Title: The Frequency Operator in Quantum Mechanics.

Date: Jul 21, 2005 04:00 PM

URL: http://pirsa.org/05070115

Abstract:

Pirsa: 05070115

The Frequency Operator in Quantum Mechanics

Rüdiger Schack

Royal Holloway, University of London

in collaboration with

Carlton M. Caves (University of New Mexico)

Pirsa: 05070115 Page 2/56

Plan

- 1. Overview
- 2. Frequency operator: finite N
- Finkelstein's theorem
- **4.** F^{∞} : naïve attempts
- Laws of large numbers
- 6. Constructing $\mathcal{H}^{\otimes \infty}$
- 7. F^{∞} : Gutmann 1995 approach
- 8. F^{∞} : Farhi, Goldstone and Gutmann 1989
- 9. Status of F^{∞}

Pirsa: 05070115 Page 3/56

Frequency

Outcomes of N=40 repeated measurements of an observable B:

3910239109234723462619281911921923199911

The outcome 1 occurs n = 10 times.

The frequency of 1 is f = n/N = 1/4.

Pirsa: 05070115 Page 4/56

Frequency operator

Observable B defined on a Hilbert space H.

A particular outcome, labeled 1.

On $\mathcal{H}^{\otimes N}$, define an observable F^N with eigenvalues f = n/N, where n counts how often 1 occurs in N measurements of B.

Define F^{∞} .

Prove that $|\Psi_{\infty}\rangle = |\psi\rangle \otimes |\psi\rangle \otimes \cdots$ is an eigenvector of F^{∞} with eigenvalue $q = |\langle \mathbf{1} | \psi \rangle|^2$.

Pirsa: 05070115 Page 5/56

Quantum Probability Postulate

QPP: Let $B = \sum_{\lambda} \lambda P_{\lambda}$ be an observable, where λ denotes the different eigenvalues of B and P_{λ} are orthogonal projectors onto the eigenspaces of B. If B is measured for a system in state $|\psi\rangle$, the probability of outcome λ is $||P_{\lambda}|\psi\rangle||^2$.

Postulate of Definite Outcomes (QPP'): If an observable B is measured for a system in an eigenstate $|\psi\rangle$ of B, i.e., $B|\psi\rangle = \lambda|\psi\rangle$, the outcome is λ with certainty.

Pirsa: 05070115 Page 6/56

Farhi, Goldstone and Gutmann 1989

"Without considering a limit of frequency operators F^N , we will define a frequency operator, F^∞ , and we will prove

$$F^{\infty}|\Psi_{\infty}\rangle = q|\Psi_{\infty}\rangle .$$

We can then apply QPP' to this exact eigenvector equation and the probabilistic interpretation follows."

Pirsa: 05070115 Page 7/56

Plan

- 1. Overview
- 2. Frequency operator: finite N
- Finkelstein's theorem
- 4. F^{∞} : naïve attempts
- 5. Laws of large numbers
- **6.** Constructing $\mathcal{H}^{\otimes \infty}$
- 7. F^{∞} : Gutmann 1995 approach
- 8. F^{∞} : Farhi, Goldstone and Gutmann 1989
- 9. Status of F^{∞}

Pirsa: 05070115 Page 8/56

Frequency operator: finite N

Observable B: $B|B,j\rangle = \lambda_j|B,j\rangle$

(j = 1, ..., D if D > 2, and j = 0, 1 if D = 2)

 $P_1 = |B, 1\rangle\langle B, 1|$ $P_0 = 1 - P_1$

Outcomes j_1, \ldots, j_N (eigenvalues $\lambda_{j_1}, \ldots, \lambda_{j_N}$)

Frequency of outcome 1: $f = \frac{1}{N} \sum_{r=1}^{N} \delta_{1j_r}$

Pirsa: 05070115 Page 9/56

3

F^N : Hartle version

Projector on all sequences of N outcomes giving rise to frequency f = n/N:

$$\Pi_n^N = \sum_{k_1, \dots, k_N \in \{0, 1\}} P_{k_1}^1 \otimes \dots \otimes P_{k_N}^N \delta\left(n, \sum_{r=1}^N k_r\right)$$
 (1)

