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Summary of Resulta:L

D=

——

In a general higher derivative theory of gravity
coupled to scalars ¢, and gauge fields A‘ ) the

near norizon geometry of extremal black Noles

Is:
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Summary of ersultg

D=

In a general higher derivative theory of gravity
coupled to scalars ¢s; and gauge fields Ay’ the

near norizon geometry of extremal black holes
Is:

R _.r: T A2 BT T o)
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Let V—detg L be the Lagrangian density.

Define:

f(i, v, €. 15'} .frf";vrsrj /—detg L

F(@,7,€ q.p) =27(e;q; — f(&, T, e.p))

For an extremal black hole of electric Charge 4
and magnetic charge D,

1. the values of {us}, {ei}, v1 and v, are ob-
tained by solving T

—

aF 2 g aF

dus duy duo

7 AR
; '!'j{_:._;

2. the black hole entropy Spg IS given by

o = F(ii. 625 &)
°BH = I(u,vzg,p)

at the extr—v‘nurh of F with respect to i, 7. &

Similar results hold for mc:rer dimensional black
holes. T




Generalization to D > 4:

Consider a theory of gravity coupled to scalars
¢s and anti-symmetric tensor gauge fields of
different rank.

We define a spherically symmetric extremal black
hole to have

1. near horizon geometry AdS»> x 5‘?_2,

2. all background fields invariant under the

SO(2,1) x SO(D — 1) symmetry of AdS> x
sb-2







General near horizon field configuration:

r N
r 2 ¥ L 7 LF | Y 5.} l:“:r- \ '2
as” = quadrtdr —uv — T :| + v
S Guv ll|I =7 . Ez'fo,D_z
)
Qs = Us , Fjr”' =e;,
(a) i o R =50,
H‘___Lr e —_ -I.r}f'l f:_:r,_,‘,____,-_}_g ! UEL L™ ) QD_E_

 (D—2) ;] ] -
dQE = nf{.. Jdzldz" - the line element on

I
J

the unit (D — 2)-sphere
H3) up_, © field strength associated with the
antisymmetric tensor (D — 3)-form fields

£2p_5 : the area of the unit (D — 2)-sphere.

= with 2 < ; < (D — 1) : coordinates along
this sphere.”

€ Is the totally anti-symmetric symbol with

3 —
En r -r:_:l Ty L
dmanal d L]







T he analysis proceeds in a manner identical to
the D=4 case.

— - —e,

Define f{!?. . :';"‘-._.’3?] = 'I':_._:vlr_'.._:: Vv — UEt_-? £

—

F(u,7,q,p) = 2w x the Legendre transform of f
with respect to &

1. @, v are obtained by extremizing F.

2. Spg = F at this extremum.

Assumption: The part of the lagrangian which
IS relevant for the construction of the black
hole solution depends only on the field strengths

and not on the gauge fields.

I.e. Chern-Simons terms, if present. do not af-
fect the black hole solution.
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The analysis proceeds in 3 manner identical to
the D=4 case.

Definelf(u,7,€.p) = Jsp-2 v/—detg L.
F(u,v,q,p Egrx the Legendre transform of f

with respect to &.
1. 4, v are obtained by extremizing F.

2. Spg = F at this extremum.

Assumption: The part of the !aardnglan which
IS relevant for the construction of the black
hole solution depends only on the field strengths
and not on the gauge fields.

l.e. Ch
f-:ect th

fIJ

Simons terms. i f present, do no 1ot af-
black hole solution
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The analysis proceeds in a manner identical to
the D=4 case.

Define!f(iu, v, €, p) = Jgp-2 v/—detgL.

F(ii, 7. g, p) = 2w x the Legendre transform of f
with respect to &

1. u, v are obtained by extremizing F.

2. Sgg = F at this extremum.

Assumption: The part of the lagrangian which
iIs relevant for the construction of the black
hole solution depends only on the field strengths
and not on the gauge fields.

I.e. Chern-Simons terms, if present, do not af-
fect the black hole solution.







Application to computation of the entropy
of elementary string excitations:

Consider heterotic string on M x S1

M: Some manifold of dimension < 5, such
that the resulting theory has A/ > 2 supersym-
metry.

Example of M: T™, K3, K3 x S1, SUSY pre-
serving orbifolds of the.--_.

Consider a fundamental heterotic string wound
multiple (w) times along S,

Exmtatronﬂ of the string: Left and right-moving

osc.llatron modes circulating along the string.
===

24 independent left-moving modes and 8 inde-

pPendent right-moving modes. 3
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Application to computation of the entropy
of elementary string excitations:

Consider heterotic string on M x S1

M: Some manifold of dimension < 5, sueh
e T — -‘_'-‘_-_'—-_|_—-

that the resulting theory has A/ > 2 supersym-
metry.

