Title: Information flow in graph states computing

Date: Jul 21, 2005 11:30 AM

URL: http://pirsa.org/05070112

Abstract:

Pirsa: 05070112 Page 1/55

Measurements

Usually measurements are thought of as something one does at the end of the computation, not an integral part of the computation; with measurement based models the situation is very different, measurements play a central rule. However, measuring induces non-deterministic evolutions. This probabilistic drift can be controlled.

Pirsa: 05070112 Page 2/55

Quantum Pacman

Pirsa: 05070112

Quantum Pacman

Pirsa: 05070112

Commands

- N_i prepares qubit i in $|+\rangle$
- M_i^{α} projects qubit i with $\langle +_{\alpha} |$ or $\langle -_{\alpha} |$ * measurement outcome is $s_i = 0$ or 1
- ullet E_{ij} is controlled-Z applied at qubits i and j
- Local Pauli corrections: X_i , Z_i

Feed forward. measurements and corrections commands are allowed to depend on previous measurements outcomes, for example: C_i^s .

$$^*|+_lpha
angle:=|0
angle+e^{ilpha}|1
angle$$
 irsa: 05070112

Commands

- N_i prepares qubit i in $|+\rangle$
- M_i^{α} projects qubit i with $\langle +_{\alpha} |$ or $\langle -_{\alpha} |$ * measurement outcome is $s_i = 0$ or 1
- ullet E_{ij} is controlled-Z applied at qubits i and j
- Local Pauli corrections: X_i, Z_i

Feed forward. measurements and corrections commands are allowed to depend on previous measurements outcomes, for example: C_i^s .

 $|+_{\alpha}\rangle := |0\rangle + e^{i\alpha}|1\rangle$

Pirsa: 05070112

Patterns of computation

The basic computation unit consists of finite lists:

$$(V, I, O, A_n \dots A_1)$$

* Inputs and outputs may overlap, and this leads to optimization, in the sense of using fewer qubits.

Example: pattern $\mathfrak{H} := (\{1,2\},\{1\},\{2\},X_2^{s_1}M_1^0E_{12}N_2^0)$ implements Hadamard H.

Patterns of computation

The basic computation unit consists of finite lists:

$$(V, I, O, A_n \dots A_1)$$

* Inputs and outputs may overlap, and this leads to optimization, in the sense of using fewer qubits.

Example: pattern $\mathfrak{H} := (\{1,2\},\{1\},\{2\},X_2^{s_1}M_1^0E_{12}N_2^0)$ implements Hadamard H.

Properties

- Close under composition
- Universal
- Can be put in the NEMC form

Properties

- Close under composition
- Universal
- Can be put in the NEMC form

Pirsa: 05070112 Page 10/55

4. Determinism

Quantum Pacman

Pirsa: 05070112

Quantum Pacman

Pirsa: 05070112 Page 13/55

Flow

An entanglement graph with inputs and outputs, (G, I, O), has flow, if there exists $f: O^c \to I^c$ such that:

- $(i, f(i)) \in G$,
- there exist a partial order > such that:
- a) f(i) > i,
- b) for all $k \neq i$ neighbour of f(i) in G, k > i.

Flow

An entanglement graph with inputs and outputs, (G, I, O), has flow, if there exists $f: O^c \to I^c$ such that:

- $(i, f(i)) \in G$,
- there exist a partial order > such that:
- a) f(i) > i,
- b) for all $k \neq i$ neighbour of f(i) in G, k > i.

Pirsa: 05070112 Page 17/55

Pirsa: 05070112 Page 19/55

no-Flow example

Here is a geometry with no flow:

no-Flow example

Here is a geometry with no flow:

Pirsa: 05070112 Page 21/55

Determinism Theorem

Anachronical measurements $M_i^{\alpha}Z_i^{s_i}=\langle +_{\alpha}|_i$ are deterministic, since they are *projections*.

