \ , \ n \sim \frac{\Gamma_{\rm p}^2 M_{\rm p}^2}{m_{\phi}}$$

$$E \simeq m_{\phi} \ \rightarrow \ n \ll E^3. \tag{3}$$

Dilute plasma formed. Composition of the plasma model-dependent.

Deviation from equilibrium quantified by

$$A \equiv \frac{n}{E^3} \sim \frac{\Gamma_{\rm d}^2 M_{\rm p}^2}{m_{\phi}^4}.$$
 (4)

Note:

$$\frac{n}{n_{eq}} \sim A^{1/4}$$
 , $\frac{E}{E_{eq}} \sim A^{-1/4}$. (5)

le: gravitation
$$m_{\phi}^3$$
, $m_{\phi} = 10^{13} \text{ GeV}$ $\Rightarrow A \sim 10^{-12}$. (6)

Deviation from equilibrium quantified by

$$A \equiv \frac{n}{E^3} \sim \frac{\Gamma_{\rm d}^2 M_{\rm P}^2}{m_{\phi}^4}.$$
 (4)

Note:

$$\frac{n}{n_{eq}} \sim A^{1/4} \ , \ \frac{E}{E_{eq}} \sim A^{-1/4} .$$
 (5)

$$\Gamma_{\rm d} \sim \frac{m_\phi^3}{M_{\rm P}^2}$$
 , $m_\phi = 10^{13}~{\rm GeV}$ $\Rightarrow A \sim 10^{-12}$. (6)

ation from equilibrium quantified by

$$A \equiv \frac{n}{E^3} \sim \frac{\Gamma_{\rm d}^2 M_{\rm P}^2}{m_{\phi}^4}.$$
 (4)

Note:

$$\frac{n}{n_{eq}} \sim A^{1/4} \ , \ \frac{E}{E_{eq}} \sim A^{-1/4} .$$
 (5)

$$\Gamma_{\rm d} \sim \frac{m_\phi^3}{M_{\rm P}^2}$$
 , $m_\phi = 10^{13}~{\rm GeV}$ $\Rightarrow A \sim 10^{-12}$. (6)

Deviation from equilibrium quantified by

$$A \equiv \frac{n}{E^3} \sim \frac{\Gamma_{\rm d}^2 M_{\rm P}^2}{m_{\phi}^4}.$$
 (4)

Note:

$$\frac{n}{n_{eq}} \sim A^{1/4}$$
 , $\frac{E}{E_{eq}} \sim A^{-1/4}$. (5)

$$\Gamma_{\rm d} \sim \frac{m_\phi^3}{M_{\rm P}^2} \quad , \quad m_\phi = 10^{13} \ {\rm GeV}$$

$$\Rightarrow A \sim 10^{-12}. \tag{6}$$

Deviation from equilibrium quantified by

$$A \equiv \frac{n}{E^3} \sim \frac{\Gamma_{\rm d}^2 M_{\rm P}^2}{m_{\phi}^4}.$$
 (4)

Note:

$$\frac{n}{n_{eq}} \sim A^{1/4}$$
 , $\frac{E}{E_{eq}} \sim A^{-1/4}$. (5)

$$\Gamma_{\rm d} \sim \frac{m_\phi^3}{M_{\rm P}^2} \quad , \quad m_\phi = 10^{13} \ {\rm GeV}$$

$$\Rightarrow A \sim 10^{-12}. \tag{6}$$

$$A \equiv \frac{n}{E^3} \sim \frac{\Gamma_{\rm d}^2 M_{\rm P}^2}{m_{\phi}^4}.$$
 (4)

Note:

$$\frac{n}{n_{eq}} \sim A^{1/4} \ , \ \frac{E}{E_{eq}} \sim A^{-1/4} .$$
 (5)

- Example: gravitationally coupled inflaton.

$$\Gamma_{\rm d} \sim \frac{m_\phi^3}{M_{\rm P}^2} \quad , \quad m_\phi = 10^{13} \ {\rm GeV}$$

$$\Rightarrow A \sim 10^{-12}. \tag{6}$$

n must INCREASE by a factor of 10^3 .

Evolution towards full equilibrium:

- Number-conserving processes ⇒ kinetic equilibrium, rate Γ_{kin}.
- Number-violating processes ⇒ chemical equilibrium, rate Γ_{thr}.

