Title: Fractional branes and dynamical SUSY breaking Date: Sep 13, 2005 11:00 AM URL: http://pirsa.org/05090002 Abstract: Fractional branes and dynamical SUSY breaking # Fractional branes and dynamical SUSY breaking Sebastián Franco **Princeton University** September 2005 Based on: hep-th/0505040: Franco, Hanany, Saad and Uranga See also: hep-th/0502113: Franco, Hanany and Uranga Pirsa: 05090002 Page 2/114 #### Outline - AdS/CFT correspondence and extensions - Fractional branes and RG flows - The conifold cascade - Complex deformations and toric geometry - Classifying fractional branes - DSB from fractional branes - Complex cone over dP₁ - Combining fractional branes - Cones over Yp.q manifolds ### AdS/CFT correspondence and extensions AdS/CFT Correspondence $$\mathcal{N} = 4 \; SU(N) \; \text{SYM} \; \longleftrightarrow \; \text{Type IIB on } AdS_5 \times S^5$$ Pirsa: 05090002 Page 4/114 ### AdS/CFT correspondence and extensions AdS/CFT Correspondence $\mathcal{N} = 4 \; SU(N) \; \text{SYM} \; \longleftrightarrow \; \text{Type IIB on } AdS_5 \times S^5$ Extend the duality by looking for: Less SUSY - Place D3-branes at a singularity - SUGRA: $AdS_5 \times S^5 \rightarrow AdS_5 \times X^5$ #### AdS/CFT correspondence and extensions AdS/CFT Correspondence $$\mathcal{N} = 4 \; SU(N) \; \text{SYM} \; \longleftrightarrow \; \text{Type IIB on } AdS_5 \times S^5$$ Extend the duality by looking for: Less SUSY - Place D3-branes at a singularity - SUGRA: $AdS_5 \times S^5 \rightarrow AdS_5 \times X^5$ #### Break conformal invariance - Add fractional D3-branes (wrapped D5-branes) - SUGRA: turn on 3-form flux ### Quiver theories Gauge theories that typically arise in our constructions: - Product gauge group - $\prod_{i=1}^k SU(d^i)$ - Bifundamental matter | SU(N₁) | SU(N ₂) | |------------------|---------------------| | \overline{N}_1 | N_2 | #### Quiver theories Gauge theories that typically arise in our constructions: Product gauge group $$\prod_{i=1}^k SU(d^i)$$ Bifundamental matter $$\begin{array}{c|c} SU(N_1) & SU(N_2) \\ \hline \hline N_1 & N_2 \\ \end{array}$$ Quiver diagram simple diagrammatic way of encoding the matter content of a gauge theory Regular and fractional branes ← Anomaly free rank assignments Pirsa: 05090002 Page 9/114 #### Quiver theories Gauge theories that typically arise in our constructions: Product gauge group $$\prod_{i=1}^k SU(d^i)$$ Bifundamental matter $$\frac{SU(N_1)}{N_1} \qquad \frac{SU(N_2)}{N_2}$$ Quiver simple diagrammatic way of encoding diagram the matter content of a gauge theory er Superpotential terms: oriented polygons in the quiver Regular and fractional branes | | Gauge group | | |-------------|---------------|-----------| | N D3-branes | SU(N) × SU(N) | conformal | | | | | $$W = \frac{\lambda}{2} \epsilon^{ij} \epsilon^{kl} \operatorname{Tr} A_i B_k A_j B_l$$ Regular and fractional branes $$W = \frac{\lambda}{2} \epsilon^{ij} \epsilon^{kl} \operatorname{Tr} A_i B_k A_j B_l$$ | | Gauge group | | |----------------------------|-----------------|------------------| | N D3-branes | SU(N) × SU(N) | conformal | | N D3-branes
M D5-branes | SU(N) × SU(N+M) | not
conformal | Regular and fractional branes $$W = \frac{\lambda}{2} \epsilon^{ij} \epsilon^{kl} \operatorname{Tr} A_i B_k A_j B_l$$ | | Gauge group | | |----------------------------|-----------------|------------------| | N D3-branes | SU(N) × SU(N) | conformal | | N D3-branes
M D5-branes | SU(N) × SU(N+M) | not
