Title: Nondeterministic testing of sequential quantum logic propositions on a quantum computer Date: Jul 19, 2005 04:00 PM URL: http://pirsa.org/05070102 Abstract: Pirsa: 05070102 Page 1/26 # Nondeterministic testing of SQL Propositions on a QC Matthew Leifer Perimeter Institute for Theoretical Physics QICL Workshop 17th-22nd July 2005 Pirsa: 05070102 Page 2/26 ### Outline 1) Introduction Logic, complexity and models of Computing - 2) Sequential Quantum Logic - 3) Testing an SQL proposition: Example - 4) Generalizations Higher dimensions, multiple propositions 6) Open questions Pirsa: 05070102 Page 3/26 # Nondeterministic testing of SQL Propositions on a QC Matthew Leifer Perimeter Institute for Theoretical Physics QICL Workshop 17th-22nd July 2005 Pirsa: 05070102 Page 4/26 ### Outline 1) Introduction Logic, complexity and models of Computing - 2) Sequential Quantum Logic - 3) Testing an SQL proposition: Example - 4) Generalizations Higher dimensions, multiple propositions 6) Open questions Pirsa: 05070102 Page 5/26 ### 1) Introduction Classical Computational Complexity Cook-Levin: SATISFIABILITY is NP complete. Given a Boolean formula, decide if there are truth value assignments to the elementary propositions that make the formula true. Pirsa: 05070102 Page 6/26 # 1) Introduction There is a model of classical computing based directly on Boolean logic. Pirsa: 05070102 Page 7/26 # 2) Sequential Quantum Logic - Developed in late 70's/early 80's by Stachow and Mittlestaedt. - Extended by Isham et. al. in mid 90's as a possible route to QGravity. Pirsa: 05070102 Page 8/26 ### 2) SQL: Structure $$\langle L, S, \sqcap, \neg, (,) \rangle$$ L is a set of elementary propositions and S is the set of sequential propositions given by: - If $a \in L$ then $a \in S$. - If $a, b \in S$ then $(a \sqcap b) \in S$. - If $a \in S$ then $\neg a \in S$. Not commutative: $a \sqcap b \neq b \sqcap a$ Associative: $(a \sqcap b) \sqcap c = a \sqcap (b \sqcap c) = a \sqcap b \sqcap c$ # 2) Sequential Quantum Logic - Developed in late 70's/early 80's by Stachow and Mittlestaedt. - Extended by Isham et. al. in mid 90's as a possible route to QGravity. Pirsa: 05070102 Page 10/26 ### 2) SQL: Structure $$\langle L, S, \sqcap, \neg, (,) \rangle$$ L is a set of elementary propositions and S is the set of sequential propositions given by: - If $a \in L$ then $a \in S$. - If $a, b \in S$ then $(a \sqcap b) \in S$. - If $a \in S$ then $\neg a \in S$. Not commutative: $a \sqcap b \neq b \sqcap a$ Associative: $(a \sqcap b) \sqcap c = a \sqcap (b \sqcap c) = a \sqcap b \sqcap c$ # 2) SQL: Hilbert Space Model Hilbert space: ${\cal H}$ Elementary propositions: $L(\mathcal{H})$ - projection operators on \mathcal{H} . Notation: [a] - operator associated to prop. a. Negation: $[\neg a] = I - [a]$ "NOT a". Sequential conjunction: $[a \sqcap b] = [b][a]$ "a AND THEN b". Note: Usual conjunction can be obtained by including limit propositions $$[a \wedge b] = \lim_{n \to \infty} ([b][a])^n$$ ### 2) SQL: Problems But it does not handle "coarse-grainings" well: # 2) SQL: Hilbert Space Model Hilbert space: ${\cal H}$ Elementary propositions: $L(\mathcal{H})$ - projection operators on \mathcal{H} . Notation: [a] - operator associated to prop. a. Negation: $[\neg a] = I - [a]$ "NOT a". Sequential conjunction: $[a \sqcap b] = [b][a]$ "a AND THEN b". Note: Usual conjunction can be obtained by including limit propositions $$[a \wedge b] = \lim_{n \to \infty} ([b][a])^n$$ Pirsa: 05070102 # 2) SQL: Problems But it does not handle "coarse-grainings" well: # 3) Testing an SQL Proposition The algorithm is based on recent QInfo inspired approaches to DMRG. Cirac, Latorre, Rico Ortega, Verstraete, Vidal, et. al. #### It has 3 main steps: - Prepare a "history" state that encodes the results of the underlying sequence of measurements. - Apply rounds of "renormalization" (coherent AND and NOT gates) to get the desired proposition. - Measure a qubit to test the proposition. # 2) SQL: Problems But it does not handle "coarse-grainings" well: # 3) Testing an SQL Proposition The algorithm is based on recent QInfo inspired