Title: Fractional branes and dynamical SUSY breaking

Date: Sep 13, 2005 11:00 AM

URL: http://pirsa.org/05090002

Abstract: Fractional branes and dynamical SUSY breaking

Fractional branes and dynamical SUSY breaking

Sebastián Franco

Princeton University

September 2005

Based on: hep-th/0505040: Franco, Hanany, Saad and Uranga

See also: hep-th/0502113: Franco, Hanany and Uranga

Pirsa: 05090002 Page 2/114

Outline

- AdS/CFT correspondence and extensions
- Fractional branes and RG flows
- The conifold cascade
- Complex deformations and toric geometry
- Classifying fractional branes
- DSB from fractional branes
 - Complex cone over dP₁
 - Combining fractional branes
 - Cones over Yp.q manifolds

AdS/CFT correspondence and extensions

AdS/CFT Correspondence

$$\mathcal{N} = 4 \; SU(N) \; \text{SYM} \; \longleftrightarrow \; \text{Type IIB on } AdS_5 \times S^5$$

Pirsa: 05090002 Page 4/114

AdS/CFT correspondence and extensions

AdS/CFT Correspondence

 $\mathcal{N} = 4 \; SU(N) \; \text{SYM} \; \longleftrightarrow \; \text{Type IIB on } AdS_5 \times S^5$

Extend the duality by looking for:

Less SUSY

- Place D3-branes at a singularity
- SUGRA: $AdS_5 \times S^5 \rightarrow AdS_5 \times X^5$

AdS/CFT correspondence and extensions

AdS/CFT Correspondence

$$\mathcal{N} = 4 \; SU(N) \; \text{SYM} \; \longleftrightarrow \; \text{Type IIB on } AdS_5 \times S^5$$

Extend the duality by looking for:

Less SUSY

- Place D3-branes at a singularity
- SUGRA: $AdS_5 \times S^5 \rightarrow AdS_5 \times X^5$

Break conformal invariance

- Add fractional D3-branes (wrapped D5-branes)
- SUGRA: turn on 3-form flux

Quiver theories

Gauge theories that typically arise in our constructions:

- Product gauge group
- $\prod_{i=1}^k SU(d^i)$
- Bifundamental matter

SU(N₁)	SU(N ₂)
\overline{N}_1	N_2

Quiver theories

Gauge theories that typically arise in our constructions:

Product gauge group

$$\prod_{i=1}^k SU(d^i)$$

Bifundamental matter

$$\begin{array}{c|c} SU(N_1) & SU(N_2) \\ \hline \hline N_1 & N_2 \\ \end{array}$$

Quiver diagram

simple diagrammatic way of encoding the matter content of a gauge theory

Regular and fractional branes

← Anomaly free rank assignments

Pirsa: 05090002 Page 9/114

Quiver theories

Gauge theories that typically arise in our constructions:

Product gauge group

$$\prod_{i=1}^k SU(d^i)$$

Bifundamental matter

$$\frac{SU(N_1)}{N_1} \qquad \frac{SU(N_2)}{N_2}$$

Quiver simple diagrammatic way of encoding diagram the matter content of a gauge theory

er

Superpotential terms: oriented polygons in the quiver

Regular and fractional branes

	Gauge group	
N D3-branes	SU(N) × SU(N)	conformal

$$W = \frac{\lambda}{2} \epsilon^{ij} \epsilon^{kl} \operatorname{Tr} A_i B_k A_j B_l$$

Regular and fractional branes

$$W = \frac{\lambda}{2} \epsilon^{ij} \epsilon^{kl} \operatorname{Tr} A_i B_k A_j B_l$$

	Gauge group	
N D3-branes	SU(N) × SU(N)	conformal
N D3-branes M D5-branes	SU(N) × SU(N+M)	not conformal

Regular and fractional branes

$$W = \frac{\lambda}{2} \epsilon^{ij} \epsilon^{kl} \operatorname{Tr} A_i B_k A_j B_l$$