• [Theorem]. If (G, I, O) has flow, then the following pattern is deterministic:

$$\prod_{i \in O^c} (X_{f(i)}^{s_i} \prod_{k \in N_G(f(i)) \setminus \{i\}} Z_k^{s_i} M_i^{\alpha_i}) E_G$$

and computes $\prod_{i \in O^c} \langle +_{\alpha} |_i E_G$

Determinism Theorem

Anachronical measurements $M_i^{\alpha}Z_i^{s_i}=\langle +_{\alpha}|_i$ are deterministic, since they are *projections*.

• [Theorem]. If (G, I, O) has flow, then the following pattern is deterministic:

$$\prod_{i \in O^c} (X_{f(i)}^{s_i} \prod_{k \in N_G(f(i)) \setminus \{i\}} Z_k^{s_i} M_i^{\alpha_i}) E_G$$

and computes $\prod_{i \in O^c} \langle +_{\alpha} |_i E_G$

Proof

First we remark three things:

$$\langle +_{\alpha}|_{i} = M_{i}^{\alpha} Z_{i}^{s_{i}} \tag{1}$$

$$Z_i^{s_i} E_{ij} = X_j^{s_i} E_{ij} X_j^{s_i} \tag{2}$$

$$X_j^{s_i}(|+\rangle) = |+\rangle \tag{3}$$

Proof

First we remark three things:

$$\langle +_{\alpha}|_{i} = M_{i}^{\alpha} Z_{i}^{s_{i}} \tag{1}$$

$$Z_i^{s_i} E_{ij} = X_j^{s_i} E_{ij} X_j^{s_i} \tag{2}$$

$$X_j^{s_i}(|+\rangle) = |+\rangle \tag{3}$$

Proof (continued)

Next we consider the totally positive branch:

$$(\prod_{i \in O^{c}} \langle +_{\alpha} |_{i}) E_{G} =_{1}$$

$$(\prod_{i \in O^{c}} M_{i}^{\alpha_{i}} Z_{i}^{s_{i}}) E_{G} =_{2}$$

$$\cdots Z_{i}^{s_{i}} E_{if(i)} \prod_{k \neq i, k \in N_{G}(f(i))} E_{f(i)k} E_{G'_{i}} =_{2}$$

$$\cdots X_{f(i)}^{s_{i}} E_{if(i)} X_{f(i)}^{s_{i}} \prod_{k \neq i, k \in N_{G}(f(i))} E_{f(i)k} E_{G'_{i}} =_{EC}$$

$$\cdots X_{f(i)}^{s_{i}} E_{if(i)} \prod_{k \neq i, k \in N_{G}(f(i))} E_{f(i)k} X_{f(i)}^{s_{i}} \prod_{k \neq i, k \in N_{G}(f(i))} Z_{k}^{s_{i}} E_{G'_{i}} =_{3}$$

$$\cdots X_{f(i)}^{s_{i}} \prod_{k \neq i, k \in N_{G}(f(i))} Z_{k}^{s_{i}} E_{if(i)} \prod_{k \neq i, k \in N_{G}(f(i))} E_{f(i)k} E_{G'_{i}} X_{f(i)}^{s_{i}} =_{3}$$

$$\cdots X_{f(i)}^{s_{i}} \prod_{k \neq i, k \in N_{G}(f(i))} Z_{k}^{s_{i}} E_{G}$$

Proof (continued)