Three time scales involved:

$$\Gamma_{\rm d}^{-1}$$
 , $\Gamma_{\rm kin}^{-1}$, $\Gamma_{\rm thr}^{-1}$

For particles with gauge interactions:

$$\Gamma_{\rm thr} \sim \alpha^3 \left(\frac{M_{\rm P}}{m_{\phi}}\right) \Gamma_{\rm d}.$$
 (7)

 $\alpha \sim 10^{-2}$: gauge fine structure constant, $m_{\phi} \leq 10^{13}~{\rm GeV} \Rightarrow \Gamma_{\rm thr} \gtrsim \Gamma_{\rm d}$.

Evolution towards full equilibrium:

- Number-conserving processes ⇒ kinetic equilibrium, rate Γ_{kin}.
- Number-violating processes ⇒ chemical equilibrium, rate Γ_{thr}.

Three time scales involved:

$$\Gamma_{\rm d}^{-1}$$
 , $\Gamma_{\rm kin}^{-1}$, $\Gamma_{\rm thr}^{-1}$

For particles with gauge interactions:

$$\Gamma_{\rm thr} \sim \alpha^3 \left(\frac{M_{\rm P}}{m_{\phi}}\right) \Gamma_{\rm d}.$$
 (7)

 $\alpha \sim 10^{-2}$: gauge fine structure constant, $m_{\phi} \leq R_{\phi}$

t' t'

Naive estimates based on dimensional grounds

Actual situation:

Page 32/80

Naive estimates based on dimensional grounds!

Naive estimates based on dimensional ground $d \sim \frac{1}{E^2}$

Actual

Naive estimates based on dimensional groun

Actual situation:

d >> 1

Page 35/80

Naive estimates based on dimensional ground $\frac{1}{E^2}$

Actual situation:

6 >> 1 E2

Page 36/80

Pirsa: 05090006

Three time scales involved:

$$\Gamma_{\rm d}^{-1}$$
 , $\Gamma_{\rm kin}^{-1}$, $\Gamma_{\rm thr}^{-1}$

For ticles with gauge interactions:

$$\Gamma_{\rm thr} \sim \alpha^3 \left(\frac{M_{\rm P}}{m_{\phi}}\right) \Gamma_{\rm d}.$$
 (7)

 $\alpha \sim 10^{-2}$: gauge fine structure constant, $m_{\phi} \leq 10^{13}~{\rm GeV} \Rightarrow \Gamma_{\rm thr} \gtrsim \Gamma_{\rm d}$.

Universe thermalizes IMMEDIATELY after inflaton decay:

$$T_{\mathsf{R}} \sim (\Gamma_{\mathsf{d}} M_{\mathsf{P}})^{1/2} \,. \tag{8}$$

Gravitational decay: $T_{\rm R} \sim 10^{10}$ GeV.

rium, rate Γ_{thr}.

Three time scales involved:

$$\Gamma_{d}^{-1}$$
 , Γ_{kin}^{-1} , Γ_{thr}^{-1}

For particles with gauge interactions:

$$\Gamma_{\rm thr} \sim \alpha^3 \left(\frac{M_{\rm P}}{m_{\phi}}\right) \Gamma_{\rm d}.$$
 (7)

 $\alpha \sim 10^{-2}$: gauge fine structure constant, $m_{\phi} \leq 10^{13} \text{ GeV} \Rightarrow \Gamma_{\text{thr}} \gtrsim \Gamma_{\text{d}}$.

Universe thermalizes IMMEDIATELY after inflaton decay:

$$T_{\mathsf{R}} \sim (\Gamma_{\mathsf{d}} M_{\mathsf{P}})^{1/2}. \tag{8}$$

- Gravitational decay: $T_{\rm R} \sim 10^{10}$ GeV.

Late thermalization in supersymmetry:

SUSY theories have a large number of flat directions. Massless in unbroken SUSY, lifted by soft term $m_0 \sim \mathcal{O}(\text{TeV})$ after SUSY breaking.

~ 300 directions made up of squark, slepton and Higgs fields.

Flat directions are light, acquire a large VEV φ_0 during inflation.

40:

- Spontaneously breaks gauge symmetries.
- Induces a large mass $\sim \varphi_0$ for gauge fields in the

SUSY theories have a large number of flat directions. Massless in unbroken SUSY, lifted by sof term $m_0 \sim \mathcal{O}(\text{TeV})$ after SUSY breaking.