approaches to DMRG. Cirac, Latorre, Rico Ortega, Verstraete, Vidal, et. al. #### It has 3 main steps: - Prepare a "history" state that encodes the results of the underlying sequence of measurements. - Apply rounds of "renormalization" (coherent AND and NOT gates) to get the desired proposition. - Measure a qubit to test the proposition. ### 3) Testing: History state Suppose we want to test a simple SQL proposition $d = \neg(a \sqcap b) \sqcap c$. $$x = a, b, c$$ $$[x] = |\psi_x\rangle \langle \psi_x|,$$ $$|\psi_x\rangle\in\mathbb{C}^2$$ Notation: $$[x^0] = [\neg x],$$ $$[x^1] = [x]$$ Define: $$U_x |0\rangle = |\psi_{\neg x}\rangle, \qquad U_x |1\rangle = |\psi_x\rangle$$ $$U_x |1\rangle = |\psi_x\rangle$$ History state: $$\sum_{j,k,m=0}^{1} |j\rangle_a |k\rangle_b |m\rangle_c [c^m][b^k][a^j] |\Psi\rangle_f$$ # 3) Testing: History state The history state is a kind of PEPS state. #### Starting state: $$|\text{start}\rangle = |\Psi\rangle_a |\Phi^+\rangle_{a'b} |\Phi^+\rangle_{b'c} |\Phi^+\rangle_{c'f} \text{ where } |\Phi^+\rangle = |00\rangle + |11\rangle$$ $$\sum_{j,k,m=0}^{1} |j\rangle_a |k\rangle_b |m\rangle_c [c^m] [b^k] [a^j] |\Psi\rangle_f = P_a \otimes P_b \otimes P_c |\text{start}\rangle$$ $$P_{\text{Pirsa: 05070102}} = \sum_{j,k,m=0}^{1} \left[x^{j} \right]_{km} |j\rangle_{x} \langle km|_{xx'} \qquad [x^{0}] = [\neg x], [x^{1}] = [x]_{\text{Page 20/26}}$$ # 3) Testing: History state #### How to prepare the history state: - i) Apply $U_a^{\dagger} \otimes U_a^T$ to qubits a and a'. - ii) Perform a parity measurement on a and a'. $$P_0 = \ket{00} \bra{00} + \ket{11} \bra{11}, \qquad P_1 = \ket{01} \bra{01} + \ket{10} \bra{10}$$ - iii) Perform CNOT $_{a\rightarrow a'}$ and discard a'. - iv) If outcome P_1 occurred then perform $U_aXU_a^{\dagger}$ on qubit b. - v) Repeat steps i) iv) for (b, b', c) and (c, c', f). # 3) Testing: Renormalization $$d = \neg (a \sqcap b) \sqcap c \qquad \qquad \sum_{j,k,m=0}^{1} \left| j \right\rangle_{a} \left| k \right\rangle_{b} \left| m \right\rangle_{c} \left[c^{m} \right] \left[b^{k} \right] \left[a^{j} \right] \left| \Psi \right\rangle_{f}$$ i) Compute $a \sqcap b$ by applying "coherent AND" to qubits a and b. $$A_{a,b} = |0\rangle_{a\sqcap b} \left(\langle 00| + \langle 01| + \langle 10| \rangle_{ab} + |1\rangle_{a\sqcap b} \langle 11|_{ab} \right)$$ $$\sum_{j,k=0}^{1} |j\rangle_{a\sqcap b} |k\rangle_{c} [c^{j}] [(a\sqcap b)^{j}] |\Psi\rangle_{f}$$ ii) Compute $\neg(a \sqcap b)$ by applying X to qubit $a \sqcap b$. $$\sum_{j,k=0}^{1} |j\rangle_{\neg(a\sqcap b)} |k\rangle_{c} [c^{j}] [\neg(a\sqcap b)^{j}] |\Psi\rangle_{f}$$ iii) Compute $$d$$ by applying $A_{\neg(a\sqcap b),c}$. $$\sum_{j=0}^{1} \ket{j}_d \left[d^j \right] \ket{\Psi}_f$$ # 3) Testing: Implementing AND $$A_{a,b} = |0\rangle_{a \sqcap b} (\langle 00| + \langle 01| + \langle 10|)_{ab} + |1\rangle_{a \sqcap b} \langle 11|_{ab})$$ is not a directly implementable. Instead, implement measurement: $$M_s = \frac{1}{\sqrt{3}} (|01\rangle [\langle 00| + \langle 01| + \langle 10|] + |11\rangle \langle 11|)$$ $M_f = (I - M_s^{\dagger} M_s)^{1/2}$ If M_s , discard 2nd qubit and proceed. If M_f , abort and restart algorithm from beginning. Algorithm will succeed with exponentially small probability in no. Note: □ gates. Pirsa: 05070102 Page 23/26 ### 4) Generalizations - Testing projectors of arbitrary rank. - Testing props on d-dimensional Hilbert space. - Need upper bound on d needed to get correct probs. for all formulae of length n. - Testing multiple propositions. - On disjoint subsets of an underlying sequence of propositions. - By copying qubits in the computational basis. Pirsa: 05070102 Page 24/26 # 6) Open Questions Can SQL be modified so that all sequential propositions can be tested? Modify definition of sequential conjunction. Restrict allowed subspaces. Is SQL the logic of an interesting model of computing? c.f. Aaronson's QC with post-selection. Renormalization: A new paradigm for irreversible quantum computing? Which DMRG schemes are universal for classical/quantum computing? Is there a natural quantum logic which has SAT problems that are NQP or Page 25/26