Next we consider the totally positive branch:

$$(\prod_{i \in O^{c}} \langle +_{\alpha} |_{i}) E_{G} =_{1}$$

$$(\prod_{i \in O^{c}} M_{i}^{\alpha_{i}} Z_{i}^{s_{i}}) E_{G} =_{2}$$

$$\cdots Z_{i}^{s_{i}} E_{if(i)} \prod_{k \neq i, k \in N_{G}(f(i))} E_{f(i)k} E_{G'_{i}} =_{2}$$

$$\cdots X_{f(i)}^{s_{i}} E_{if(i)} X_{f(i)}^{s_{i}} \prod_{k \neq i, k \in N_{G}(f(i))} E_{f(i)k} E_{G'_{i}} =_{EC}$$

$$\cdots X_{f(i)}^{s_{i}} E_{if(i)} \prod_{k \neq i, k \in N_{G}(f(i))} E_{f(i)k} X_{f(i)}^{s_{i}} \prod_{k \neq i, k \in N_{G}(f(i))} Z_{k}^{s_{i}} E_{G'_{i}} =_{3}$$

$$\cdots X_{f(i)}^{s_{i}} \prod_{k \neq i, k \in N_{G}(f(i))} Z_{k}^{s_{i}} E_{if(i)} \prod_{k \neq i, k \in N_{G}(f(i))} E_{f(i)k} E_{G'_{i}} X_{f(i)}^{s_{i}} =_{3}$$

$$\cdots X_{f(i)}^{s_{i}} \prod_{k \neq i, k \in N_{G}(f(i))} Z_{k}^{s_{i}} E_{G}$$

Pirsa: 05070112 Page 27/55

Remarks

The intuition of the proof is that the transfer equation converts an anachronical Z correction at i, into a pair of a 'future' X correction, the one sent to f(i) (so in the future, by condition (a)) and a 'past' X correction, sent to the past, until it reaches a preparation, where it is absorbed because of equation (3).

Remarks

The intuition of the proof is that the transfer equation converts an anachronical Z correction at i, into a pair of a 'future' X correction, the one sent to f(i) (so in the future, by condition (a)) and a 'past' X correction, sent to the past, until it reaches a preparation, where it is absorbed because of equation (3).

Pirsa: 05070112 Page 29/55

Consider geometry G(V, I, O) with flow function f. Let

$$K_{f(i)}^{s_i} = X_{f(i)}^{s_i} \prod_{k \in N_G(f(i))} Z_k^{s_i}$$

be the dependent stablizer operator at vertex f(i). We have:

Consider geometry G(V, I, O) with flow function f. Let

$$K_{f(i)}^{s_i} = X_{f(i)}^{s_i} \prod_{k \in N_G(f(i))} Z_k^{s_i}$$

be the dependent stablizer operator at vertex f(i). We have:

$$K_{f(i)}^{s_i} E_G = E_G$$

Pirsa: 05070112

Special case, Y measurement

We required $(i, f(i)) \in G$ but if we measure the quibt i with angle $\frac{\pi}{2}$ we can let f(i) = i since:

$$M_{i}^{\frac{\pi}{2}}X_{i}^{s}=M_{i}^{\frac{\pi}{2}}Z_{i}^{s}$$

Hence the dependent stablizer act at the same qubit and still removes the anachronical Z correction.

Special case, Y measurement

We required $(i, f(i)) \in G$ but if we measure the quibt i with angle $\frac{\pi}{2}$ we can let f(i) = i since:

$$M_{i}^{\frac{\pi}{2}}X_{i}^{s}=M_{i}^{\frac{\pi}{2}}Z_{i}^{s}$$

Hence the dependent stablizer act at the same qubit and still removes the anachronical Z correction.

Pirsa: 05070112

Special case

Special case

5. Adjoint pattern

5. Adjoint pattern

Pirsa: 05070112 Page 39/55

bi-Flow

An entanglement graph with inputs and outputs has bi-flow if both (G, I, O) and (G, O, I) has flow.

• [Theorem] If (G, I, O) has bi-flow and implements the CP-map T, then T is unitary and the pattern (G, O, I) implements T^{\dagger} :

bi-Flow

An entanglement graph with inputs and outputs has bi-flow if both (G, I, O) and (G, O, I) has flow.