~ 300 directions made up of squark, slepton and Higgs fields.

Flat directions are light, acquire a large VEV φ_0 during inflation.

40:

- Spontaneously breaks gauge symmetries.
- Induces a large mass ~ φ₀ for gauge fields in the early universe.

term $m_0 \sim O(160)$ and

 ~ 300 directions made up of squark, slepton and Higgs fields.

Flat directions are light, acquire a large VEV φ_0 during inflation.

40:

- Spontaneously breaks gauge symmetries.
- Induces a large mass $\sim \varphi_0$ for gauge fields in the early universe.
- ⇒ Thermalization rate suppressed.

Naive estimates based on dimensional group $d \sim \frac{1}{E^2}$

Actual situation:

Pirsa: 05090006

Page 45/80

SUSY theories have a large number of flat directions. Massless in unbroken SUSY, lifted by so term $m_0 \sim \mathcal{O}(\text{TeV})$ after SUSY breaking.

~ 300 directions made up of squark, slepton an Higgs fields.

Flat directions are light, acquire a large VEV quering inflation.

40.

- Spontaneously breaks gauge symmetries.
- es a large mass $\sim \varphi_0$ for gauge fields in the verse.

falization rate suppressed.

$$\Gamma_{\rm thr} \sim \alpha^2 \left(\frac{M_{\rm P}}{\varphi_0}\right)^2 \frac{m_0^2}{m_\phi}.$$
 (9)

OW:

$$T_{\mathsf{R}} \sim (\Gamma_{\mathsf{thr}} M_{\mathsf{P}})^{1/2}$$
. (10)

R independent from Γ_d , generically very low.

lote:

$$m_{\phi} \lesssim \varphi_0 \lesssim M_{\rm P}.$$
 (11)

decomples Pirsa: 05090006

decouples

$$\Gamma_{\rm thr} \sim \alpha^2 \left(\frac{M_{\rm P}}{\varphi_0}\right)^2 \frac{m_0^2}{m_\phi}.$$
 (9)

Now:

$$T_{\mathsf{R}} \sim (\Gamma_{\mathsf{thr}} M_{\mathsf{P}})^{1/2}. \tag{10}$$

 T_R independent from Γ_d , generically very low.

Note:

$$m_{\phi} \lesssim \varphi_0 \lesssim M_{\rm P}.$$
 (11)

 $arphi_0 \sim M_{
m P}$ natural if a R-symmetry protects superpotential.

Page 50/80

$$\Gamma_{\rm thr} \sim \alpha^2 \left(\frac{m_{\rm P}}{\varphi_0}\right) \frac{m_0}{m_{\phi}}.$$
 (9)

Now:

$$T_{\mathsf{R}} \sim (\Gamma_{\mathsf{thr}} M_{\mathsf{P}})^{1/2}. \tag{10}$$

 T_R independent from Γ_d , generically very low.

Note:

$$m_{\phi} \lesssim \varphi_0 \lesssim M_{\rm P}.$$
 (11)

 $\varphi_0 \sim M_{\rm P}$ natural if an R-symmetry protects superpotential.

 \Rightarrow $T_{\rm R} \sim$ 1 TeV, regardless of how fast inflaton de-

Typical situation:

$$\Gamma_{thr} \ll \Gamma_{kin} \ll \Gamma_{d}$$
.

Universe enters a long period of quasi-therm phase after inflaton decay.

 $\Gamma_{\text{thr}} < H < \Gamma_{\text{d}}$: Comoving number density ar average energy of particles remains constant, k netic equilibrium reached.

$$n \sim AT^3$$
 , $\rho \sim AT^4$ $A \ll 1$.

Typical situation:

$$\Gamma_{thr} \ll \Gamma_{kin} \ll \Gamma_{d}$$
.

Universe enters a long period of quasi-therm phase after inflaton decay.

 $\Gamma_{\rm thr} < H < \Gamma_{\rm d}$: Comoving number density an average energy of particles remains constant, k netic equilibrium reached.

$$n \sim AT^3$$
 , $\rho \sim AT^4$ $A \ll 1$.

Typical situation:

$$\Gamma_{thr} \ll \Gamma_{kin} \ll \Gamma_{d}$$
.

