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We will look at quantum systems as dynamic systems.

A system is its potential (and actual) behaviour. We adopt the
standard way of looking at systems in Computer Science and in
Modal Logic: as dynamic systems, or “processes’.

To reason about dynamic systems, one can use a logic of
actions (or programs), which can be described in various ways:
propositional dynamic logic (PDL), dynamic frames, labeled
transition systems, dynamic algebra.

I will focus on a Quantum Dynamic Algebra as a complete
axiomatization of the algebra of quantum actions.
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The Algebra of Quantum Actions on a Hilbert space

Let H be a Hilbert space.

We introduce five notions: states, (testable) properties, quantum
tests, unitary actions, quantum actions.
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\ States and Properties

States : rays (one dimensional subspaces) of H, denoted by ¥
Logical Properties : sets of states S C X

In Quantum Logic, one usually concentrates only on properties
that can in principle be tested by measurements. These are called
experimental (or testable) properties.

In a Hilbert space, these correspond to closed linear subspaces of
H

The family of all closed linear subspaces of H is denote by L(H)
and L is the family of all corresponding subsets P = | JW of X
ris 0sprresponding to closed linear subspaces W C H). Page 5/35
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Quantum Actions ( or Programs)

A quantum action (or program), in our sense, is an abstraction of
real-life quantum programs, capturing only their input-output
(relational) behaviour.

As quantum actions over the Hilbert space H, we take all the
binary relations on states in X induced by projectors and unitary
evolutions on H, then we close this family under relational

composition RR’ and arbitrary unions | J; R; of relations.

The family of quantum actions over H is denoted by Q(X).
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Composition, Union, Measurementsi

Composition is needed to represent sequential composition of
programs, while unions are needed to represent non-deterministic
choice. A measurement can be represented as a union of mutually
orthogonal projectors.

Q(X) forms a complete lattice with inclusion, in which the
relational union | is the join. Moreover, (Q(X),. (J) forms a
quantale.

An action w € Q(X) is deterministic if its underlying relation
7 C X X X is a partial function.
3
We denote by D = D(X) the family of all deterministic gquantum
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Properties as Actions (or Programs)

For any property § € L, the projector onto the closed linear
subspace Wg corresponding to S will be denoted as S?7. We read
this as the quantum test of S

There exists a bijective correspondence between testable
properties S € £ and the projectors §7 € Q(X) on the
corresponding subspaces. So one can embedd £ into Q(X).

From now on, we identify a testable property S with the
corresponding test S? and hence we have:

L C Q)
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Properties as Actions (or Programs)

For any property S € L, the projector onto the closed linear
subspace Wg corresponding to S will be denoted as S§?7. We read
this as the quantum test of S

There exists a bijective correspondence between testable
properties § € £ and the projectors S? € Q(X) on the
corresponding subspaces. So one can embedd L into @(X).

From now on, we identify a testable property S with the
corresponding test S? and hence we have:

L C Q(%)

Note that the order relations < on £ and C on Q(X) differ!
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Image, Strongest Postcondition

The image of set § C X of states via an action w € Q(X) is given
by :

w(S) = {t: (s,t) € =}

For a state s € ¥ we put m(s) = w({s}).

The image of a testable property (via a non-deterministic action)
IS not necessarily testable! For this reason we introduce:

The strongest (testable) postcondition ensured by executing
action T on property S is given by

7S] =~~ (w(5)) = | | {s}
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‘Weakest Precondition

The weakest precondition of « with respect to (postcondition)
T C X is given by:

I=IE —t5:-nls)C ]

If T is testable then [w]T is also testable.

Note that we have the following Galois Duality, for all S.T C X:

SC[x]T iff n(S) C T

For testable properties S.T € L we can strengthen this to:
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Kernel of an action

The Kernel of an action = € Q(X) is given by:

Ker(w) = {s € X : w(s) = @}

This yields a testable property Ker(mw) € L, expressing the
impossibility (necessary failure) of action .

For test actions S7, the kernel corresponds to the
orthocomplement of §:

Ker(S?) =~ 8§
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Kernel as generalized orthocomplement

This suggests generalizing the orthocomplement notation to all
gquantum programs, by putting:

~: Q(F) — Q). ~ w:= Ker(n)

As an action (test), this represents a test for failure of the action =«
Observe that in general for Q € Q(X). ~~ ® # =.