• [Theorem] If (G, I, O) has bi-flow and implements the CP-map T, then T is unitary and the pattern (G, O, I) implements T^{\dagger} :

Pirsa: 05070112 Page 41/55

Proof

• In positive branch:

$$\mathfrak{H}_O \xrightarrow{|+_{\alpha}\rangle} \mathfrak{H}_V \xrightarrow{U} \mathfrak{H}_V \xrightarrow{\langle +_{\beta}|} \mathfrak{H}_I$$

where:

- Preparation (adjoint of a projection)
- U is a unitary (including entanglement and corrections)
- Projection
- The mirror branch implementing T^{\dagger} is given by:

$$\mathfrak{H}_O \xrightarrow{\langle +_{\beta} |^{\dagger}} \mathfrak{H}_V \xrightarrow{U^{\dagger}} \mathfrak{H}_V \xrightarrow{|+_{\alpha}\rangle^{\dagger}} \mathfrak{H}_I$$

Since $\wedge Z$ and Pauli corrections are self-adjoint, and preparations and projections are symmetric under adjunction, this branch belongs to the *adjoint pattern* \mathfrak{P}^{\uparrow} with inputs and outputs exchanged.

Pattern adjunction (examples)

Hadamard:

$$\mathfrak{H} = X_2^{s_2} M_1^0 E_{12} N_2^0$$

$$\mathfrak{H}^{\dagger} = X_1^{s_2} M_2^0 E_{12} N_1^0$$

so \mathfrak{H} is self-adjoint with inputs $\{2\}$, and outputs $\{1\}$.

Likewise for $J(\alpha)$:

$$\mathfrak{J}(\alpha) = X_2^{s_2} M_1^{-\alpha} E_{12} N_2^0$$

$$\mathfrak{J}(\alpha)^{\dagger} = X_1^{s_2} M_2^0 E_{12} N_1^{-\alpha}$$

$$\bullet \qquad \bullet \qquad \square$$

Pattern adjunction (examples)

Hadamard:

$$\mathfrak{H} = X_2^{s_2} M_1^0 E_{12} N_2^0$$

$$\mathfrak{H}^{\dagger} = X_1^{s_2} M_2^0 E_{12} N_1^0$$

so \mathfrak{H} is self-adjoint with inputs $\{2\}$, and outputs $\{1\}$.

Likewise for $J(\alpha)$:

$$\mathfrak{J}(\alpha) = X_2^{s_2} M_1^{-\alpha} E_{12} N_2^0$$

$$\mathfrak{J}(\alpha)^{\dagger} = X_1^{s_2} M_2^0 E_{12} N_1^{-\alpha}$$

Proof

• In positive branch:

$$\mathfrak{H}_O \xrightarrow{|+_{\alpha}\rangle} \mathfrak{H}_V \xrightarrow{U} \mathfrak{H}_V \xrightarrow{\langle +_{\beta}|} \mathfrak{H}_I$$

where:

- Preparation (adjoint of a projection)
- U is a unitary (including entanglement and corrections)
- Projection
- The mirror branch implementing T^{\dagger} is given by:

$$\mathfrak{H}_O \xrightarrow{\langle +_{\beta} |^{\dagger}} \mathfrak{H}_V \xrightarrow{U^{\dagger}} \mathfrak{H}_V \xrightarrow{|+_{\alpha}\rangle^{\dagger}} \mathfrak{H}_I$$

Since $\wedge Z$ and Pauli corrections are self-adjoint, and preparations and projections are symmetric under adjunction, this branch belongs to the adjoint pattern \mathfrak{P}^{\uparrow} with inputs and outputs exchanged.