Pirsa: 05070115 Page 10/56

Plan

- 1. Overview
- 2. Frequency operator: finite N
- Finkelstein's theorem
- **4.** F^{∞} : naïve attempts
- 5. Laws of large numbers
- 6. Constructing $\mathcal{H}^{\otimes \infty}$
- 7. F^{∞} : Gutmann 1995 approach
- 8. F^{∞} : Farhi, Goldstone and Gutmann 1989
- 9. Status of F^{∞}

Pirsa: 05070115 Page 11/56

Finkelstein's theorem

Let
$$|\Psi_N\rangle = |\psi\rangle^{\otimes N} \equiv |\psi\rangle \otimes \cdots \otimes |\psi\rangle$$

Then there is a unique number q such that

$$\lim_{N\to\infty} ||F^N|\Psi_N\rangle - \mathbf{q}|\Psi_N\rangle|| \equiv \lim \Delta = 0 ,$$

namely $q = |\langle B, 1 | \psi \rangle|^2$.

Pirsa: 05070115 Page 12/56

Finkelstein's theorem

Let
$$|\Psi_N\rangle = |\psi\rangle^{\otimes N} \equiv |\psi\rangle \otimes \cdots \otimes |\psi\rangle$$

Then there is a unique number q such that

$$\lim_{N \to \infty} ||F^N|\Psi_N\rangle - \mathbf{q}|\Psi_N\rangle|| \equiv \lim \Delta = 0 ,$$

namely $q = |\langle B, 1 | \psi \rangle|^2$.

Finkelstein: "[...] the ensemble $|\Psi_N\rangle$ is nearly an eigenstate of the mean F^N , as measured by the error Δ ."

Pirsa: 05070115 Page 13/56

F^{∞} : naïve attempt

Let
$$|\Psi_{\infty}\rangle = |\psi\rangle^{\otimes \infty} \equiv |\psi\rangle \otimes |\psi\rangle \otimes \cdots$$

Then define
$$F^{\infty}|\Psi_{\infty}\rangle=\lim_{N\to\infty}(F^N|\Psi_{\infty}\rangle)$$

Pirsa: 05070115 Page 14/56

Finkelstein's theorem

Let
$$|\Psi_N\rangle = |\psi\rangle^{\otimes N} \equiv |\psi\rangle \otimes \cdots \otimes |\psi\rangle$$

Then there is a unique number q such that

$$\lim_{N \to \infty} ||F^N|\Psi_N\rangle - \mathbf{q}|\Psi_N\rangle|| \equiv \lim \Delta = 0 ,$$

namely $q = |\langle B, 1 | \psi \rangle|^2$.

Finkelstein: "[...] the ensemble $|\Psi_N\rangle$ is nearly an eigenstate of the mean F^N , as measured by the error Δ ."

Pirsa: 05070115 Page 15/56

F^{∞} : naïve attempt

Let
$$|\Psi_{\infty}\rangle = |\psi\rangle^{\otimes \infty} \equiv |\psi\rangle \otimes |\psi\rangle \otimes \cdots$$

Then define
$$F^{\infty}|\Psi_{\infty}\rangle=\lim_{N\to\infty}(F^N|\Psi_{\infty}\rangle)$$

Pirsa: 05070115 Page 16/56

Plan

- 1. Overview
- 2. Frequency operator: finite N
- Finkelstein's theorem
- **4.** F^{∞} : naïve attempts
- 5. Laws of large numbers
- **6.** Constructing $\mathcal{H}^{\otimes \infty}$
- 7. F^{∞} : Gutmann 1995 approach
- 8. F^{∞} : Farhi, Goldstone and Gutmann 1989
- 9. Status of F^{∞}

Pirsa: 05070115 Page 17/56

Assuming QPP ...

$$\Pr\left(f = \frac{n}{N}\right) = ||\Pi_n^N |\Psi_N\rangle||^2 = \binom{N}{n} q^n (1-q)^{N-n}.$$

and thus (Finkelstein's theorem)

$$E\left((f-q)^2\right) \to 0 \text{ as } N \to \infty$$

Pirsa: 05070115 Page 18/56

Gleason's theorem

Assume there is a function h from the one-dimensional projectors acting on a Hilbert space of dimension greater than 2 to the unit interval, with the property that for each orthonormal basis $\{|\psi_k\rangle\}$,

$$\sum_{k} h(|\psi_k\rangle\langle\psi_k|) = 1.$$

Then there exists a density operator ρ such that

$$h(|\psi\rangle\langle\psi|) = \langle\psi|\rho|\psi\rangle$$
.

