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Topological quantum computation

9.1 Agyvons. anyone?

A cemral theme of quantum theory = the concept of indistimguishable
particles (also called idemtical parficles). For =xample, all electrons m the
wotld are exactly alike. Therefors, for a system with mam electrons
an operation that erchanges two of the electrons (swaps their positions|
s a symmetty — it leaves the physics tnchanged. This ssmmetry =
repressnted by a unitary transformation acting on the mapy-slsctron wave
fomection.

For the mdistimgnishable particls in three ditmensional space that w=
normally talk about in physics, particls sxchangss ars reprassntad m ons
of two distinct wavs. [f the particles are bosaons (like, for example, *He
atoms o a superffmd), then an =xchange of two particles is represented by
the idemtity operator: the wave function is mvariant, and we say the par-
ticles obey Bose statistics. If the particles are fermions (ike, for example,
slactrons Im a metal), than an e=xchange 1= represented by multphcation
by (—1): the wave fanction changes sign, and we sav that the particles
ah ey Fermi statistics.

The comcept of idemtical-particle statistics becomes ambignous Inm one
spatial dimenston. The resson s that for two particles to swap positions
in ome dimension, the particles nesd to pass through one another. If the
wave function changes sign when two identical particles are exchanged,
we conld sav that the particles are noninteracting fermions, hut we conld

[ ¥
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Quantum
Computation

Feynman ‘81  Deutsch “85 Shor “94

Pirsa: 05060104

4




computer that operates on quantum states can
perform tasks that are beyond the capability of
any concervable classical computer.

irsa:



Quantum computer: the model
(1) Hilbert space of n qubits: ) = ((Cjn )

spanned by g
x)=x )®|x ,)Q---Q|x)®|x,), xe {O,l}

Important. the Hilbert space is equipped with a natural tensor-
product decomposition into subsystems.

C"=C’0C*®C’®---QC
n times

Physically, this decomposition arises from spatial locality.
Elementary operations (“quantum gates’) that act on a small
number of qubits (independent of n) are “easy;” operations that
act on many qubits (increasing with n) are “hard.”

@pinitial state: | 000...0) = 0)~"




Quantum computer: the model

(3) A finite set of fundamental qdanTu{r.‘xkﬁ_teL
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Quantum computer: the model

(4) Classical control:

The construction of a quantum circuit is directed by a classical
computer, /.e., a Turing machine. (We're not interested in what a
quantum circuit can do unless the circuit can be designed
efficiently by a classical machine.)

(9) Readout:

At the end of the quantum computation, we read out the result
by measuring ¢ _ . I.e., projecting onto the basis {‘ 0>,| 1>}

(We don't want to hide computational power in the ability to
perform difficult measurements.)

Pirsa: 05060104 Page 12/80




Quantum computer: the model

(1) n qubits
(2) initial state
(3) quantum gates

(4) classical control
(5) readout

Clearly, the model can be
simulated by a classical
computer with access to a
random number generator.

But there is an expor-zntial
slowdown, since the simulation
involves r..atrices of exponenual
size.

The quantum computer might solve efficiently some
problems that can’'t be solved efficiently by a classical
computer. (“Efficiently” means tliat the number of
quantum gates = polynomial of thc number of bits of

At to the problem.)




Quantum
Error Correction

i Shor ‘95 Steane “95..



Quantum information can be protected,
and processed fault-tolerantly.

f Shor ‘95 Steane “95...
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Fault-tolerant quantum computing

Threshold Theorem: Suppose that faults occur
Independently at the locations within a quantum circuit, where

the probability of a fault at each location is no larger than =
Then there exists g, > 0 such that for a fixed < g, and fixed o
> (). any circuit of size L can be simulated by a circuit of size L~
with fidelity greater than 1-0, where, for some constant c,

1*=0| L(logL) |

The numerical value of the accuracy threshold ¢, Is of practical
Interest --- we know that 5,> 2.7 x 10 ... (and believe that the

threshold is much larger, e.g., ,> 10> )

P 05060104
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Essential asumptions:

» Constant fault rate (Independent of number of qubits).

» Weakly correlated faults (both in space and in time).

» Parallelism (to correct errors in all blocks simultaneously.)

» Reusable memory (to refresh ancillas that carry away entropy
iIntroduced by errors).

Helpful assumptions (used in threshold estimates):

» Fast measurements (to read out error syndromes — without
measurement, threshold is more demanding).

» Fast classical processing (to interpret error syndromes).

» Nonlocal gates (with local gates, threshold is more
demanding).

irsa: 05060104 Page 21/80
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Two Physical Systems
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Two Physical Systems

What is the difference between:

i:i ﬁ; ~
Y , . [
A: Human

Imperfect hardware.
Hierarchical architecture with
error correction at all scales...