	Gauge group	
N D3-branes	SU(N) × SU(N)	conformal
N D3-branes M D5-branes	SU(N) × SU(N+M)	not conformal

$$\beta_i = \frac{d(8\pi^2/g_i^2)}{d\ln\mu}$$

$$\beta_1 = 3 [N + (R_A - 1)(N + M) + (R_B - 1)(N + M)]$$

$$\beta_2 = 3 [(N + M) + (R_A - 1)N + (R_B - 1)N]$$

$$R(A) = 1/2 + \mathcal{O}(M/N)^2 \qquad \beta_1 = -3M$$

$$\Rightarrow$$

$$R(B) = 1/2 + \mathcal{O}(M/N)^2 \qquad \beta_2 = 3M$$

Duality Cascade

go beyond infinite coupling by switching to an alternative Seiberg dual description Klebanov and Strassler

The conifold example

Pirsa: 05090002 Page 14/114

Duality Cascade

go beyond infinite coupling by switching to an alternative Seiberg dual description Klebanov and Strassler

The conifold example

Duality Cascade

go beyond infinite coupling by switching to an alternative Seiberg dual description Klebanov and Strassler

The conifold example

Duality Cascade

go beyond infinite coupling by switching to an alternative Seiberg dual description Klebanov and Strassler

The conifold example

- Periodic flow
- # D5-branes:

M = const

D3-branes:

 $N \sim t = \log \mu$

Pirsa: 05090002 Page 17/114

• : 2M colors with 2M flavors

Pirsa: 05090002 Page 18/114

 : 2M colors with 2M flavors —— quantum corrected moduli space

$$\det M - B\tilde{B} = \Lambda^{4M}$$

 : 2M colors with 2M flavors —— quantum corrected moduli space

$$\det M - B\tilde{B} = \Lambda^{4M}$$

$$\downarrow$$
Deformed conifold

$$\det M - B\tilde{B} = \Lambda^{4M}$$

$$\downarrow$$
Deformed conifold

- Logarithmic RG flow
- In the IR: confinement and chiral symmetry breaking

 : 2M colors with 2M flavors —— quantum corrected moduli space

$$\det M - B\tilde{B} = \Lambda^{4M}$$

$$\downarrow$$
Deformed conifold

- Logarithmic RG flow
- In the IR: confinement and chiral symmetry breaking

This behavior is nicely captured by a SUGRA dual

Klebanov and Strassle

Pirsa: 05090002 Page 23/114

Is the conifold behavior generic?

Pirsa: 05090002 Page 24/114

Is the conifold behavior generic?

Can it be exploited to generate cascades with more structure? Phenomenological models?

Pirsa: 05090002 Page 25/114

- Is the conifold behavior generic?
- Can it be exploited to generate cascades with more structure? Phenomenological models?
- Infinite families of explicit Sasaki-Einstein geometries and their gauge theory duals are now known

Pirsa: 05090002 Page 26/114

- Is the conifold behavior generic?
- Can it be exploited to generate cascades with more structure? Phenomenological models?
- Infinite families of explicit Sasaki-Einstein geometries and their gauge theory duals are now known
- New supergravity solutions dual to the UV cascades are known

Pirsa: 05090002 Page 27/114

- Is the conifold behavior generic?
- Can it be exploited to generate cascades with more structure? Phenomenological models?
- Infinite families of explicit Sasaki-Einstein geometries and their gauge theory duals are now known
- New supergravity solutions dual to the UV cascades are known

Related developments

Pirsa: 05090002 Page 28/114

- Is the conifold behavior generic?
- Can it be exploited to generate cascades with more structure? Phenomenological models?
- Infinite families of explicit Sasaki-Einstein geometries and their gauge theory duals are now known
- New supergravity solutions dual to the UV cascades are known

