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N =4 SU(N) SYM =N Type IIB on AdSs x S°

Extend the duality by looking for: CY 3-fold

L ess

Place D3-branes at a singularity
SUGRA: AdS xS® — AdS xX®

Break conformal invariance

Add fractional D3-branes (wrapped D3-branes)
SUGRA: turn on 3-form flux
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<+ Anomaly free rank assignments
branes

Gauge group

N D3-branes | SU(N) x SU(N)

N D3-branes | SU(N) x SU(N+M) not

M D5-branes | conformal

W= A-]L;Bg---lj B,

A
>

Br =3[N + (R1—1)(N + M) + (Rg — 1)(N + M)]

o =3[(N+ M)+ (Ry1—1)N+(Rp—1)N]

R(A) = 1/2 + O(M/N)? 8y = —3M|

R(B) =1/24+ O(M/N)? B ]
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Duality go beyond infinite coupling by switching
Cascade to an alternative description

flow

# D5-branes:

# D3-branes: N ~t=logpu
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. 2M colors with — quantum corrected
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det M — BB = A\*M

}

Deformed conifold

RG flow This behavior is nicely

In the IR: confinement and captured by a SUGRA dual
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Can it be exploited to generate cascades with more structure?
models?

Infinite families of explicit Sasaki-Einstein geometries and their
gauge theory duals are now known

dual to the UV cascades are known

Z-minimization: geometric dual of a-maximization

- towards the gauge theory dual of an arbitrary toric
singularity
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to a given set of fractional branes is .i

* All other rank assignments. Typically a gauge group
generates an ADS superpotential




Complex cone

over

5d base is Y#!, member of the YP-4 family




Complex cone
over

5d base is Y#!, member of the YP-9 family

YZ%1:S%2 x S3 topology — type of fractional branes

Logarithmic cascade in the




Complex cone
over

5d base is Y*', member of the YP-9 family

YZ%1:S%2 x S3 topology — type of fractional branes

Logarithmic cascade Iin the

(-1.2)

——2(1 )

(-1,-1) (1,-1)

No decomposition
of the (p,q) web




Complex cone
over

5d base is Y*!, member of the YP-9 family

YZ%1:S%2 x S3 topology — type of fractional branes

Logarithmic cascade in the

(-1.2)

——2(1.8)

- \\\3

(-1,-1) (1,-1)

No decomposition Complex deformation
of the (p,q) web IS




Complex cone
over

5d base is Y*', member of the YP-9 family

YZ%1: 52 x S3 topology — type of fractional branes

Logarithmic cascade in the

——2(1.1

- \3

(-1,-1) (1,-1)

No decomposition Complex deformation
of the (p,q) web IS

What happens at the
IR bottom of the
cascade?
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Complex deformation

N=2 brane moves along line of A, singularities
parametrized by z (X,,)
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There i1s no SUSY vacuum and
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S% x S3 topology — type of fractional branes
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Supergravity solutions dual to the UV region of the cascades have
been constructed
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with 1% order complex deformations
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N | 22 N\ | /
q P-q
Construct of fractional brane using baryonic charges of

bifundamental fields

For the last node:

N-—N-=pig<0| m g<p

An superpotential is generated and DSB takes place
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We studied the gauge theory dynamics on on
toric CY singularities

Three possible behaviors:

Complex deformation
N=2 dynamics

Supersymmetry breaking (associated complex deformation is
obstructed)

fractional branes lead to SUSY breaking due to
non-perturbative superpotentials

When dynamics of Fl terms (equivalently baryonic operators) is
taken into account:

Turn these ideas into a simple mechanism to generate DSB in
realistic models
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