Universe enters a l g period of quasi-therm phase after inflator cay.

netic equilibrium r

 $\Gamma_{\text{thr}} < H < \Gamma_{\text{d}}$: Copying number density an average energy of cicles remains constant, k

Typical situation:

$$\Gamma_{thr} \ll \Gamma_{kin} \ll \Gamma_{d}$$
.

Universe enters a long period of quasi-therma phase after inflaton decay.

 $\Gamma_{\text{thr}} < H < \Gamma_{\text{d}}$: Comoving number density and average energy of particles remains constant, kinetic equilibrium reached.

$$n \sim AT^3$$
 , $\rho \sim AT^4$ $A \ll 1$. (12)

Typical situation:

$$\Gamma_{\text{thr}} \ll \Gamma_{\text{kin}} \ll \Gamma_{\text{d}}$$
.

Universe enters a long period of quasi-thermal phase after inflaton decay.

 $\Gamma_{thr} < H < \Gamma_{d}$: Comoving number density and average energy of particles remains constant, kinetic equilibrium reached.

In this epoch:

$$n \sim AT^3$$
 , $\rho \sim AT^4$ $A \ll 1$. (12)

For the *i*-th degree of freedom:

Page 56/80

Universe enters a long period of quasi-therma phase after inflaton decay.

 $\Gamma_{\text{thr}} < H < \Gamma_{\text{d}}$: Comoving number density and average energy of particles remains constant, kinetic equilibrium reached.

In this epoch:

$$n \sim AT^3$$
 , $\rho \sim AT^4$ $A \ll 1$. (12)

For the i-th degree of freedom:

$$n_i \sim A_i T^3$$
 , $\rho_i \sim A_i T^4$ $A = \sum_i A_i$. (13)

The Hubble expansion rate is given by:

$$H \sim A^{1/2} \frac{T^2}{M_{\rm P}}.$$
 (14)

Highest temperature $T_{\rm max} \sim m_{\phi}$, just after inflaton decay.

Lowest temperature
$$T_{\min} \sim \left(\frac{\Gamma_{\text{thr}}}{\Gamma_{\text{d}}}\right)^{1/2} m_{\phi}$$
.

- $H \simeq \Gamma_{\text{thr}}$: Number of particles increases rapidly, full equilibrium established. Temperature sharply drops from T_{min} to T_{R} .

Final entropy density:

$$s = \frac{2\pi^2}{45} g_* T_{\mathsf{R}}^3. \tag{15}$$

Thermal production of particles in the plasma considerably modified.

Consider a weakly coupled particle χ , with mass m_{χ} :

$$n_{\chi} + 3Hn_{\chi} = \langle \sigma_{\chi} v_{\text{rel}} \rangle n^2.$$
 (16)

-
$$T_{\text{min}} \le T \le T_{\text{max}}$$
: $n \sim AT^3$, $H \sim A^{1/2} \frac{T^2}{M_{\text{P}}}$.

$$m_{\chi} \lesssim T \leq T_{\mathsf{R}} \Rightarrow n \sim T^3, \ H \sim \frac{T^2}{M_{\mathsf{P}}}.$$

Cosmologically interesting particles: gravitino, right-handed (s)neutrino, supersymmetric dark matter, etc.

Production dominant around the highest temperature:

$$\left(\frac{n_{3/2}}{s}\right)_{eq} \sim \left(\frac{T_{\rm R}}{10^{10} \text{ GeV}}\right) \times 10^{-12}.$$
 (17)

$$\left(\frac{n_{3/2}}{s}\right)_{quasi} \sim A^{+3/4} \left(\frac{T_{\text{max}}}{10^{10} \text{ GeV}}\right) \times 10^{-12}.$$
 (18)

 $m_{3/2} \sim \mathcal{O}(\text{TeV})$: gravitinos decay during or after BBN, decay products dissociate light elements. Constraint from BBN:

 $\frac{n_{3/2}}{2} < (10^{-16} - 10^{-12})$

Production dominant around the highest temperature:

$$\left(\frac{n_{3/2}}{s}\right)_{eq} \sim \left(\frac{T_{\text{R}}}{10^{10} \text{ GeV}}\right) \times 10^{-12}.$$
 (17)

$$\left(\frac{n_{3/2}}{s}\right)_{quasi} \sim A^{+3/4} \left(\frac{T_{\text{ma}}}{10^{10} \text{ G}}\right) \times 10^{-12}.$$
 (18)