Related developments

Z-minimization: geometric dual of a-maximization

Pirsa: 05090002 Page 29/114

- Is the conifold behavior generic?
- Can it be exploited to generate cascades with more structure? Phenomenological models?
- Infinite families of explicit Sasaki-Einstein geometries and their gauge theory duals are now known
- New supergravity solutions dual to the UV cascades are known

Related developments

- Z-minimization: geometric dual of a-maximization
- Brane tilings: towards the gauge theory dual of an arbitrary toric singularity

Pirea: 05000002

Toric varieties

- Admit an U(1)^d action. T^d fibrations
- Described by specifying shrinking cycles and relations

Pirsa: 05090002 Page 31/114

Toric varieties

- Admit an U(1)^d action. T^d fibrations
- Described by specifying shrinking cycles and relations

Toric diagrams

Pirsa: 05090002 Page 32/114

Toric varieties

- Admit an U(1)^d action. T^d fibrations
- Described by specifying shrinking cycles and relations

Toric diagrams

(p,q) webs

Pirsa: 05090002 Page 33/114

Toric varieties

- Admit an U(1)^d action. T^d fibrations
- Described by specifying shrinking cycles and relations

Toric diagrams

(p,q) webs

Toric varieties

- Admit an U(1)^d action. T^d fibrations
- Described by specifying shrinking cycles and relations

Toric diagrams

(p,q) webs

Complex deformations

 Decomposition of (p,q) web into subwebs in equilibrium

Toric varieties

- Admit an U(1)^d action. T^d fibrations
- Described by specifying shrinking cycles and relations

Toric diagrams

(p,q) webs

Complex deformations

- Decomposition of (p,q) web into subwebs in equilibrium
- Decomposition of toric polytope into Minkowsky sum Altmann

Pirsa: 05090002 Page 36/114

Unobstructed complex deformations

Decomposition of toric polytope into Minkowsky sum

Pirsa: 05090002 Page 37/114

Unobstructed complex deformations

Decomposition of toric polytope into Minkowsky sum

Pirsa: 05090002 Page 38/114

Unobstructed complex deformations

Decomposition of toric polytope into Minkowsky sum

ai: vertices of toric diagram i = 1 to N

Pirsa: 05090002 Page 39/114

Unobstructed complex deformations

Decomposition of toric polytope into Minkowsky sum

- ai: vertices of toric diagram i = 1 to N
- di: edges of toric diagram di = ai+1 ai

Pirsa: 05090002 Page 40/114

Unobstructed complex deformations

Decomposition of toric polytope into Minkowsky sum

- ai: vertices of toric diagram i = 1 to N
- d': edges of toric diagram di = ai+1 ai

$$\sum_{i=1}^{N} (t_i)^k d^i = 0$$

Deformation unobstructed upto order K

Pirsa: 05090002

Unobstructed complex deformations

Decomposition of toric polytope into Minkowsky sum

- ai: vertices of toric diagram i = 1 to N
- dⁱ: edges of toric diagram dⁱ = aⁱ⁺¹ aⁱ

$$\sum_{i=1}^{N} (t_i)^k d^i = 0$$

Deformation unobstructed upto order K

Pirsa: 05090002

Unobstructed complex deformations

Decomposition of toric polytope into Minkowsky sum

- ai: vertices of toric diagram i = 1 to N
- di: edges of toric diagram di = ai+1 ai

$$\sum_{i=1}^{N} (t_i)^k d^i = 0$$

Deformation unobstructed upto order K

Overall scaling plus first order equation: N-3 deformations at first order

Unobstructed complex deformations

Decomposition of toric polytope into Minkowsky sum

- ai: vertices of toric diagram i = 1 to N
- di: edges of toric diagram di = ai+1 ai

$$\sum_{i=1}^{N} (t_i)^k d^i = 0 \qquad 0 < k \le K$$

Deformation unobstructed upto order K

Overall scaling plus first order equation: N-3 deformations at first order

Pirsa: 05090002

Unobstructed complex deformations

Decomposition of toric polytope into Minkowsky sum

- ai: vertices of toric diagram i = 1 to N
- di: edges of toric diagram di = ai+1 ai