Example-of M: T™, K3, K3 x S, SUSY pre-
Sserving orbifolds of these, .- -,

Consider g fundamentazl heterotic string wound
e LS : 2Lnc
multiple (w) times along Cix

Excﬁatign_s of the string: Left and right-moving

oscillation modes circulating along the string.

+3
24 independent left-moving modes and 8 inde-
pendent right-moving modes. 2







BPS states: involve excitation of left-moving
modes only.

— carry a net momentum along S which is
quantized in units of 1/R.

R: radius of St
Consider a BPS state that winds w times along
S' and carries total momentm n/R along S1.

et ——

Number of such states: The number of ways
we can distribute the total momentum n/R
among individual modes.

Result for large n and w:

d(n,w) ~ exp(4mv/nw)

— Wwe associate a statistical entropy to this

Sstat = Ind(n,w) =~ 47/ nw







For large n angd w this state has large mass.

— might be described zs 3 black hole.

(2 solution to the equations of motion derived

from the effective action of strin theory)
= cLLUIVE action =iring

— WE Can associate 3 B_eiengtem_—_@;gmking en-
tropy Sg;r to this black hole.

Question: Is

SBH=S5tqs?

If true, this wouigd provide a Mmicroscopic expla-
nation of the Dlack hole entropy.

Unfortun ately Spy van i_@_e__s in the sumergra‘y{i_t}f
dbproximation to the effective action.
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For large n and this state has large mass.
——=T L —== TTidaS

— might be described as 3 ba K hole.
(a solution to the €quations of motion derived
from the effective action of string theory)

— We Can associate 3 BekﬂnsLem Hawkmg en-
tropy 55:;,- to this black hole.

Question: Is
- —\_._—"‘—_‘_\—-_.

SBH=Sst0¢?

—

If true, this would provide 3 Microscopic expla-
nation of the Dlack hole entropy.

Um"ortunatery Sph vanishes in the supergravity
dbproximation to the effective action.
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For large n and w this state has large mass.

et —r

— might be described as a black hole.

(a solution to the equations of motion derived
from the effective action of string theory)

— we can associate a Bekenstein-Hawking en-
tropy Sggy to this black hole.

Question: Is

-

SBH=Sstat?

If true, this would provide a microscopic expla-
nation of the black hole entropy.

Unfortunately Sy vanishes in the supergravity
approximation to the effective action.

A

lagi2om = S i GV L ~
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T his seems to be bad news!

However a look at the sﬂlutian shows that

1. String coupling is small at the horizon.

2. Higher derivative correction terms are large
at the horizon.

— can ignore string loop corrections but can-
not ignore the tree level higher derivative cor-
rections to the effective action.

Goal:

1. Construct the effective field theory describ-
ing heterotic string on M x S, keeping tree
level higher derivative terms.

2. Calculate the black hole entropy in this the-
ory using the techniques described earlier.







(1)

Convention:

g E — .
=1 =1 o =1

Es- - 1
z7: the coordinate along S1
Q. - % g = . - e
- IS periadic with period 27va/ = 8+

Define D-dimensional fields in terms of the ten
dimensional fields G{,j{:'\_:'. BY~ and «(10).

f

v N {10
o= T'=1/Ggg '
- 1 { 3 |
Guw =G, — (Ggg) L G gl10
1 1 10)~ 1 -
Ay’ = (Gae ey
-
iy S =
2) — > glio
~" O 1
— e T D |

Gur: string metric

—







I:_'u'}';

- -
1 rp ——. S e
S = — [d"zvV—detGS[Rg+ S “G*9,58,S

327 J
_I——-'." G'I.'.i.'-r’ l,’:_j“I-"I_-}_-;I 1z i-—? G_Li.:/ G_r'i'l.?'; F"i?:; FEj."}

__'r_z (THY G..'.LI.'JI F1::}F{2J]
L ! * v

-+ higher derivative terms

Consider a black hole with charge quantum

numbers (n,w).

.’l".
A, ° couples to n

=3
Aj; 7 couples to w.

Precise normalization:

71 =— —71 n = —qu
2 p 2
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L f.p = o —2 i =
= — |da zv—detGS|Rg+ S “G*8,58,S
327 J : '
—T—2G* 8,T3,T — T?>G* g*¥ F() p()
12 eV F2) (2
L
-+ higher derivative terms

Consider a black hole with charge quantum
numbers (n,w).

(1
A}’ couples to n

."F_j
A;;° couples to w.

Precise normalization:

i e Vo B
L 1
—_— e e
J1 — ] . — i
1 - 2 ~
e i
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Look for a near horizon solution of the form-

q . L B o = -—
ds< = vy | —r<dt< + v2d2hH_ 5.
e Z) T U242
— ug, = wT
FP =e

Note: The solution we are looking for does not
carry any magnetic charge.