 $m_{3/2} \sim \mathcal{O}(\text{TeV})$: gravitinos decay ring or after BBN, decay products dissociate t elements. Constraint from BBN:

n3/2 /

Page 61/80

Production dominant around the highest temperature:

$$\left(\frac{n_{3/2}}{s}\right)_{eq} \sim \left(\frac{T_{\text{R}}}{10^{10} \text{ GeV}}\right) \times 10^{-12}.$$
 (17)

$$\left(\frac{n_{3/2}}{s}\right)_{quasi} \sim A^{+3/4} \left(\frac{T_{\text{max}}}{10^{10} \text{ GeV}}\right) \times 10^{-12}.$$
 (18)

 $m_{3/2} \sim \mathcal{O}(\text{TeV})$ ravitinos decay during or after BBN, decay pour cuts dissociate light elements. Constraint from BBN:

Page 62/80

perature:

$$\left(\frac{n_{3/2}}{s}\right)_{eq} \sim \left(\frac{T_{\rm R}}{10^{10} \text{ GeV}}\right) \times 10^{-12}.$$
 (17)

$$\left(\frac{n_{3/2}}{s}\right)_{quasi} \sim A^{+3/4} \left(\frac{T_{\text{max}}}{10^{10} \text{ GeV}}\right) \times 10^{-12}.$$
 (18)

 $m_{3/2} \sim \mathcal{O}(\text{TeV})$: gravitinos decay during or afte BBN, decay products dissociate light elements Constraint om BBN:

$$\frac{2}{2} \le (10^{-16} - 10^{-12})$$
.

$$\left(\frac{n_{3/2}}{s}\right)_{eq} \sim \left(\frac{T_{\rm R}}{10^{10} \text{ GeV}}\right) \times 10^{-12}.$$
 (17)

$$\left(\frac{n_{3/2}}{s}\right)_{quasi} \sim A^{+3/4} \left(\frac{T_{\text{max}}}{10^{10} \text{ GeV}}\right) \times 10^{-12}.$$
 (18)

 $m_{3/2} \sim \mathcal{O}(\text{TeV})$: gravitinos decay during or afte BBN, decay products dissociate light elements Constraint from BBN:

$$\frac{n_{3/2}}{2} < \left(10^{-16} - 10^{-12}\right).$$

Page 64/80

perature:

$$\left(\frac{n_{3/2}}{s}\right)_{quasi} \sim A^{+3/4} \left(\frac{T_{\text{max}}}{10^{10} \text{ GeV}}\right) \times 10^{-12}.$$
 (17)

 $m_{3/2} \sim \mathcal{O}(\text{TeV})$: gravitinos decay during or after BBN, decay products dissociate light elements. Constraint from BBN:

$$\frac{n_{3/2}}{s} \le \left(10^{-16} - 10^{-12}\right).$$

malization guarantees T_{R} is sufficiently low.

Quasi-thermal phase: no upper bound on T_{max} alone.

 $T_{\rm max} \sim m_\phi \leq 10^{13}~{\rm GeV} \Rightarrow {\rm production}~{\rm in}~{\rm the}$ quasi-thermal phase under control, if:

$$A \le \left(10^{-9} - 10^{-4}\right). \tag{19}$$

oblem if thermalization treated

of obtained from the dark matter of the dark matter.

malization guarantees T_{R} is sufficiently low.

Quasi-thermal phase: no upper bound on T_{max} alone.

 $T_{\rm max} \sim m_\phi \leq 10^{13}~{\rm GeV} \Rightarrow {\rm production~in~the}$ quasi-thermal phase under control, if:

$$A \le \left(10^{-9} - 10^{-4}\right). \tag{19}$$

the gravitine and thermalization treated

obtained from the dark matter no is stable.

malization guarantees T_{R} is sufficiently low.

Quasi-thermal phase: no upper bound on T_{max} alone.

 $T_{\rm max} \sim m_\phi \leq 10^{13}~{\rm GeV} \Rightarrow {\rm production~in~the}$ quasi-thermal phase under control, if:

$$A \le \left(10^{-9} - 10^{-4}\right). \tag{19}$$

No gravitino problem if thermalization treated properly!

Similar bounds obtained from the dark matter limit if gravitino is stable.

Pirsa: 05090006

Situation after preheating:

h >> neg , E << Eeq

=> Number of garticles must DECREASE.