$$\sum_{i=1}^{N} (t_i)^k d^i = 0 \qquad 0 < k \le K$$

Deformation unobstructed upto order K

Overall scaling plus first order equation: N-3 deformations at first order

Fractional branes can be classified according to the IR dynamics they trigger

Pirsa: 05090002 Page 47/114

Fractional branes can be classified according to the IR dynamics they trigger

Deformation fractional branes

 Quiver in the absence of D3-branes corresponds to either isolated nodes without bifundamentals or a gauge invariant in the superpotential

Pirsa: 05090002 Page 48/114

Fractional branes can be classified according to the IR dynamics they trigger

Deformation fractional branes

- Quiver in the absence of D3-branes corresponds to either isolated nodes without bifundamentals or a gauge invariant in the superpotential
- SUGRA: complex deformation that (partially) smoothes the singularity

Pirsa: 05090002 Page 49/114

Fractional branes can be classified according to the IR dynamics they trigger

Deformation fractional branes

- Quiver in the absence of D3-branes corresponds to either isolated nodes without bifundamentals or a gauge invariant in the superpotential
- SUGRA: complex deformation that (partially) smoothes the singularity

Fractional branes can be classified according to IR dynamics they trigger the

Deformation fractional branes

- Quiver in the absence of D3-branes corresponds to either isolated nodes without bifundamentals or a
- SUGRA: complex deformation that (partially) smoothes the singularity

Pirsa: 05090002 Page 51/114

- flat directions along which the dynamics generically reduces to an N=2 theory
- Quiver in the absence of D3-branes corresponds to a gauge invariant not present in the superpotential

Pirsa: 05090002 Page 52/114

- flat directions along which the dynamics generically reduces to an N=2 theory
- Quiver in the absence of D3-branes corresponds to a gauge invariant not present in the superpotential

Pirsa: 05090002 Page 53/114

- flat directions along which the dynamics generically reduces to an N=2 theory
- Quiver in the absence of D3-branes corresponds to a gauge invariant not present in the superpotential

Pirsa: 05090002 Page 54/114

- flat directions along which the dynamics generically reduces to an N=2 theory
- Quiver in the absence of D3-branes corresponds to a gauge invariant not present in the superpotential

But sometimes the complex deformation associated to a given set of fractional branes is obstructed!

Pirsa: 05090002 Page 55/114

- flat directions along which the dynamics generically reduces to an N=2 theory
- Quiver in the absence of D3-branes corresponds to a gauge invariant not present in the superpotential

But sometimes the complex deformation associated to a given set of fractional branes is obstructed!

DSB fractional branes

 All other rank assignments. Typically a gauge group generates an ADS superpotential

Franco, Hanany, Saad and Uranga Berenstein, Herzog, Ouyang and Pinansky

Complex cone over dP₁

5d base is Y^{2,1}, member of the Y^{p,q} family

Pirsa: 05090002 Page 57/114

Complex cone over dP₁

5d base is Y^{2,1}, member of the Y^{p,q} family

- Y^{2,1}: S² × S³ topology → one single type of fractional branes
- Logarithmic cascade in the UV Franco, Hanany and Uranga
 Ejaz, Herzog and Klebanov

Pirsa: 05090002 Page 58/114

Complex cone over dP₁

5d base is Y^{2,1}, member of the Y^{p,q} family

- Y^{2,1}: S² × S³ topology → one single type of fractional branes
- Logarithmic cascade in the UV Franco, Hanany and Uranga
 Ejaz, Herzog and Klebanov

No decomposition of the (p,q) web

Complex cone over dP₁

5d base is Y^{2,1}, member of the Y^{p,q} family

- Y^{2,1}: S² × S³ topology → one single type of fractional branes
- Logarithmic cascade in the UV Franco, Hanany and Uranga
 Ejaz, Herzog and Klebanov