B: Chip

Reliable hardware.
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Topology
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Topology
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Topological quantum computation (kitaev '97, FLW ‘00)

Freedman
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Topological quantum computation («itaev 97, FLW ‘00)
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Topological quantum computation (kitaev '97, FLW ‘00)

B AL AU B

Physical fault
tolerance with
nonabelian anyons:

uncontrolled
exchange of
quantum numbers
will be rare if
particles are widely
separated, and
thermal anyons are
suppressed...




Models of (nonabelian) anyons

A model of anyons Is a theory of a two-dimensional medium with a mass
gap, where the particles carry locally conserved charges. We define the
model by specifying:

1. A finite list of particle /abels {a.b,c,...}. These indicate the possible
values of the conserved charge that a particle can carry. If a particle is
kept isolated from other particles, its label never changes. There is a
special label “0" — indicating trivial charge, and a charge conjugation
operator C: a « a (where 0=0). (Note: for “particle” you may read
“‘puncture.”)

2. Rules for fusing (and splitting). These specify the possible values of the
charge that can result when two charged particles are combined.

3. Rules for braiding. These specify what happens when two neighboring
particles are exchanged (or when one Is rotated by 2n).

a, a, a; a, a
3 3 4 9
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Fusion

Fusion rules: a X b = Z f\'r;b C = b Xd

Fusion vector space:

o=
o>

(Cf., intertwiners, In
group representation

theory.)
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Fusion
Fusion rules: axp— Z 1\2,1 c—bxa

i Ve ~V° ~y° =~
Fusion vectorspace: V ., =V, =V ,_ =-"-
L."rh D

doC
dim(V5,) = N;
- . ab’ — " ha
o @
0

a a
The charge 0 fuses trivially, and a is
the unique label that can fuse with a
to yield charge O. I/

|12

a 0
-II. . ..III
|_. . J
da

O
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Fusion b
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An anyon model is said to be nonabelian if for some ¢, and 5,
: g i C
dim(®77;) = > N o3

Then there is a “topological Hilbert space” that can encode
nontrivial quantum information. This encoding Is nonlocal; the
information is a collective property of the two anyons, not
localized on either particle. When the particles with labels «
and 5 are far apart, different states in the topological Hilbert
space look identical to local observers. In particular, the
quantum states are invulnerable to decoherence due to local
wteractions with the environment. That is why we propose &@s
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Fusion b
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Abelian vs. nonabelian

Abelian anyon models can also be used for robust
quantum memory, €.9g., a model of Z, fluxons and
their dual Z, charges. A qubit is realized because
the Z, flux in a hole can be either trivial or nontrivial
(the information is carried by the labels themselves,
not by the fusion states). This information is hidden
from the environment by making the holes large and
keeping them far apart (to prevent flux from
tunneling from one hole to another, or to the outside
edge, and to prevent the world lines of charges
from winding about holes). - Kitaev (1996)

However, this information may not be easy to read out. We'd need to
contract a hole to see If a particle appears, or perform a delicate
Interference experiment to detect the flux, or ...

Alternatively, by mixing the Z, with electromagnetic U(1), we might do the
readout via a Senthil-Fisher type experiment (i.e., one that would actually
work)! -- loffe et al. (2002)

AtfWay, with nonabelian anyons we can exploit topology not just to stdre™
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Fusion

| S
® >

a b

{:

When we hide the quantum state from the environment, we
hide it from ourselves as well! But, when we are ready to read
out the quantum state (for example, at the conclusion of a
quantum computation), we can make the information locally
visible again by bringing the two particles together, fusing
them into a single object. Then we ask, what is this object’'s
label? In fact, it suffices (for universal quantum computation)
to be able to distinguish the labelc =0 fromc +0. It is
physically reasonable to suppose that we can distinguish
annihilation “into the vacuum™ (¢ = 0) from a lump that is
tirrable to decay because of its conserved charge (¢ £ 0). rwean




Abelian vs. nonabelian

Abelian anyon models can also be used for robust
quantum memory, €.g., a model of Z, fluxons and
their dual Z, charges. A qubit is realized because
the Z, flux in a hole can be either trivial or nontrivial
(the information is carried by the labels themselves,
not by the fusion states). This information is hidden
from the environment by making the holes large and
keeping them far apart (to prevent flux from
tunneling from one hole to another, or to the outside
edge, and to prevent the world lines of charges
from winding about holes). - Kitaev (1996)

However, this information may not be easy to read out. We'd need to
contract a hole to see If a particle appears, or perform a delicate
Interference experiment to detect the flux, or ...

Alternatively, by mixing the Z, with electromagnetic U(1), we might do the
readout via a Senthil-Fisher type experiment (i.e., one that would actually
work)! -- loffe et al. (2002)

AtfWay, with nonabelian anyons we can exploit topology not just to st&re™

e B Iﬁ“+l I T | ;HFA'I‘“H+;AH L"\I I+ ﬁiﬁ | p— +J"\ Sy L R, L, i e e :+I



Associativity of fusion: the F-matrix

(axb)xc=ax(bxc)

&
® >
® "

There are two natural ways to decompose the topological
Hilbert space T;b{ of three anyons in terms of the fusion
spaces of pairs of particles. These two orthonormal bases are
related by a unitary transformation, the /-matrix. (Cf., the 6;-

Pirsa: 05060104 Page 43/80

symbols, in group representation theory.)




