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ll. The Wigner Function
lll. Discrete Phase Space
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General State of One Qubit
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State-Determination for One Qubit
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Each measurement defines an orthogonal basis,
and the three bases are “mutually unbiased.”
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State-Determination for a Pair of Qubits
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We are in effect making 9 measurements on pairs:
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Can We Be More “Efficient’”?

® A density matrix for 2 qubits
contains 4°—1=15 real parameters.

® A four-outcome measurement provides
4 — 1 = 3 independent probabilities.

@ So we need 15/3 = 5 different measurements.

|deally these measurements will be mutually unbiased:

Each eigenstate of one of them should be an equalFmagnitude

ks SUPErposition of the eigenstates of any other one. k-




There Do Exlst Five Mutually Unblased Bases

% Fields 1987, Calderbank et L
Bandyopadh et al. 2001, Pittenger & Rubin 2
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The Wigner Function

W(g.p)
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The Wigner function and probabilities

| W(q.p) dq dp = probability that the operator aQ+bP

a1 A takes a value between cand ¢'. i
darea




State Determination for a continuous degree of freedom.

® Measure the probability distribution for each aQ + bP. Get
the integral of the Wigner function over each direction.

® Reconstruct the Wigner function from these integrals.

@ Obtain the density matrix from the Wigner function.

This is tomography.
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Now back to a single qubit.
Do these measurements arise from a phase space!
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Phase Space for a Single Qubit

«— © k) l1 e »
OR P
—> © k] 0O e E]
7 1 B 1
q

g and p take values in {01}, with arithmetic mod 2.

The Wigner function representing the state of a qubit
will be a real function on this discrete phase space.
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The three “striations” of the one-qubit phase space
Each striation will be
® - O associated with an
. . L6 orthogonal basis.
Each line will be
. @ ® ©® associated with a
e 6 vector in that basis.
The Wigner function
is defined so that its
s d - sum over any line is the
® - O probability of the

associated vector.
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The next few slides are aimed at
assigning, in a natural way, a state
vector to each line of phase space.

Once this is done, the definition
of the Wigner function will be
determined.
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Translation Operators (for defining translational covariance)

T(l‘g)= XZ +— O «—> 0
X[N=|1) e
X[L)=|1) T 1
E, =2 - ; ';
Z|t)=I1) -
Zi—1b T
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What basis goes with the diagonal striation?

These lines are invariant

e ® ® - under a vertical translation
& ¢ @ followed by a horizontal
translation.

So we associate them
«— © ] with the eigenvectors of

—> @ E

t ! So this striation goes
with 2 measurement of
the y component of spin.
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Some freedom in the definition of the Wigner function
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Which eigenvector of Y
goes with which line!?

There are two possible assignments of vectors to lines,
so two possible definitions of the Wigner function.

In the following slide, we arbitrarily choose to associate

the +1 eigenstate of Y with the line = @

| &3 -
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A Wigner Function for a Single Qubit

The up state:

The negative
eigenstate

| of X+ Y+ 2

1.

:
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Now back to two qubits.
Do these measurements arise from a phase space’
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Phase Space for Two Qubits
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The “numbers” {0, 1 o.m} constitute the 4-element field.
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The Four-Element Field
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This is the only commutative, associative, and
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distributive arithmetic on 4 elements such that

addition and multiplication are both invertible.

0. 1 o =
5 - MBS
OCjljoja
| 0 | o|lo]|l
Gfiwmi |

Page 22/33




Pirsa: 05070105

The Five Striations

of the Two-Qubit Phase Space
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Translation Operators for Two Qubits
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What measurement goes with this striation (for example)?

L ]
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Each of these lines
is invariant under
three translations:

T 5

1.0’ (e o)’ '(0.1)
So, find simultaneous
eigenvectors of these
operators.

These eigenvectors
turn out to be the
“belle” basis.
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Freedom in the definition of the two-qubit Wigner function

Which vector in the YY basis goes with
each line in this striation?

There are 4 choices for the first line. The others are then
determined by the translation operators.

Similarly for the two weird striations.

S0 altogether there are 4 x 4 x 4 = 64 different ways to define
resmova VVigner function for two qubits. e




A Wigner Function for Two Qubits (based on a specific
assignment of state vectors to lines)
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Computing overlaps using the discrete Wigner function

Let pand p’be two quantum states (density matrices), and
let Wand W be their respective Wigner functions. Then,

Tr(pp) =dSWW,

where d is the dimension of the state space (d=4 for two qubits)
and the sum is over all points « of phase space.
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ies in the Wigner function

All states with only 4 nonzero entr
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Generalizing to All Finite Fields

- » 56 > = 4 g and p take values in the
e s & & 0 finite field that has d=r"
- T m e T T elements, where ris prime.
P o o e » a3
coriiinn [e=Sae] [p-Se
. == - Here {e | and {f} are bases for

the field, chosen appropriately,
and g and p,are in {0,1,..., r—1}.

0

Define translation operators: T

ap = XWZP @ --- @ X%ZPr,
Then we automatically get d+1 mutually unbiased bases
associated with the d+1 striations of phase space.
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The discrete ngner function and cIasmcaIrty

—~

Cormick, Galvao, Gottesman, Paz and Pittenger, 2005

Consider the set of pure states having non-negative W
for all possible definitions of W.

® These states have a description that grows
polynomially (in fact linearly) in the number of
particles.

® The unitary transformations that preserve this set of

states can be simulated efficiently on a classical
computer.
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Main Conclusions

® We can express quantum states of discrete systems
as real functions on a discrete phase space.

® Complete sets of mutually unbiased bases for the
state space emerge naturally from this construction.

These can be used for tomography.

® Positivity of W has quantum computational implications.
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Open problems

Classification of the possible definitions of W.

For any dimension d, does there exist a definition of W such
that the W of any product state is itself a product?

Yes, if d is a power of an odd prime. (Pittenger and Rubin)

Relation to toy models of quantum mechanics.

Different routes to the continuum?
Different “classical’”’ limits?
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