Define:

- . f — e
f(us,up,v1,v3,e1,e5) = | dP2Q/—detC =

If we use string metric then L has an overall
factor of S and hence f has the form:

F=—n g -’rl(i';':-", U1, U2, €1, €3)

for some function k.
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Also £ is invariant under:
65 g A (1) (2 3 4(2)
1/ = . E:. — Ty e -‘l_f;]‘_‘fJ-‘if_- 5

O —3 -
(A consequence of z2 — e~7 z? transformation:
(10) 28 ~(10) ~(10) A8 ~(10)
99 T F Ggg - - (_Jg'h'- - e :I"i}{i =
(10 8 n(10)
B, — £ BGY )

i j\- —
[ ':"'[:ui':.ﬁ' ur,.v1,v2.€ e
\
= ] i't.t»:, ur,v1,vp,€1,2)
Combined effect:
g R o —
1 _I.
f(us, up,v1,v0, €1, e2) =ugg(vy, vo, urey, unt es)







=)

f(us, ur, v1,v2. €1, €2) = ug g(y1, ¥2, ¥3, ya)

Yyl =i,

——

y2 =v2, Y3

— =L
Y4 =€ up

S— Fs

V]
Il
m

-1 LE'_{-.

1. €2:

¥
(1]

9(¥1.92,93,94) =0

\, 5

af )

du; d

. b DRk

\OU2 *-j':f"j

"- = — .- - e

r.l'“f' dr}

ril = - — .I!\-\.- Lr » -

oS3 dy3

o, —
.'j —_— i
P ol ~
=2 Crtla
——— —_— — — —







e ———————eee —

dg dg
- ——— . 3 Y — N 2 - —
9(y1.¥2:¥3.¥4) =0, ys— =ya—,
3y3 Fya
ag dg
dy1 ay2

Solving these equations we get universal (g;
independent) values of y1, y2, ¥3, ya.

T he equations

dg —1 99
e —Uglig:_——; g2 = ugup ——
Jy3 " Oya
now give:
B dg dg
== T ET | ——
Y JYy3z oya
oa :'_:J.-}
T =4/ \91, gz2) — : . — I:”l - :)I 'x.":r.?l. g )
I "'.-'_ fd :-"_’; 3




dg Jdg
\ "I-_}UE 53)'4

T =/ (91/92) (y3/ys)

— = —— —_— ——
The entropy is given by:
.d——'_‘——\.\___\_ — —
SBH = 2m(eiq T-€292 —ugg)
= 27 (¥3ur 91 +yqurgo)
= 47\/q192 \/Y3ys = 2mv/nw /Y34

e
S —

Since y; are universal,

_,J'?.l'-’ — drl. L{‘L VvV LI

K. 3 universa) number

Also note: Since s X vnw is large for large
n,w, string _GL.D!mf: at the horizon is small.




| ——— ——
| e —
; Y3 =ejur, | yga = ,Edrl
! 9(Y1.¥2.y3,.94) =
, | dg Og

‘ us = /q192/ 1/ ——-
_5 L Y dy33yg

ur = /(e1/92) (y3/v4)
| — e — e

The entropy is given by:

Spg = 2m(e1q1 + €292 —ugg)
| = 27 (yz3ur 91+ vaurqo)
= 4m\/q192 /Y3ys = 27/nw VY3Ys.-
Since y; are universal,
Spg = 47 K /nw

K> a universal number

'

n.w, string coupling at the horizon is small.

Also note: Since ug oc vaw is large for large




Sgg and Ssi: have the same dependence on 7

and w. As. ; PEET
-’-_.'Ln',h-.\.
T

Can we calculate K7

For this we need to know L to all orders in o'
For D — 4, K has been calculated by taking
into account a special class of higher derivative
terms which come from the supersymmetriza-
tion of the curvature squared terms.

— A T

ardoso, de Wit, Mohaupt

Result: K=1 Dabholkar
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Spr and Sge: have the same dependence on n

and w.

S

- =

ij|
M

-

=

i'i

P )
TR

Can we calculate K7

For this we need to know L to all orders in o'.
For D = 4, K has been calculated by taking
Into account a special class of higher derivative
terms which come from the supersymmetriza-
tion of the curvature squared terms.

Cardoso, de Wit, Mohaupt

Result: K =1 Dabholkar
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We shall legve this calculation dS an exercise:

12 Calculate the function f after taking into
dCccount the correct ion terms arising out of SU-
persymmetrization of Curvature squared terms.

These correction terms can be found in hep-
th/0007195

The traf"ISJatiC‘.'F] from the variables used in hep-
Lh;’ODO?LGS to the variables used here can be
found in hep-th ’“"2141 1255.