Pirsa: 05070115 Page 19/56

Assuming QPP ...

$$\Pr\left(f = \frac{n}{N}\right) = ||\Pi_n^N |\Psi_N\rangle||^2 = \binom{N}{n} q^n (1-q)^{N-n}.$$

and thus (Finkelstein's theorem)

$$E\left((f-q)^2\right) \to 0 \text{ as } N \to \infty$$

Pirsa: 05070115 Page 20/56

Strong law of large numbers

The probability laws $\Pr\left(f = \frac{n}{N}\right)$ for $N = 1, 2, \ldots$ determine a measure on the infinite sequences of outcomes.

Define f^{∞} to be the frequency of outcome 1.

Strong law of large numbers:

$$f^{\infty} = q$$
 almost certainly.

Pirsa: 05070115 Page 21/56

Assuming QPP ...

$$\Pr\left(f = \frac{n}{N}\right) = ||\Pi_n^N |\Psi_N\rangle||^2 = \binom{N}{n} q^n (1-q)^{N-n}.$$

and thus (Finkelstein's theorem)

$$E\left((f-q)^2\right) \to 0 \text{ as } N \to \infty$$

Pirsa: 05070115 Page 22/56

Strong law of large numbers

The probability laws $\Pr\left(f = \frac{n}{N}\right)$ for $N = 1, 2, \ldots$ determine a measure on the infinite sequences of outcomes.

Define f^{∞} to be the frequency of outcome 1.

Strong law of large numbers:

$$f^{\infty} = q$$
 almost certainly.

Pirsa: 05070115 Page 23/56

Plan

- 1. Overview
- 2. Frequency operator: finite N
- Finkelstein's theorem
- **4.** F^{∞} : naïve attempts
- Laws of large numbers
- **6.** Constructing $\mathcal{H}^{\otimes \infty}$
- 7. F^{∞} : Gutmann 1995 approach
- 8. F^{∞} : Farhi, Goldstone and Gutmann 1989
- 9. Status of F^{∞}

Pirsa: 05070115

The states $|B,j\rangle$ form an orthonormal basis for \mathcal{H} .

The states $|B, j_1\rangle \otimes \cdots \otimes |B, j_N\rangle$

form an orthonormal basis for $\mathcal{H}^{\otimes N}$.

Pirsa: 05070115

Constructing $\mathcal{H}^{\otimes \infty}$

Notation:
$$\{\psi\} = |\psi_1\rangle, |\psi_2\rangle, \dots$$

 $|\{\psi\}\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \otimes \dots$

Equivalence classes of sequences: $\{\phi\} \sim \{\psi\}$ iff there exists $N \geq 1$ such that

$$\prod_{r=N}^{\infty} |\langle \phi_r | \psi_r \rangle| > 0.$$

Pirsa: 05070115 Page 26/56

Components

The *component* $\mathcal{H}_{\{\psi\}}^{\otimes \infty}$ is the subspace spanned by all $\{\phi\} \sim \{\psi\}$.