- Large occupation numbers.
- Large effective masses.
- No asymptotic states.

Initially, approprimation with classical fields kinetic equilibrium reached very quickly, full equilibrium estabished much more slowly

Late times, occupation numbers become sma approprimation breaks downh >> heq , E << Eeq

=> Number of garticles must DECREASE.

- Large occupation numbers.
- Large effective masses.
- No asymptotic states.

Initially, approprimation with classical fields kinetic equilibrium reached very quickly, full equilibrium estabished much more slowly

Late times, occupation numbers become sma

Proper field theoretical treatment required -

Pirsa: 0509000

compactifications with multiple throats:
-Inflationary throat: effective string scale M

Inflation - D,D, annihilation - massive close strings modes - Kk modes of closed strings

Tunneling to

- SM throat: effective string scale Msmkk modes decay to matter.

Further consideration =:

- KK modes in the inflationary throat

-Inflationary throat: effective string scale A

Inflation - D, D, annihilation - massive close strings modes - kk modes of closed strings

Tunneling to

- SM throat: effective string scale Msm-1 KK modes decay to matter.

Further considerations:

- Kk modes in the inflationary throat and thermalization.

D₃

Inflation - D_3D_3 annihilation - massive close strings modes - kk modes of closed strings

Tunneling to

- SM throat: effective string scale Msm-1 kk modes decay to matter.

Further considerations:

- kk modes in the inflationary throat and thermalization.
- Thermalization after the decay of kk mo in the SM throat.

Inflation - D, D, annihilation - massive close string modes - kk modes of closed strings

Tunneling to

- SM throat: effective string scale Msm-1.

KK modes decay to matter.

Further consideration s:

- Kk modes in the inflationary throat and thermalization.

- Thermalization

· Conclusion:

- Thermalization is a very slow process in supersymmetry. Full equilibrium established very late resulting in reheat temperatures as low as O(TeV
- Right after inflaton decay, universe enters a long period of quasi-thermal phase during which it is evolving quasi-adaiabatically.
- Typically this is the relevant epoch for thermal production of cosmologically interesting particles.
- Gravitino production is well under control, eve for temperatures as high as 10¹³ GeV.
- Careful treatment of thermalization suggests the supersymmetry has a built in solution for the way

· Conclusion:

- Thermalization is a very slow process in supersymmetry. Full equilibrium established very late resulting in reheat temperatures as low as O(TeV)
- Right after inflaton decay, universe enters a long period of quasi-thermal phase during which it is evolving quasi-adaiabatically.
- Typically this is the relevant epoch for thermal production of cosmologically interesting particles.
- Gravitino production is well under control, even for temperatures as high as 10¹³ GeV.
- Careful treatment of thermalization suggests that supersymmetry has a built in solution for the wellknown graviting problem

- Thermalization is a very slow process in supersymmetry. Full equilibrium established very late resulting in reheat temperatures as low as O(TeV).
- Right after inflaton decay, universe enters a long period of quasi-thermal phase during which it is evolving quasi-adaiabatically.
- Typically this is the relevant epoch for thermal production of cosmologically interesting particles.
- Gravitino production is well under control, even for temperatures as high as 10¹³ GeV.
- Careful treatment of thermalization suggests that supersymmetry has a built in solution for the well known gravitino problem.

resulting in relieat temperatures as low as of rowy.

- Right after inflaton decay, universe enters a long period of quasi-thermal phase during which it is evolving quasi-adaiabatically.
- Typically this is the relevant epoch for thermal production of cosmologically interesting particles.
- Gravitino production is well under control, even for temperatures as high as 10¹³ GeV.
- Careful treatment of thermalization suggests that supersymmetry has a built in solution for the well known gravitino problem.
- Lepto/baryogenesis in the quasi-thermal phase not improved, but remains marginally compatible with gravitino production.

- Right after inflaton decay, universe enters a long period of quasi-thermal phase during which it is evolving quasi-adaiabatically.
- Typically this is the relevant epoch for thermal production of cosmologically interesting particles.
- Gravitino production is well under control, even for temperatures as high as 10¹³ GeV.
- Careful treatment of thermalization suggests that supersymmetry has a built in solution for the well known gravitino problem.
- Lepto/baryogenesis in the quasi-thermal phase not improved, but remains marginally compatible with gravitino production.