2. Using f, Calculate the entropy ﬂJﬂCtiGI‘I F,
extremize it, and ﬂudluate ITS value at the ex-
tremum.

Show that the result is 4=/nw
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We shall leave this calculation as an exercise:

1. Calculate the function f after taking into
account the correction terms arising out of Su-
persymmetrization of curvature squared terms.

These correction terms can be found in hen—
tthDD?lQS

The transiation from the variables used in he;::—
th/0007195 to the variables used here can be
found in hep-th/0411255.

2. Using f, calculate the entropy function F,

extremize it, and evaluate its value at the ex-
tremum.

Show that the result is 4/ nw.




1. Calculate the function [ after taking intg
dCcount the COrrection terms arising Out of sy-

These corre::-tr‘o_n terms can be found in hep-

—

th/0007195
£71/000719¢

The transiation from the variables Used in hep-
_thgm_ogzl_g_a to the variables yseqd here can pe
found in hep-th, D4_11255.

2. Using f. calculate the eNtropy function F,
extremrg;e I't, and €valuate its vajye at the ex-
tremum,.

Show that the resyjt js 4mv/nw.







We shall illustrate the method by considering
a different tru wca*ror of higher derivative cor-
rections for general D

Begin with the supernraww approximation to
the efFectwe action.

—_— —
l r

S5 = -—-JJ' (f""' \,-—CJE-"FS[H{'“—S (-H“/U; Saph

| 327
[ |
—T %G 8,T3,T — T2 g qu'v FOp@
LrLF |
1 2) ~(2)
s EC*“GJJF 9 J0erd |
e s ]
S =
This gives 2 i
f(v1,v2,u5,ur,e1,e2) = J;_:_: -‘:D_:’ ‘us




We shall illustrate the method by considering
a different truncation of higher derivative cor-
rections for general D.

Begin with the supergravity approximation to
the effective action.

1 [ — 5
| 5 = —_— IJI {_.-i_rDJ: N — GEtG o [HJ. - 5 .J_L-' Uu d.'_,!u
| 327 o \
- —2 o~ o g - T2 L v (1) (1)
—T C"" "_}___J'.'. CI,-_:I' _ J{ ':._J: G'L ..[E' FREr F f
/ pp’ = o
_T-E G_.'!:.—' GI.'_.[..'I f" xh- g:"._'—al]
vyt 42
Th|5 gives see =
_Jr(i.. 2 u." T '.-" "*—:; = -;;;: 1 I-f\“’ = --Ln'.:
[ 2 (D—2)(D-3)
T T 2 e2
T ug vf |

Q2p_>: volume of unit (D — 2)-sphere.

df/8us =0 and 8f/8v> = 0 has no solution.







Add to £ the Gauss-Bonnet combination:

AL=C 1;T 1ir:EC:LH..T¢HﬁJ‘T(; T 412(;,:1/-'&??/ 2w R{:’E: Ir'
For heterotic string theory ¢ = 1.
— additional contribution to f:
| Q T =" S it
AN — H‘J_E U ;-_'%‘U 'J'Euq
32 — 2
C
— (D —2)(D - 3)(D —4)(D — 5)
| Us
8C ]
- (D—-2)(D - 3}|
Ul vuo ]
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Now solve
g ayy af bl f_'}f

|
Q

|
[T
%]
|
|

A solution exists.

2> = 4C[(D—2)(D—-3)—(D—4)(D-5)],

I
e —— —
- L
1 =
1 —= —-
(D —2)(D —3)
= 2p_= O
us = v, O ug
2% =
[ 16 1-1/2
— i 4 fm ~% F T " N ' ——
By E = (v2+4C(D—-2)(D—3)) y TLIL
_i'_-l.:
— = ———
T
e — [ —
1 %
L JI - — il mr——T—— ——
e e T e —
51 ur Uy T
— e —— e B— - —
1 :3:_5 = =2 a— 1\ =
.y re L LE L
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Spr = 2n(qie1 + qzez} - £
= 4mvnw,y/l— ( )( 5)

' 2(D—-2)(D —-3)

— has the correct dependence on n and w, but

— does not give the correct answer.

This is not surprising since we have included
only part of the o corrections.

However this analysis demonstrates that higher
derivative corrections can make the entropy of
these black holes finite even though it vanishes
in the supergravity approximation.
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Spg = 2n(qie1 + goec} - £
— (D—4)(D —5)
— mvnw, /1l —
\ 2(D—-2)(D —3)

— has the correct dependence on n and w, but

e ———

— does not give the correct answer.

This is not surprising since we have included
only part of the o corrections.

However this analysis demonstrates that higher
derivative corrections can make the entropy of
these black holes finite even though it vanishes
in the supergravity approximation.







Spg = 2n(gqie1 + g2e2% - £)
NN = (17 =5)
= 4nm/nw,y/l—
C I| QI:D_E}{.D _3:}

Note: For D =4 (@nd D = 5}we get the correct

dnswer.

Is this an accident?
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