conformal | $$\beta_i = \frac{d(8\pi^2/g_i^2)}{d\ln\mu}$$ $$\beta_1 = 3 [N + (R_A - 1)(N + M) + (R_B - 1)(N + M)]$$ $$\beta_2 = 3 [(N + M) + (R_A - 1)N + (R_B - 1)N]$$ $$R(A) = 1/2 + \mathcal{O}(M/N)^2 \qquad \beta_1 = -3M$$ $$\Rightarrow$$ $$R(B) = 1/2 + \mathcal{O}(M/N)^2 \qquad \beta_2 = 3M$$ Duality Cascade go beyond infinite coupling by switching to an alternative Seiberg dual description Klebanov and Strassler ### The conifold example Pirsa: 05090002 Page 14/114 Duality Cascade go beyond infinite coupling by switching to an alternative Seiberg dual description Klebanov and Strassler ### The conifold example Duality Cascade go beyond infinite coupling by switching to an alternative Seiberg dual description Klebanov and Strassler ### The conifold example Duality Cascade go beyond infinite coupling by switching to an alternative Seiberg dual description Klebanov and Strassler ### The conifold example - Periodic flow - # D5-branes: M = const # D3-branes: $N \sim t = \log \mu$ Pirsa: 05090002 Page 17/114 • : 2M colors with 2M flavors Pirsa: 05090002 Page 18/114 : 2M colors with 2M flavors —— quantum corrected moduli space $$\det M - B\tilde{B} = \Lambda^{4M}$$: 2M colors with 2M flavors —— quantum corrected moduli space $$\det M - B\tilde{B} = \Lambda^{4M}$$ $$\downarrow$$ Deformed conifold $$\det M - B\tilde{B} = \Lambda^{4M}$$ $$\downarrow$$ Deformed conifold - Logarithmic RG flow - In the IR: confinement and chiral symmetry breaking : 2M colors with 2M flavors —— quantum corrected moduli space $$\det M - B\tilde{B} = \Lambda^{4M}$$ $$\downarrow$$ Deformed conifold - Logarithmic RG flow - In the IR: confinement and chiral symmetry breaking This behavior is nicely captured by a SUGRA dual Klebanov and Strassle Pirsa: 05090002 Page 23/114 Is the conifold behavior generic? Pirsa: 05090002 Page 24/114 Is the conifold behavior generic? Can it be exploited to generate cascades with more structure? Phenomenological models? Pirsa: 05090002 Page 25/114 - Is the conifold behavior generic? - Can it be exploited to generate cascades with more structure? Phenomenological models? - Infinite families of explicit Sasaki-Einstein geometries and their gauge theory duals are now known Pirsa: 05090002 Page 26/114 - Is the conifold behavior generic? - Can it be exploited to generate cascades with more structure? Phenomenological models? - Infinite families of explicit Sasaki-Einstein geometries and their gauge theory duals are now known - New supergravity solutions dual to the UV cascades are known Pirsa: 05090002 Page 27/114 - Is the conifold behavior generic? - Can it be exploited to generate cascades with more structure? Phenomenological models? - Infinite families of explicit Sasaki-Einstein geometries and their gauge theory duals are now known - New supergravity solutions dual to the UV cascades are known Related developments Pirsa: 05090002 Page 28/114 - Is the conifold behavior generic? - Can it be exploited to generate cascades with more structure? Phenomenological models? - Infinite families of explicit Sasaki-Einstein geometries and their gauge theory duals are now known - New supergravity solutions dual to the UV cascades are known ### Related developments Z-minimization: geometric dual of a-maximization Pirsa: 05090002 Page 29/114 - Is the conifold behavior generic? - Can it be exploited to generate cascades with more structure? Phenomenological models? - Infinite families of explicit Sasaki-Einstein geometries and their gauge theory duals are now known - New supergravity solutions dual to the UV cascades are known ### Related developments - Z-minimization: geometric dual of a-maximization - Brane tilings: towards the gauge theory dual of an arbitrary toric singularity Pirea: 05000002 #### Toric varieties - Admit an U(1)^d action. T^d fibrations - Described by specifying shrinking cycles and relations Pirsa: 05090002 Page 31/114 #### Toric varieties - Admit an U(1)^d action. T^d fibrations - Described by specifying shrinking