No decomposition of the (p,q) web Complex deformation is obstructed

Complex cone over dP₁

5d base is Y^{2,1}, member of the Y^{p,q} family

- Y^{2,1}: S² × S³ topology → one single type of fractional branes
- Logarithmic cascade in the UV Franco, Hanany and Uranga
 Ejaz, Herzog and Klebanov

No decomposition of the (p,q) web

Complex deformation is obstructed

What happens at the → IR bottom of the cascade? Page 61/114

Global symmetry:

$$SU(2) \times U(1)_F \times U(1)_R \times U(1)_B$$

$$W = \epsilon_{\alpha\beta} X_{23}^{\alpha} X_{34}^{\beta} X_{42} + \epsilon_{\alpha\beta} X_{34}^{\alpha} X_{41}^{\beta} X_{13} - \epsilon_{\alpha\beta} X_{12} X_{23}^{\alpha} X_{34}^{\beta} X_{41}^{\beta}$$

Pirsa: 05090002

Page 62/114

$$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$

Pirsa: 05090002

Fractional branes

$$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$

Fractional branes

| the continuous continuo

$$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$

Fractional branes

| pinched to the singularity

$$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$

D-flat directions:

$$X_{42} X_{23} X_{34}$$

 $X_{42} Y_{23} X_{34}$

$$X_{42} X_{23} Y_{34}$$

 $X_{42} Y_{23} Y_{34}$

$$X_{42} X_{23} Z_{34}$$

 $X_{42} Y_{23} Z_{34}$

Fractional branes

| the continuous continuo

$$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$

D-flat directions:

$$X_{42} X_{23} X_{34}$$

 $X_{42} Y_{23} X_{34}$

$$X_{42} X_{23} Y_{34}$$

$$X_{42} X_{23} Z_{34}$$

$$X_{42}\,Y_{23}\,Y_{34}$$

$$X_{42} Y_{23} Z_{34}$$

F-flatness:

$$\frac{\partial W}{\partial Y_{34}} = X_{42} X_{23} = 0$$

$$\frac{\partial W}{\partial X_{24}} = X_{42}Y_{23} = 0$$

Fractional branes

pinched to the singularity

$$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$

D-flat directions:

$$X_{42} X_{23} X_{34}$$

 $X_{42} Y_{23} X_{34}$

$$X_{42} X_{23} Y_{34}$$

$${\rm X}_{42}\,{\rm X}_{23}\,{\rm Z}_{34}$$

$$X_{42} Y_{23} Y_{34}$$

$$X_{42} Y_{23} Z_{34}$$

F-flatness:

$$\frac{\partial W}{\partial Y_{34}} = X_{42} X_{23} = 0$$

$$\frac{\partial W}{\partial X_{24}} = X_{42}Y_{23} = 0$$

Classicaly: no mesonic flat directions

the only SUSY point is the origin

Pirsa: 05090002 Page 70/114

Fractional branes

| pinched to the singularity

$$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$

D-flat directions:

$$X_{42} X_{23} X_{34}$$

 $X_{42} Y_{23} X_{34}$

$$X_{42} X_{23} Y_{34}$$

 $X_{42} Y_{23} Y_{34}$

$$X_{42} X_{23} Z_{34}$$

 $X_{42} Y_{23} Z_{34}$

F-flatness:

$$\frac{\partial W}{\partial Y_{34}} = X_{42} X_{23} = 0$$

$$\frac{\partial W}{\partial X_{24}} = X_{42}Y_{23} = 0$$

Classicaly: no mesonic flat directions

the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors

Pirsa: 05090002 Page 72/114

- Classicaly: no mesonic flat directions
 - the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential

SUSY is broken dinamically

Pirsa: 05090002 Page 73/114

the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential

SUSY is broken dinamically

$$W = X_{24}Z_{43}P_{32}$$

Pirsa: 05090002 Page 74/114

- Classicaly: no mesonic flat directions
 - the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential

SUSY is broken dinamically

Pirsa: 05090002 Page 75/114

the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential

SUSY is broken dinamically

$$W = X_{24}Z_{43}P_{32}$$

Pirsa: 05090002 Page 76/114

the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential

SUSY is broken dinamically

$$W = X_{24}Z_{43}P_{32}$$

Pirsa: 05090002 Page 77/114

the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential

SUSY is broken dinamically

$$W = M_{34}Z_{43} + 2\left(\frac{\Lambda^8}{M_{34}}\right)^{1/2}$$

$$V_F = |M_{34}|^2 + |Z_{43} + \Lambda^4 M_{34}^{-3/2}|^2$$
 \longrightarrow $M_{34} \to 0$ $Z_{43} \to \infty$

Pirsa: 05090002

the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential

SUSY is broken dinamically

$$W = M_{34}Z_{43} + 2\left(\frac{\Lambda^8}{M_{34}}\right)^{1/2}$$

$$V_F = |M_{34}|^2 + |Z_{43} + \Lambda^4 M_{34}^{-3/2}|^2 \longrightarrow \begin{array}{c} M_{34} \to 0 \\ Z_{43} \to \infty \end{array}$$

$$V_D = (|Z_{43}|^2 - \xi)^2$$

Field theory analysis

Fractional branes

| the continuous continuo

$$W = X_{42}X_{23}Y_{34} - X_{42}Y_{23}X_{34}$$

D-flat directions:

$$X_{42} X_{23} X_{34}$$

 $X_{42} Y_{23} X_{34}$

$$X_{42} X_{23} Y_{34}$$

 $X_{42} Y_{23} Y_{34}$

$$X_{42} X_{23} Z_{34}$$

 $X_{42} Y_{23} Z_{34}$

F-flatness:

$$\frac{\partial W}{\partial Y_{34}} = X_{42} X_{23} = 0$$

$$\frac{\partial W}{\partial X_{34}} = X_{42}Y_{23} = 0$$

the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential

SUSY is broken dinamically

$$W = M_{34}Z_{43} + 2\left(\frac{\Lambda^8}{M_{34}}\right)^{1/2}$$

$$V_F = |M_{34}|^2 + |Z_{43} + \Lambda^4 M_{34}^{-3/2}|^2 \longrightarrow \begin{array}{c} M_{34} \to 0 \\ Z_{43} \to \infty \end{array}$$

$$V_D = (|Z_{43}|^2 - \xi)^2$$

the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential

SUSY is broken dinamically

$$W = M_{34}Z_{43} + 2\left(\frac{\Lambda^8}{M_{34}}\right)^{1/2}$$

$$V_F = |M_{34}|^2 + |Z_{43} + \Lambda^4 M_{34}^{-3/2}|^2 \longrightarrow \begin{array}{c} M_{34} \to 0 \\ Z_{43} \to \infty \end{array}$$

$$V_D = (|Z_{43}|^2 - \xi)^2$$

Non-susy minimum for fixed FI parameters

 $SU(3M+1) \times SU(M+1) \times SU(2M+1)$

Pirsa: 05090002 Page 83/114

Flat direction: X₄₂ Y₂₃ Z₃₄

 $SU(3M+1) \times SU(M+1) \times SU(2M+1)$

Pirsa: 05090002

$$SU(3M+1) \times SU(M+1) \times SU(2M+1)$$

Flat direction: $X_{42} Y_{23} Z_{34}$

SU(3M+1) 2M+2 flavors

ADS superpotential for mesons

Pirsa: 05090002 Page 85/114

$$SU(3M+1) \times SU(M+1) \times SU(2M+1)$$

ADS superpotential for mesons

$$M = \begin{pmatrix} X_{12} X_{23} & X_{12} Y_{23} \\ X_{42} X_{23} & X_{42} Y_{23} \end{pmatrix}$$

$$SU(3M+1) \times SU(M+1) \times SU(2M+1)$$

ADS superpotential for mesons

$$M = \begin{pmatrix} X_{12} X_{23} & X_{12} Y_{23} \\ X_{42} X_{23} & X_{42} Y_{23} \end{pmatrix}$$