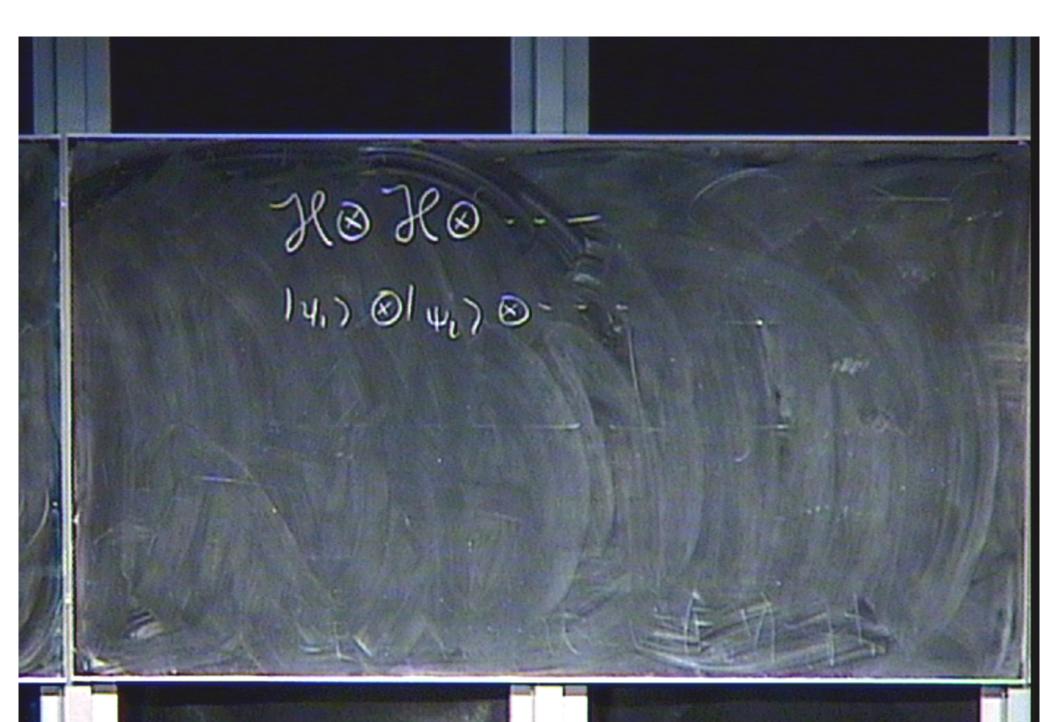
Pirsa: 05070115 Page 27/56

Countable basis of $\mathcal{H}^{\otimes \infty}_{\{m{\psi}\}}$

$$\{\psi\} = |\psi_1\rangle, |\psi_2\rangle, \dots$$

For each vector $|\psi_r\rangle$ in the sequence, choose an orthonormal basis $|\psi_r,0\rangle,\ldots,|\psi_r,D-1\rangle$ such that $|\psi_r,0\rangle=|\psi_r\rangle$.

Pirsa: 05070115 Page 28/56



Countable basis of $\mathcal{H}^{\otimes \infty}_{\{oldsymbol{\psi}\}}$

$$\{\psi\} = |\psi_1\rangle, |\psi_2\rangle, \dots$$

For each vector $|\psi_r\rangle$ in the sequence, choose an orthonormal basis $|\psi_r,0\rangle,\ldots,|\psi_r,D-1\rangle$ such that $|\psi_r,0\rangle=|\psi_r\rangle$.

Now define the sequences $\{i\} = i_1, i_2, \dots$ $(0 \le i_k \le D - 1)$ to be those with a *finite* number of nonzero terms.

The vectors

$$|\psi;\{i\}\rangle = |\psi_1,i_1\rangle \otimes |\psi_2,i_2\rangle \otimes \cdots$$

span $\mathcal{H}_{\{\psi\}}^{\otimes \infty}$.

Countable basis of $\mathcal{H}^{\infty}_{\{v\}}$

$$\{\psi\} = |\psi_1\rangle, |\psi_2\rangle, \dots$$

For each vector $|\psi_r\rangle$ in the sequence, choose an orthonormal basis $|\psi_r, 0\rangle, \ldots, |\psi_r, D-1\rangle$ such that $|\psi_r, 0\rangle = |\psi_r\rangle$.

Now define the sequences $\{i\} = i_1, i_2, ...$ $(0 \le i_k \le D - 1)$ to be those with a *finite* number of nonzero terms.

Pirsa: 05070115 Page 31/56

Plan

- 1. Overview
- 2. Frequency operator: finite N
- Finkelstein's theorem
- **4.** F^{∞} : naïve attempts
- Laws of large numbers
- **6.** Constructing $\mathcal{H}^{\otimes \infty}$
- 7. F^{∞} : Gutmann 1995 approach
- 8. F^{∞} : Farhi, Goldstone and Gutmann 1989
- 9. Status of F^{∞}

Pirsa: 05070115 Page 32/56

F^{∞} : Gutmann 1995 approach

Goal: Define F^{∞} on $\mathcal{H}^{\otimes \infty}$ and derive the following "strong law of large numbers":

For any component $\mathcal{H}_{\{\psi\}}^{\otimes \infty}$ and any state $|\Psi\rangle \in \mathcal{H}_{\{\psi\}}^{\otimes \infty}$,

$$F^{\infty}|\Psi\rangle = f_{\{\psi\}}|\Psi\rangle$$
,

where

$$f_{\{\psi\}} = \frac{1}{2} \left(\limsup_{N \to \infty} \frac{1}{N} \sum_{r=1}^{N} q_r + \liminf_{N \to \infty} \frac{1}{N} \sum_{r=1}^{N} q_r \right) ,$$

and

$$q_r = |\langle \psi_r | B, 1 \rangle|^2$$
.