cycles and relations #### Toric diagrams Pirsa: 05090002 Page 32/114 #### Toric varieties - Admit an U(1)^d action. T^d fibrations - Described by specifying shrinking cycles and relations #### Toric diagrams #### (p,q) webs Pirsa: 05090002 Page 33/114 #### Toric varieties - Admit an U(1)^d action. T^d fibrations - Described by specifying shrinking cycles and relations #### Toric diagrams #### (p,q) webs #### Toric varieties - Admit an U(1)^d action. T^d fibrations - Described by specifying shrinking cycles and relations #### Toric diagrams (p,q) webs # Complex deformations Decomposition of (p,q) web into subwebs in equilibrium #### Toric varieties - Admit an U(1)^d action. T^d fibrations - Described by specifying shrinking cycles and relations Toric diagrams (p,q) webs # Complex deformations - Decomposition of (p,q) web into subwebs in equilibrium - Decomposition of toric polytope into Minkowsky sum Altmann Pirsa: 05090002 Page 36/114 Unobstructed complex deformations Decomposition of toric polytope into Minkowsky sum Pirsa: 05090002 Page 37/114 Unobstructed complex deformations Decomposition of toric polytope into Minkowsky sum Pirsa: 05090002 Page 38/114 Unobstructed complex deformations Decomposition of toric polytope into Minkowsky sum ai: vertices of toric diagram i = 1 to N Pirsa: 05090002 Page 39/114 Unobstructed complex deformations Decomposition of toric polytope into Minkowsky sum - ai: vertices of toric diagram i = 1 to N - di: edges of toric diagram di = ai+1 ai Pirsa: 05090002 Page 40/114 Unobstructed complex deformations Decomposition of toric polytope into Minkowsky sum - ai: vertices of toric diagram i = 1 to N - d': edges of toric diagram di = ai+1 ai $$\sum_{i=1}^{N} (t_i)^k d^i = 0$$ Deformation unobstructed upto order K Pirsa: 05090002 Unobstructed complex deformations Decomposition of toric polytope into Minkowsky sum - ai: vertices of toric diagram i = 1 to N - dⁱ: edges of toric diagram dⁱ = aⁱ⁺¹ aⁱ $$\sum_{i=1}^{N} (t_i)^k d^i = 0$$ Deformation unobstructed upto order K Pirsa: 05090002 Unobstructed complex deformations Decomposition of toric polytope into Minkowsky sum - ai: vertices of toric diagram i = 1 to N - di: edges of toric diagram di = ai+1 ai $$\sum_{i=1}^{N} (t_i)^k d^i = 0$$ Deformation unobstructed upto order K Overall scaling plus first order equation: N-3 deformations at first order Unobstructed complex deformations Decomposition of toric polytope into Minkowsky sum - ai: vertices of toric diagram i = 1 to N - di: edges of toric diagram di = ai+1 ai $$\sum_{i=1}^{N} (t_i)^k d^i = 0 \qquad 0 < k \le K$$ Deformation unobstructed upto order K Overall scaling plus first order equation: N-3 deformations at first order Pirsa: 05090002 Unobstructed complex deformations Decomposition of toric polytope into Minkowsky sum - ai: vertices of toric diagram i = 1 to N - di: edges of toric diagram di = ai+1 ai $$\sum_{i=1}^{N} (t_i)^k d^i = 0 \qquad 0 < k \le K$$ Deformation unobstructed upto order K Overall scaling plus first order equation: N-3 deformations at first order Fractional branes can be classified according to the IR dynamics they trigger Pirsa: 05090002 Page 47/114 Fractional branes can be classified according to the IR dynamics they trigger Deformation fractional branes Quiver in the absence of D3-branes corresponds to either isolated nodes without bifundamentals or a gauge invariant in the superpotential Pirsa: 05090002 Page 48/114 Fractional branes can be classified according to the IR dynamics they trigger # Deformation fractional branes - Quiver in the absence of D3-branes corresponds to either isolated nodes without bifundamentals or a gauge invariant in the superpotential - SUGRA: complex deformation that (partially) smoothes the singularity Pirsa: 05090002 Page 49/114 Fractional branes can be classified according to the IR dynamics they trigger # Deformation fractional branes - Quiver in the absence of D3-branes corresponds to either isolated nodes without bifundamentals or a gauge invariant in the superpotential - SUGRA: complex deformation that (partially) smoothes the singularity Fractional branes can be classified according to IR dynamics they trigger the #### Deformation fractional branes - Quiver in the absence of D3-branes corresponds to either isolated nodes without bifundamentals or a - SUGRA: complex deformation that (partially) smoothes the singularity Pirsa: 05090002 Page 51/114 - flat directions along which the dynamics generically reduces to an N=2 theory - Quiver in the absence of D3-branes corresponds to a gauge invariant not present in the superpotential Pirsa: 05090002 Page 52/114 - flat directions along which the dynamics generically reduces to an N=2 theory - Quiver in the absence of D3-branes corresponds to a gauge invariant not present in the superpotential Pirsa: 05090002 Page 53/114 - flat directions along which the dynamics generically reduces to an N=2 theory - Quiver in the absence of D3-branes corresponds to a gauge invariant not present in the superpotential Pirsa: 05090002 Page 54/114 - flat directions along which the dynamics generically reduces to an N=2 theory - Quiver in the absence of D3-branes corresponds to a gauge invariant not present in the superpotential But sometimes the complex deformation associated to a given set of fractional branes is obstructed! Pirsa: 05090002 Page 55/114 - flat directions along which the dynamics generically reduces to an N=2 theory - Quiver in the absence of D3-branes corresponds to a gauge invariant not present in the superpotential But sometimes the complex deformation associated to a given set of fractional branes is obstructed! #### DSB fractional branes All other rank assignments. Typically a gauge group generates an ADS superpotential Franco, Hanany, Saad and Uranga Berenstein, Herzog, Ouyang and Pinansky Complex cone over dP₁ 5d base is Y^{2,1}, member of the Y^{p,q} family Pirsa: 05090002 Page 57/114 Complex cone over dP₁ 5d base is Y^{2,1}, member of the Y^{p,q} family - Y^{2,1}: S² × S³ topology → one single type of fractional branes - Logarithmic cascade in the UV Franco, Hanany and Uranga Ejaz, Herzog and Klebanov Pirsa: 05090002 Page 58/114 Complex cone over dP₁ 5d base is Y^{2,1}, member of the Y^{p,q} family - Y^{2,1}: S² × S³ topology → one single type of fractional branes - Logarithmic cascade in the UV Franco, Hanany and Uranga Ejaz, Herzog and Klebanov No decomposition of the (p,q) web Complex cone over dP₁ 5d base is Y^{2,1}, member of the Y^{p,q} family - Y^{2,1}: S² × S³ topology → one single type of fractional branes - Logarithmic cascade in the UV Franco, Hanany and Uranga Ejaz, Herzog and Klebanov No decomposition of the (p,q) web Complex deformation is obstructed Complex cone over dP₁ 5d base is Y^{2,1}, member of the Y^{p,q} family - Y^{2,1}: S² × S³ topology → one single type of fractional branes - Logarithmic cascade in the UV Franco, Hanany and Uranga Ejaz, Herzog and Klebanov No decomposition of the (p,q) web Complex deformation is obstructed What happens at the → IR bottom of the cascade? Page 61/114 Global symmetry: $$SU(2) \times U(1)_F \times U(1)_R \times U(1)_B$$ $$W = \epsilon_{\alpha\beta} X_{23}^{\alpha} X_{34}^{\beta} X_{42} + \epsilon_{\alpha\beta} X_{34}^{\alpha} X_{41}^{\beta} X_{13} - \epsilon_{\alpha\beta} X_{12} X_{23}^{\alpha} X_{34}^{\beta} X_{41}^{\beta}$$ Pirsa: 05090002 Page 62/114 $$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$ Pirsa: 05090002 Fractional branes $$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$ Fractional branes | the continuous continuo $$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$ Fractional branes | pinched to the singularity $$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$ #### D-flat directions: $$X_{42} X_{23} X_{34}$$ $X_{42} Y_{23} X_{34}$ $$X_{42} X_{23} Y_{34}$$ $X_{42} Y_{23} Y_{34}$ $$X_{42} X_{23} Z_{34}$$ $X_{42} Y_{23} Z_{34}$ Fractional branes | the continuous continuo $$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$ #### D-flat directions: $$X_{42} X_{23} X_{34}$$ $X_{42} Y_{23} X_{34}$ $$X_{42} X_{23} Y_{34}$$ $$X_{42} X_{23} Z_{34}$$ $$X_{42}\,Y_{23}\,Y_{34}$$ $$X_{42} Y_{23} Z_{34}$$ #### F-flatness: $$\frac{\partial W}{\partial Y_{34}} = X_{42} X_{23} = 0$$ $$\frac{\partial W}{\partial X_{24}} = X_{42}Y_{23} = 0$$ Fractional branes pinched to the singularity $$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$ #### D-flat directions: $$X_{42} X_{23} X_{34}$$ $X_{42} Y_{23} X_{34}$ $$X_{42} X_{23} Y_{34}$$ $${\rm X}_{42}\,{\rm X}_{23}\,{\rm Z}_{34}$$ $$X_{42} Y_{23} Y_{34}$$ $$X_{42} Y_{23} Z_{34}$$ #### F-flatness: $$\frac{\partial W}{\partial Y_{34}} = X_{42} X_{23} = 0$$ $$\frac{\partial W}{\partial X_{24}} = X_{42}Y_{23} = 0$$ Classicaly: no mesonic flat directions the only SUSY point is the origin Pirsa: 05090002 Page 70/114 Fractional branes | pinched to the singularity $$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$ #### D-flat directions: $$X_{42} X_{23} X_{34}$$ $X_{42} Y_{23} X_{34}$ $$X_{42} X_{23} Y_{34}$$ $X_{42} Y_{23} Y_{34}$ $$X_{42} X_{23} Z_{34}$$ $X_{42} Y_{23} Z_{34}$ #### F-flatness: $$\frac{\partial W}{\partial Y_{34}} = X_{42} X_{23} = 0$$ $$\frac{\partial W}{\partial X_{24}} = X_{42}Y_{23} = 0$$ Classicaly: no mesonic flat directions the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors Pirsa: 05090002 Page 72/114 - Classicaly: no mesonic flat directions - the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential SUSY is broken dinamically Pirsa: 05090002 Page 73/114 the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential SUSY is broken dinamically $$W = X_{24}Z_{43}P_{32}$$ Pirsa: 05090002 Page 74/114 - Classicaly: no mesonic flat directions - the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential SUSY is broken dinamically Pirsa: 05090002 Page 75/114 the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential SUSY is broken dinamically $$W = X_{24}Z_{43}P_{32}$$ Pirsa: 05090002 Page 76/114 the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential SUSY is broken dinamically $$W = X_{24}Z_{43}P_{32}$$ Pirsa: 05090002 Page 77/114 the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential SUSY is broken dinamically $$W = M_{34}Z_{43} + 2\left(\frac{\Lambda^8}{M_{34}}\right)^{1/2}$$ $$V_F = |M_{34}|^2 + |Z_{43} + \Lambda^4 M_{34}^{-3/2}|^2$$ \longrightarrow $M_{34} \to 0$ $Z_{43} \to \infty$ Pirsa: 05090002 the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential SUSY is broken dinamically $$W = M_{34}Z_{43} + 2\left(\frac{\Lambda^8}{M_{34}}\right)^{1/2}$$ $$V_F = |M_{34}|^2 + |Z_{43} + \Lambda^4 M_{34}^{-3/2}|^2 \longrightarrow \begin{array}{c} M_{34} \to 0 \\ Z_{43} \to \infty \end{array}$$ $$V_D = (|Z_{43}|^2 - \xi)^2$$ ### Field theory analysis Fractional branes | the continuous continuo $$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$ #### D-flat directions: $$X_{42} X_{23} X_{34}$$ $X_{42} Y_{23} X_{34}$ $$X_{42} X_{23} Y_{34}$$ $X_{42} Y_{23} Y_{34}$ $$X_{42} X_{23} Z_{34}$$ $X_{42} Y_{23} Z_{34}$ #### F-flatness: $$\frac{\partial W}{\partial Y_{34}} = X_{42} X_{23} = 0$$ $$\frac{\partial W}{\partial X_{34}} = X_{42}Y_{23} = 