The D3-brane is repelled from the origin

Pirsa: 05090002

Not a complex deformation preserving CY with ISD fluxe^{89e 87/114}

different types of fractional branes that independently lead to SUSY RG flows

Pirsa: 05090002 Page 88/114

$$SU(3M+1) \times SU(M+1) \times SU(2M+1)$$

Flat direction:
$$X_{42} Y_{23} Z_{34}$$

ADS superpotential for mesons

$$M = \begin{pmatrix} X_{12} & X_{23} & X_{12} & Y_{23} \\ X_{42} & X_{23} & X_{42} & Y_{23} \end{pmatrix}$$

The D3-brane is repelled from the origin

Pirsa: 05090002

Not a complex deformation preserving CY with ISD fluxes 89/114

different types of fractional branes that independently lead to SUSY RG flows

Pirsa: 05090002 Page 90/114

the only SUSY point is the origin

SU(3M) dominates: SU(3M) has 2M flavors — ADS superpotential

SUSY is broken dinamically

$$W = M_{34} Z_{43} + 2 \left(\frac{\Lambda^8}{M_{34}}\right)^{1/2}$$

$$V_F = |M_{34}|^2 + |Z_{43} + \Lambda^4 M_{34}^{-3/2}|^2 \longrightarrow \begin{array}{c} M_{34} \to 0 \\ Z_{43} \to \infty \end{array}$$

$$V_D = (|Z_{43}|^2 - \xi)^2$$

Non-susy minimum for fixed FI parameters

 $SU(3M+1) \times SU(M+1) \times SU(2M+1)$

Pirsa: 05090002 Page 92/114

different types of fractional branes that independently lead to SUSY RG flows

Pirsa: 05090002 Page 93/114

different types of fractional branes that independently lead to SUSY RG flows

can break SUSY when combined

Example: Suspended Pinch Point (SPP)

$$xy = zw^2$$

$$W = X_{21}X_{12}X_{23}X_{32} - X_{32}X_{23}X_{31}X_{13} + X_{13}X_{31}X_{11} - X_{12}X_{21}X_{11}$$

Pirsa: 05090002 Page 94/114

different types of fractional branes that independently lead to SUSY RG flows

can break SUSY when combined

Example: Suspended Pinch Point (SPP)

$$xy = zw^2$$

$$W = X_{21}X_{12}X_{23}X_{32} - X_{32}X_{23}X_{31}X_{13} + X_{13}X_{31}X_{11} - X_{12}X_{21}X_{11}$$

(0,1,0) Complex deformation

(1,0,0)

N=2 brane

moves along line of A_1 singularities parametrized by z (X_{11})

Pirsa: 05090002 Page 96/114

We expect runaway behavior, with the (1,0,0) brane escaping to infinity

Pirsa: 05090002 Page 97/114

We expect runaway behavior, with the (1,0,0) brane escaping to infinity

E.g. consider:

of
$$(0,1,0)$$
 branes = P
of $(1,0,0)$ branes = M

Pirsa: 05090002 Page 98/114

We expect runaway behavior, with the (1,0,0) brane escaping to infinity

E.g. consider:

SU(P) gauge group has M flavors and develops ADS superpotential

Pirsa: 05090002

We expect runaway behavior, with the (1,0,0) brane escaping to infinity

E.g. consider:

- SU(P) gauge group has M flavors and develops ADS superpotential
- There is no SUSY vacuum and X₁₁ → ••

Infinite family of explicit Sasaki-Einstein metrics

Gauntlett, Martelli, Sparks and Waldram

Pirsa: 05090002 Page 101/114

Infinite family of explicit Sasaki-Einstein metrics

Gauntlett, Martelli, Sparks and Waldram

S² × S³ topology → one single type of fractional branes.