The measure

The measures for all sequences beginning with j_1, \ldots, j_N (for all N)

$$\nu_{|\psi;\{i\}\rangle}(j_1,\ldots,j_N) = \int d\nu_{|\psi;\{i\}\rangle}(\{j'\}) \prod_{r=1}^N \delta_{j_r j_r'}$$

determine the measure $d\nu_{|\psi;\{i\}\rangle}$.

Pirsa: 05070115 Page 34/56

Frequency of component (1)

Frequency of 1 in $\{j\} = j_1, j_2, \dots$

$$f(\{j\}) = \frac{1}{2} \left(\limsup_{N \to \infty} \frac{1}{N} \sum_{r=1}^{N} \delta_{\mathbf{1}j_r} + \liminf_{N \to \infty} \frac{1}{N} \sum_{r=1}^{N} \delta_{\mathbf{1}j_r} \right)$$

Pirsa: 05070115 Page 35/56

Projector on frequency subspace

Projector Π_f^{∞} onto frequency f:

$$\left|\left|\Pi_f^{\infty}|\psi;\{i\}\rangle\right|\right|^2 = \int d\nu_{|\psi;\{i\}\rangle}(\{j\}) \, \Pi_f(\{j\}) \; ,$$

where

$$\Pi_f(\{j\}) = \begin{cases} 1 & \text{if } f(\{j\}) = f, \\ 0 & \text{if } f(\{j\}) \neq f \end{cases}$$

Pirsa: 05070115 Page 36/56

Frequency operator

We can thus define

$$\Pi_f^{\infty}|\psi;\{i\}\rangle = \begin{cases} |\psi;\{i\}\rangle & \text{if } f_{\{\psi\}} = f, \\ 0 & \text{if } f_{\{\psi\}} \neq f \end{cases}$$

Pirsa: 05070115 Page 37/56

Projector on frequency subspace

Projector Π_f^{∞} onto frequency f:

$$\left|\left|\Pi_f^{\infty}|\psi;\{i\}\rangle\right|\right|^2 = \int d\nu_{|\psi;\{i\}\rangle}(\{j\}) \, \Pi_f(\{j\}) \; ,$$

where

$$\Pi_f(\{j\}) = \begin{cases} 1 & \text{if } f(\{j\}) = f, \\ 0 & \text{if } f(\{j\}) \neq f \end{cases}$$

Quantum strong law of large numbers:

$$\left|\left|\Pi_{f}^{\infty}|\boldsymbol{\psi};\left\{i\right\}\right\rangle\right|\right|^{2} = \begin{cases} 1 & \text{if } f_{\left\{\boldsymbol{\psi}\right\}} = f, \\ 0 & \text{if } f_{\left\{\boldsymbol{\psi}\right\}} \neq f \end{cases}$$

Pirsa: 05070115 Page 38/56

Frequency operator

We can thus define

$$\Pi_f^{\infty}|\psi;\{i\}\rangle = \begin{cases} |\psi;\{i\}\rangle & \text{if } f_{\{\psi\}} = f, \\ 0 & \text{if } f_{\{\psi\}} \neq f \end{cases}$$

Pirsa: 05070115 Page 39/56

Alternative measures

The freedom in choosing the measure $d\nu$ leads to the following freedom in the probabilities q_r that determine the eigenvalues $f_{\{\psi\}}$ of F^{∞} :

$$q_r = \frac{|g(\langle \psi_r | B, \mathbf{1} \rangle)|^2}{\sum_{\mathbf{k}} |g(\langle \psi_r | B, \mathbf{k} \rangle)|^2}$$

instead of $q_r = |\langle \psi_r | B, \mathbf{1} \rangle|^2$ (i.e., g(x) = x).