Proof

In positive branch:

$$\mathfrak{H}_O \xrightarrow{|+_{\alpha}\rangle} \mathfrak{H}_V \xrightarrow{U} \mathfrak{H}_V \xrightarrow{\langle +_{\beta}|} \mathfrak{H}_I$$

where:

- Preparation (adjoint of a projection)
- U is a unitary (including entanglement and corrections)
- Projection
- The mirror branch implementing T^{\dagger} is given by:

$$\mathfrak{H}_O \xrightarrow{\langle +_{\beta} |^{\dagger}} \mathfrak{H}_V \xrightarrow{U^{\dagger}} \mathfrak{H}_V \xrightarrow{|+_{\alpha}\rangle^{\dagger}} \mathfrak{H}_I$$

Since $\wedge Z$ and Pauli corrections are self-adjoint, and preparations and projections are symmetric under adjunction, this branch belongs to the *adjoint pattern* \mathfrak{P}^{\dagger} , with inputs and outputs exchanged.

Graphs with flow

- The choice of angles are not important (except for the loops)
- The combinations of two such graphs has flow
- For graphs with bi-flow we obtain directly the adjoint pattern
- It is enough to compute the positive branch
- a projection based quantum model

Graphs with flow

- The choice of angles are not important (except for the loops)
- The combinations of two such graphs has flow
- For graphs with bi-flow we obtain directly the adjoint pattern
- It is enough to compute the positive branch
- a projection based quantum model

Pirsa: 05070112 Page 48/55

- Abstract condition on N, E, M, C commands for having flow
- Including local complementation operation in the flow search
- The converse theorem
- Full characterization of graph with & without flow
 - → Fault tolerant and stability of preparation
 - → Blind quantum computing and information security
 - → New paradigm for quantum algorithms

- Abstract condition on N, E, M, C commands for having flow
- Including local complementation operation in the flow search
- The converse theorem
- Full characterization of graph with & without flow
 - → Fault tolerant and stability of preparation
 - → Blind quantum computing and information security
 - → New paradigm for quantum algorithms

Pirsa: 05070112 Page 50/55

- Distributed measurement-based quantum computation (quant-ph/0506070) Vincent Danos, Ellie D'Hondt, Elham Kashefi, Prakash Panangaden.
- Determinism in the one-way model (quant-ph/0506062) Vincent Danos, Elham Kashefi.
- 1-qubit versus 2-qubit measurement based quantum computing (2005, Draft) Vincent Danos, Elham Kashefi.
- Pauli Measurements are universal (QPL'05) Vincent Danos, Elham Kashefi.
- The Measurement Calculus (quant-ph/0412135) Vincent Danos, Elham Kashefi, Prakash Panangaden.
- Robust and parsimonious realisations of unitaries in the one-way model (quant-ph/0411071) Vincent Danos, Elham Kashefi, Prakash Panangaden.

- Distributed measurement-based quantum computation (quant-ph/0506070) Vincent Danos, Ellie D'Hondt, Elham Kashefi, Prakash Panangaden.
- Determinism in the one-way model (quant-ph/0506062) Vincent Danos,
 Elham Kashefi.
- 1-qubit versus 2-qubit measurement based quantum computing (2005, Draft) Vincent Danos, Elham Kashefi.
- Pauli Measurements are universal (QPL'05) Vincent Danos, Elham Kashefi.
- The Measurement Calculus (quant-ph/0412135) Vincent Danos, Elham Kashefi, Prakash Panangaden.
- Robust and parsimonious realisations of unitaries in the one-way model (quant-ph/0411071) Vincent Danos, Elham Kashefi, Prakash Panangaden.

- Abstract condition on N, E, M, C commands for having flow
- Including local complementation operation in the flow search
- The converse theorem
- Full characterization of graph with & without flow
 - → Fault tolerant and stability of preparation
 - → Blind quantum computing and information security
 - → New paradigm for quantum algorithms

- Abstract condition on N, E, M, C commands for having flow
- Including local complementation operation in the flow search
- The converse theorem
- Full characterization of graph with & without flow
 - → Fault tolerant and stability of preparation
 - → Blind quantum computing and information security
 - → New paradigm for quantum algorithms

Pirsa: 05070112