0$$ the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential SUSY is broken dinamically $$W = M_{34}Z_{43} + 2\left(\frac{\Lambda^8}{M_{34}}\right)^{1/2}$$ $$V_F = |M_{34}|^2 + |Z_{43} + \Lambda^4 M_{34}^{-3/2}|^2 \longrightarrow \begin{array}{c} M_{34} \to 0 \\ Z_{43} \to \infty \end{array}$$ $$V_D = (|Z_{43}|^2 - \xi)^2$$ the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential SUSY is broken dinamically $$W = M_{34}Z_{43} + 2\left(\frac{\Lambda^8}{M_{34}}\right)^{1/2}$$ $$V_F = |M_{34}|^2 + |Z_{43} + \Lambda^4 M_{34}^{-3/2}|^2 \longrightarrow \begin{array}{c} M_{34} \to 0 \\ Z_{43} \to \infty \end{array}$$ $$V_D = (|Z_{43}|^2 - \xi)^2$$ Non-susy minimum for fixed FI parameters $SU(3M+1) \times SU(M+1) \times SU(2M+1)$ Pirsa: 05090002 Page 83/114 Flat direction: X₄₂ Y₂₃ Z₃₄ $SU(3M+1) \times SU(M+1) \times SU(2M+1)$ Pirsa: 05090002 $$SU(3M+1) \times SU(M+1) \times SU(2M+1)$$ Flat direction: $X_{42} Y_{23} Z_{34}$ SU(3M+1) 2M+2 flavors ADS superpotential for mesons Pirsa: 05090002 Page 85/114 $$SU(3M+1) \times SU(M+1) \times SU(2M+1)$$ ADS superpotential for mesons $$M = \begin{pmatrix} X_{12} X_{23} & X_{12} Y_{23} \\ X_{42} X_{23} & X_{42} Y_{23} \end{pmatrix}$$ $$SU(3M+1) \times SU(M+1) \times SU(2M+1)$$ ADS superpotential for mesons $$M = \begin{pmatrix} X_{12} X_{23} & X_{12} Y_{23} \\ X_{42} X_{23} & X_{42} Y_{23} \end{pmatrix}$$ The D3-brane is repelled from the origin Pirsa: 05090002 Not a complex deformation preserving CY with ISD fluxe^{89e 87/114} different types of fractional branes that independently lead to SUSY RG flows Pirsa: 05090002 Page 88/114 $$SU(3M+1) \times SU(M+1) \times SU(2M+1)$$ Flat direction: $$X_{42} Y_{23} Z_{34}$$ ADS superpotential for mesons $$M = \begin{pmatrix} X_{12} & X_{23} & X_{12} & Y_{23} \\ X_{42} & X_{23} & X_{42} & Y_{23} \end{pmatrix}$$ The D3-brane is repelled from the origin Pirsa: 05090002 Not a complex deformation preserving CY with ISD fluxes 89/114 different types of fractional branes that independently lead to SUSY RG flows Pirsa: 05090002 Page 90/114 the only SUSY point is the origin SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential SUSY is broken dinamically $$W = M_{34} Z_{43} + 2 \left(\frac{\Lambda^8}{M_{34}}\right)^{1/2}$$ $$V_F = |M_{34}|^2 + |Z_{43} + \Lambda^4 M_{34}^{-3/2}|^2 \longrightarrow \begin{array}{c} M_{34} \to 0 \\ Z_{43} \to \infty \end{array}$$ $$V_D = (|Z_{43}|^2 - \xi)^2$$ Non-susy minimum for fixed FI parameters $SU(3M+1) \times SU(M+1) \times SU(2M+1)$ Pirsa: 05090002 Page 92/114 different types of fractional branes that independently lead to SUSY RG flows Pirsa: 05090002 Page 93/114 different types of fractional branes that independently lead to SUSY RG flows can break SUSY when combined Example: Suspended Pinch Point (SPP) $$xy = zw^2$$ $$W = X_{21}X_{12}X_{23}X_{32} - X_{32}X_{23}X_{31}X_{13} + X_{13}X_{31}X_{11} - X_{12}X_{21}X_{11}$$ Pirsa: 05090002 Page 94/114 different types of fractional branes that independently lead to SUSY RG flows can break SUSY when combined Example: Suspended Pinch Point (SPP) $$xy = zw^2$$ $$W = X_{21}X_{12}X_{23}X_{32} - X_{32}X_{23}X_{31}X_{13} + X_{13}X_{31}X_{11} - X_{12}X_{21}X_{11}$$ (0,1,0) Complex deformation (1,0,0) N=2 brane moves along line of A_1 singularities parametrized by z (X_{11}) Pirsa: 05090002 Page 96/114 We expect runaway behavior, with the (1,0,0) brane escaping to infinity Pirsa: 05090002 Page 97/114 We expect runaway behavior, with the (1,0,0) brane escaping to infinity ### E.g. consider: # of $$(0,1,0)$$ branes = P # of $(1,0,0)$ branes = M Pirsa: 05090002 Page 98/114 We expect runaway behavior, with the (1,0,0) brane escaping to infinity #### E.g. consider: SU(P) gauge group has M flavors and