Pirsa: 05070115 Page 40/56

Frequency of component (1)

Frequency of 1 in $\{j\} = j_1, j_2, \dots$

$$f(\{j\}) = \frac{1}{2} \left(\limsup_{N \to \infty} \frac{1}{N} \sum_{r=1}^{N} \delta_{\mathbf{1}j_r} + \liminf_{N \to \infty} \frac{1}{N} \sum_{r=1}^{N} \delta_{\mathbf{1}j_r} \right)$$

$$\int d\nu_{|\psi;\{i\}\rangle}(\{j\}) f(\{j\}) = f_{\{q\}} ,$$

where

Pirsa: 05070115 Page 41/56

The measure

The measures for all sequences beginning with j_1, \ldots, j_N (for all N)

$$\nu_{|\psi;\{i\}\rangle}(j_1,\ldots,j_N) = \int d\nu_{|\psi;\{i\}\rangle}(\{j'\}) \prod_{r=1}^N \delta_{j_r j_r'}$$

determine the measure $d\nu_{|\psi;\{i\}\rangle}$.

We choose

$$\nu_{|\psi;\{i\}\rangle}(j_1,\ldots,j_N) = \prod_{r=1}^N |\langle \psi_r, i_r | B, j_r \rangle|^2.$$

Pirsa: 05070115

Frequency operator

We can thus define

$$\Pi_f^{\infty}|\psi;\{i\}\rangle = \begin{cases} |\psi;\{i\}\rangle & \text{if } f_{\{\psi\}} = f, \\ 0 & \text{if } f_{\{\psi\}} \neq f \end{cases}$$

Pirsa: 05070115 Page 43/56

Alternative measures

The freedom in choosing the measure $d\nu$ leads to the following freedom in the probabilities q_r that determine the eigenvalues $f_{\{\psi\}}$ of F^{∞} :

$$q_r = \frac{|g(\langle \psi_r | B, \mathbf{1} \rangle)|^2}{\sum_{\mathbf{k}} |g(\langle \psi_r | B, \mathbf{k} \rangle)|^2}$$

instead of $q_r = |\langle \psi_r | B, \mathbf{1} \rangle|^2$ (i.e., g(x) = x).

Pirsa: 05070115 Page 44/56

Plan

- 1. Overview
- 2. Frequency operator: finite N
- Finkelstein's theorem
- **4.** F^{∞} : naïve attempts
- Laws of large numbers
- **6.** Constructing $\mathcal{H}^{\otimes \infty}$
- 7. F^{∞} : Gutmann 1995 approach
- 8. F^{∞} : Farhi, Goldstone and Gutmann 1989
- 9. Status of F^{∞}

Pirsa: 05070115 Page 45/56

F^{∞} : Farhi, Goldstone and Gutmann 1989 approach

Restrict attention to the component $\mathcal{H}^{\otimes \infty}_{\{\psi\}}$ where $|\{\psi\}\rangle = |\psi\rangle^{\otimes \infty}$

Within $\mathcal{H}_{\{\psi\}}^{\otimes \infty}$, construct (an uncountable set of unnormalized) simultaneous eigenstates $|b;\{j\}\rangle$ of B^1, B^2, \ldots , such that

$$\frac{\langle \psi; \{i\} | b; \{j\} \rangle}{\langle \psi; \{0\} | b; \{j\} \rangle} = \prod_{r=1}^{\infty} \frac{\langle \psi, i_r | B, j_r \rangle}{\langle \psi, 0 | B, j_r \rangle} ,$$

Pirsa: 05070115 Page 46/56

F^{∞} : Farhi, Goldstone and Gutmann 1989 approach

With this inner product, define a transformation between representations for any $|\Psi\rangle\in\mathcal{H}_{\{\psi\}}^{\otimes\infty}$ by

$$\langle \psi; \{i\} | \Psi \rangle = \int d\mu(\{j\}) \, \langle \psi; \{i\} | \, b; \{j\} \rangle \langle b; \{j\} | \Psi \rangle \;,$$

$$\langle b; \{j\} | \Psi \rangle = \sum_{\{i\}} \langle b; \{j\} | \psi; \{i\} \rangle \langle \psi; \{i\} | \Psi \rangle \ .$$

Now derive the form of $d\mu$ from the requirement that this transformation is an isometry.