Pirsa: 05090002 Page 102/114

Yp,q manifolds

Infinite family of explicit Sasaki-Einstein metrics

Gauntlett, Martelli, Sparks and Waldram

S² × S³ topology → one single type of fractional branes.

$$0 \le q \le p$$

Pirsa: 05090002 Page 103/114

Infinite family of explicit Sasaki-Einstein metrics

Gauntlett, Martelli, Sparks and Waldram

S² × S³ topology → one single type of fractional branes.

$$0 \le q \le p$$

Special cases:

•
$$Y^{p,0} = T^{1,1}/Z_p$$

Infinite family of explicit Sasaki-Einstein metrics

Gauntlett, Martelli, Sparks and Waldram

 $S^2 \times S^3$ topology \rightarrow one single type of fractional branes.

$$0 \le q \le p$$

Y
$$^{p,0} = T^{1,1}/Z_p$$

Y $^{p,p} = S^5/Z_{2p}$

•
$$Y^{p,p} = S^5 / Z_{2p}$$

Infinite family of explicit Sasaki-Einstein metrics

Gauntlett, Martelli, Sparks and Waldram

S² × S³ topology → one single type of fractional branes.

$$0 \le q \le p$$

Special cases:

•
$$Y^{p,0} = T^{1,1}/Z_p$$

Y
$$^{p,p} = S^5 / Z_{2p}$$

 Supergravity solutions dual to the UV region of the cascades have been constructed

Ejaz, Herzog and Klebanov

Not in contradiction with 1st order complex deformations

Burrington, Liu, Mahato and P. Zayas

Start from Y p,p = S⁵ / Z_{2p} and add (p-q) impurities

Pirsa: 05090002 Page 107/114

Not in contradiction with 1st order complex deformations

Burrington, Liu, Mahato and P. Zayas

Pirsa: 05090002 Page 108/114

Not in contradiction with 1st order complex deformations

Burrington, Liu, Mahato and P. Zayas

 Construct rank vector of fractional brane using baryonic charges of bifundamental fields

Pirsa: 05090002 Page 109/114

Not in contradiction with 1st order complex deformations

Burrington, Liu, Mahato and P. Zayas

- Construct rank vector of fractional brane using baryonic charges of bifundamental fields
- For the last node:

$$N_F - N_C = -p + q < 0$$
 for $q < p$

An ADS superpotential is generated and DSB takes place

 We studied the gauge theory dynamics on fractional branes on toric CY singularities

Pirsa: 05090002 Page 111/114

- We studied the gauge theory dynamics on fractional branes on toric CY singularities
- Three possible behaviors:
 - Complex deformation
 - N=2 dynamics
 - Supersymmetry breaking (associated complex deformation is obstructed)

Pirsa: 05090002 Page 112/114

- We studied the gauge theory dynamics on fractional branes on toric CY singularities
- Three possible behaviors:
 - Complex deformation
 - N=2 dynamics
 - Supersymmetry breaking (associated complex deformation is obstructed)
- Generic fractional branes lead to SUSY breaking due to non-perturbative superpotentials
- When dynamics of FI terms (equivalently baryonic operators) is taken into account: runaway behavior

Pirsa: 05090002 Page 113/114

- We studied the gauge theory dynamics on fractional branes on toric CY singularities
- Three possible behaviors:
 - Complex deformation
 - N=2 dynamics
 - Supersymmetry breaking (associated complex deformation is obstructed)
- Generic fractional branes lead to SUSY breaking due to non-perturbative superpotentials
- When dynamics of FI terms (equivalently baryonic operators) is taken into account: runaway behavior

Further directions

Turn these ideas into a simple mechanism to generate DSB in realistic models