But ~~w==wiff m € L.
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‘Conjunction and Choice

Note that we have the following, for any family of {P;}; of
testable properties :

AR: =~ (J~ P)

¢

This relates propositional conjunction with choice of actions, and
helps us understand Piron’s definition of the meet of testable

properties in terms of the choice between yes-no questions

(actions).
3

AS a consequence we also have:

| 1P —rua] } P
Pirsa: 05070103 : ¢ Page 15/35
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Composition and Weakest Precondition

Note that we have the following, for any testable properties P:

[®]P =~ (7. ~ P)

So the weakest precondition of properties is related to the
composition of actions.
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‘3. Quantum Dynamic Algebras

We abstract away now from the concrete algebra of quantum
actions over a Hilbert space, and define an abstract algebraic
structure, that captures all the main properties of Q(X).

We obtain Quantum Dynamic Algebras, as a complete
axiomatization of the algebra of quantum actions.

This is related to the algebraic semantics for PDL (cfr. Dynamic
Frame) in terms of dynamic algebra’s with tests and actions
(Pratt & Kozen ‘79). We extend thi¥ idea, linking it both to the
work on quantales to capture the dynamics of quantum systems,
and to the work of Soler and Mayet and others on the complete
axiomatization of the lattice of complete subspaces of a Hilbert
space.
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Notations

We put
Le=fuz:- 03

for the family of all “tests” (or “testable properties’ ). We use
variables p.q.... for elements of L.

k 0:=_|)0 Il z=ra O
[Epie——e (0 e gl NSpp—au ]
Pp<qiffpAgq=p plqiffp<~g
Lk pi :=~~ U; Pi

We also enote by At(L) the set of all atoms of L (corresponding

to “states”): :
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Notations

We put
Li-dhux: 03

for the family of all “tests” (or “testable properties” ). We use
variables p.q.... for elements of L.

0:=J0 1l =re0
Zlp:=~(2z-~pP) N;Pi :=~U~p;
Pp<qiffpAgq=p plqiffp<~g
|_]i p; :=~~ |J; pi

>
We also enote by At(L) the set of all atoms of L (corresponding
to “states”): :
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More Notations

Let U be the set of all “unitary evolutions”, defined as the
reversible orthogonality-preserving programes:

relu

iff:

xc gr-y=yg-x=1 and
r-~p=~(x-p)forallpeL.

We use variables u to denote the elements of 4.

The set D of deterministic programs can be defined as:

D:={z € Q:Va € At(L)3b € At(L)a < [z]b}

Observe for any deterministic program x € D and any atom
a € L, there exists at most one atom b € L such that:

a< [ylb.a £~y

If such a b exists, we write
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Strongest Post-Condition

The strongest post-condition internalizes the image-set inside L,
by taking its (quantum) join:

z[p] := | | z(p)

This is an element of £ which represents the (test corresponding
to the) biorthogonal closure of the image. But, for deterministic
programs, this closure coincides with the image, as defined above:

xr(a) = x|a]
Moreover, we have:

x deterministic ,a € At(L) = x[a] € At(L) U {0}
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Axioms for QDA’s

1. 0 € L ; or, equivalently: ~1 =0

2. (2..1) is a quantale generated by the set LU U.

3. Choice: [|J; z;]lp = A;lxilp : or, equivalently: ~ | J;z; = A\ ~ x;

4. Composition: [ - o]p = [w][o]p ; or, equivalently:

~(z-y)=[x]~y
R

5. Adequacy : pAq < [q]p, and also pA [plg < ¢q
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9 "Alomcity’: L s atom{stﬁc, i.e.:
p<|l{q € At(L) : q < p}

10. Mayet’s Condition. There exist p.q.r € L, u € U, such that:
p<[ulp,p#[ulp.q# 0.7 #0.q L.

11. Actions are determined by their behavior on atoms:
If z(a) = y(a) for all a € At(L), then x = y.

12. Image commutes with unions: (U;crx;)(P) = Uier xi(p).

The statement of the last two axioms 11. and 12. may look

set-theoretical, but these two axioms can be replaced by only one
non-set-theoretical axiom:
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Representation Theorem

Our axioms completely characterise quantum actions (or
programs):

Theorem 1. Every Quantum Dynamic Algebra is isomorphic to
an algebra of concrete quantum actions (i.e. a subalgebra of the
algebra Q(X) of quantum programs over some infinite-dimensional
Hilbert space).

We can use this algebraic setting to reason about quantum
actions. Hence this setting gives us an algebraic semantics for the
proof system of quantum dynamic logic QDL.
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Representation Theorem

Our axioms completely characterise quantum actions (or
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