Pirsa: 05070115 Page 47/56

F^{∞} : Farhi, Goldstone and Gutmann 1989 approach

Restrict attention to the component $\mathcal{H}_{\{\psi\}}^{\otimes \infty}$ where $|\{\psi\}\rangle = |\psi\rangle^{\otimes \infty}$

Within $\mathcal{H}_{\{\psi\}}^{\otimes \infty}$, construct (an uncountable set of unnormalized) simultaneous eigenstates $|b;\{j\}\rangle$ of B^1, B^2, \ldots , such that

$$\frac{\langle \psi; \{i\} | b; \{j\} \rangle}{\langle \psi; \{0\} | b; \{j\} \rangle} = \prod_{r=1}^{\infty} \frac{\langle \psi, i_r | B, j_r \rangle}{\langle \psi, 0 | B, j_r \rangle} ,$$

Pirsa: 05070115 Page 48/56

Plan

- 1. Overview
- 2. Frequency operator: finite N
- Finkelstein's theorem
- **4.** F^{∞} : naïve attempts
- 5. Laws of large numbers
- 6. Constructing $\mathcal{H}^{\otimes \infty}$
- 7. F^{∞} : Gutmann 1995 approach
- 8. F^{∞} : Farhi, Goldstone and Gutmann 1989
- 9. Status of F^{∞}

Pirsa: 05070115 Page 49/56

Status of F^{∞}

Conclusion: Unless QPP is assumed, there is no unique F^{∞} such that $F^{\infty}|\Psi_{\infty}\rangle=q|\Psi_{\infty}\rangle$.

Pirsa: 05070115 Page 50/56

Status of F^{∞}

Conclusion: Unless QPP is assumed, there is no unique F^{∞} such that $F^{\infty}|\Psi_{\infty}\rangle=q|\Psi_{\infty}\rangle$.

Now assume, hypothetically, that there exists such a unique frequency operator. One still cannot derive QPP by applying the Postulate of Definite Outcomes QPP'.

- 1. Probability 1 versus certainty: QPP' applied to F^{∞} is different from standard QM.
- 2. Frequency is a tail property: Any initial finite sequence of outcomes is independent of the limiting frequency.

Quantum Probability Postulate

QPP: Let $B = \sum_{\lambda} \lambda P_{\lambda}$ be an observable, where λ denotes the different eigenvalues of B and P_{λ} are orthogonal projectors onto the eigenspaces of B. If B is measured for a system in state $|\psi\rangle$, the probability of outcome λ is $||P_{\lambda}|\psi\rangle||^2$.

Postulate of Definite Outcomes (QPP'): If an observable B is measured for a system in an eigenstate $|\psi\rangle$ of B, i.e., $B|\psi\rangle = \lambda |\psi\rangle$, the outcome is λ with certainty.

Pirsa: 05070115 Page 52/56

Status of F^{∞}

Conclusion: Unless QPP is assumed, there is no unique F^{∞} such that $F^{\infty}|\Psi_{\infty}\rangle=q|\Psi_{\infty}\rangle$.

Now assume, hypothetically, that there exists such a unique frequency operator. One still cannot derive QPP by applying the Postulate of Definite Outcomes QPP'.

- 1. Probability 1 versus certainty: QPP' applied to F^{∞} is different from standard QM.
- 2. Frequency is a tail property: Any initial finite sequence of outcomes is independent of the limiting frequency.

Conclusion

1. If the quantum probability postulate QPP is assumed, we can define F^{∞} and derive a quantum strong law of large numbers.

 The probabilistic interpretation of the quantum formalism does not follow from the Postulate of Definite Outcomes QPP'.

Pirsa: 05070115 Page 54/56

Gleason's theorem

Assume there is a function h from the one-dimensional projectors acting on a Hilbert space of dimension greater than 2 to the unit interval, with the property that for each orthonormal basis $\{|\psi_k\rangle\}$,

$$\sum_{k} h(|\psi_k\rangle\langle\psi_k|) = 1.$$

Then there exists a density operator ρ such that

$$h(|\psi\rangle\langle\psi|) = \langle\psi|\rho|\psi\rangle$$
.

Pirsa: 05070115 Page 55/56

No Signal VGA-1

Pirsa: 05070115 Page 56/50