develops ADS superpotential Pirsa: 05090002 We expect runaway behavior, with the (1,0,0) brane escaping to infinity #### E.g. consider: - SU(P) gauge group has M flavors and develops ADS superpotential - There is no SUSY vacuum and X₁₁ → •• Infinite family of explicit Sasaki-Einstein metrics Gauntlett, Martelli, Sparks and Waldram Pirsa: 05090002 Page 101/114 Infinite family of explicit Sasaki-Einstein metrics Gauntlett, Martelli, Sparks and Waldram S² × S³ topology → one single type of fractional branes. Pirsa: 05090002 Page 102/114 ### Yp,q manifolds Infinite family of explicit Sasaki-Einstein metrics Gauntlett, Martelli, Sparks and Waldram S² × S³ topology → one single type of fractional branes. $$0 \le q \le p$$ Pirsa: 05090002 Page 103/114 Infinite family of explicit Sasaki-Einstein metrics Gauntlett, Martelli, Sparks and Waldram S² × S³ topology → one single type of fractional branes. $$0 \le q \le p$$ #### Special cases: • $$Y^{p,0} = T^{1,1}/Z_p$$ Infinite family of explicit Sasaki-Einstein metrics Gauntlett, Martelli, Sparks and Waldram $S^2 \times S^3$ topology \rightarrow one single type of fractional branes. $$0 \le q \le p$$ Y $$^{p,0} = T^{1,1}/Z_p$$ Y $^{p,p} = S^5/Z_{2p}$ • $$Y^{p,p} = S^5 / Z_{2p}$$ Infinite family of explicit Sasaki-Einstein metrics Gauntlett, Martelli, Sparks and Waldram S² × S³ topology → one single type of fractional branes. $$0 \le q \le p$$ #### Special cases: • $$Y^{p,0} = T^{1,1}/Z_p$$ Y $$^{p,p} = S^5 / Z_{2p}$$ Supergravity solutions dual to the UV region of the cascades have been constructed Ejaz, Herzog and Klebanov Not in contradiction with 1st order complex deformations Burrington, Liu, Mahato and P. Zayas Start from Y p,p = S⁵ / Z_{2p} and add (p-q) impurities Pirsa: 05090002 Page 107/114 Not in contradiction with 1st order complex deformations Burrington, Liu, Mahato and P. Zayas Pirsa: 05090002 Page 108/114 Not in contradiction with 1st order complex deformations Burrington, Liu, Mahato and P. Zayas Construct rank vector of fractional brane using baryonic charges of bifundamental fields Pirsa: 05090002 Page 109/114 Not in contradiction with 1st order complex deformations Burrington, Liu, Mahato and P. Zayas - Construct rank vector of fractional brane using baryonic charges of bifundamental fields - For the last node: $$N_F - N_C = -p + q < 0$$ for $q < p$ An ADS superpotential is generated and DSB takes place We studied the gauge theory dynamics on fractional branes on toric CY singularities Pirsa: 05090002 Page 111/114 - We studied the gauge theory dynamics on fractional branes on toric CY singularities - Three possible behaviors: - Complex deformation - N=2 dynamics - Supersymmetry breaking (associated complex deformation is obstructed) Pirsa: 05090002 Page 112/114 - We studied the gauge theory dynamics on fractional branes on toric CY singularities - Three possible behaviors: - Complex deformation - N=2 dynamics - Supersymmetry breaking (associated complex deformation is obstructed) - Generic fractional branes lead to SUSY breaking due to non-perturbative superpotentials - When dynamics of FI terms (equivalently baryonic operators) is taken into account: runaway behavior Pirsa: 05090002 Page 113/114 - We studied the gauge theory dynamics on fractional branes on toric CY singularities - Three possible behaviors: - Complex deformation - N=2 dynamics - Supersymmetry breaking (associated complex deformation is obstructed) - Generic fractional branes lead to SUSY breaking due to non-perturbative superpotentials - When dynamics of FI terms (equivalently baryonic operators) is taken into account: runaway behavior ### Further directions Turn these ideas into a simple mechanism to generate DSB in realistic models