Braiding: the R-matrix R: V. >V

a b

b :’\.a a. .b 4
\ ba 0

c

hen two neighboring anyons are exchanged counterclockwise,
heir total charge ¢ Is unaltered; since the particles swap positions,

e fusion space I, changes to the isomorphic space T ;. This

omorphism Is represented by a unitary matrix, the R-matrix.

The R-matrix also determines the

"';c?‘ topological spin of the label 4, i.e., the
\ phase acquired when the particle Is - —
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Models of (nonabelian) anyons

A model of anyons is a theory of a two-dimensional medium
with a mass gap, where the particles carry locally conserved
charges. We define the model by specifying:

1. A finite label set {a.h,¢,...}.

2. The fusion rules axb=> N-c

3. The F-matrix (expressing associativity of fusion).
4. The R-matrix (braiding rules).

These determine a representation of the mapping class group
(braiding plus 2= rotations), and define a unitary topological
modular functor (UTMF), the two-dimensional part of a (2+1)-
dimensional topological quantum field theory (TQFT) -

related to a (1+1)-dimensional rational conformal field theory
(RCFT).

a, a, d; a, a,
B B 4 9 D

Pirsa: 05060104 Page 45/80
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Example: Yang-Lee |
(Fibonacci) Model E ﬁ

1 1 Thecharge takes two possible values: Q (trivial)

and 1 (nontrivial, and self-conjugate). Anyons
have charge 1.Two anyons can “fuse’ in either

0orl of two ways: Ix1=0+1

This is the simplest of all nonabelian anyon models. Yet its
deceptively simple fusion rule has profound consequences.

In particular, the fusion rule determines the F-matrix and &-
matrix uniquely; the resulting nontrivial braiding properties

are adequate for universal quantum computation (pointed out
by Kuperberg).
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Nonabelian Anyons: Yang-Lee model |1 1

Suppose n anyons have a trivial total charge 0. Y
What is the dimension of the Hilbert space? Oorl

The distinguishable states of n anyons (a basis for the Hilbert
space) are labeled by binary strings of length n-3.




Nonabelian Anyons: Yang-Lee model |1 1

Suppose n anyons have a trivial total charge 0. Y
What is the dimension of the Hilbert space? 0orl
R FE R T ) E
) Bl olohononer. - 0.1 .

The distinguishable states of n anyons (a basis for the Hilbert

space) are labeled by binary strings of lengthn-3. |, |, ,

But it is impossible to have two zeros in a row:
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Nonabelian Anyons: Yang-Lee model |1 1
Suppose n anyons have a trivial total charge 0. Y
What is the dimension of the Hilbert space? 0orl
X K F OE | E |
: i - :

The distinguishable states of n anyons (a basis for the Hilbert

space) are labeled by binary strings of length n-3. |, |,

But it is impossible to have two zeros in a row:

]
1 1er~fore, the AlIniensiu® » a FluunauC NUN uel.

2 LRI 71 0 3 o

Asyl, totically, . e numbe, of (b2 ercoded by e .ch anyour ...
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Nonabelian Anyons: Yang-Lee model |1
Asymptotically, the number of qubits Y
encoded by each anyon is: 0or 1

|

log:rfﬁlogz[(lw?) 2}:10&(1.618):694

We say that 7 = ¢is the (quantum) dimension of the
Fibonacci anyon...

This counting vividly illustrates that the qubits are a nonlocal property of

the anyons, and that the topological Hilbert space has no particularly
natural decomposition as a tensor product of small subsystems.

Anyons have some “nonlocal” features, but they are not so nonlocal as to
profoundly alter the computational model (the braiding of anyons can be
efficiently simulated by a quantum circuit)...

irsa: 05060104 Page 50/80




The quantum dimension

Every anyon label ¢ has a quantum dimension, which we may
define as follows: Imagine creating two particle-antiparticle pairs,
and then fusing the particle from one pair with the antiparticle

from the other... i
c (J l
<Ot @ o
N a da

Annihilation occurs with probability 1 4 -. This is a natural
generalization of the case where the charge is an irreducible
representation R of a group &, where the "quantum dimension” is
just the dimension |R| of the representation (which counts the
number of “colors” going around the loop). But there is no logical
reason why a dimension defined this way must be can integer,
and in general it isn't an integer.
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The quantum dimension
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The quantum dimension

iy =% Nod
UL UL C

Therefore, the vector of quantum dimensions is the (Perron-
Frobenius) eigenvector of each fusion rule matrix, with
eigenvalue J

2 (N,)d =dd,=Nd=(d,)d
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P2 gquantury dirnension g
N =|u)d (ul|:---, lu) =d

AN
x - .

a a a a

v

E kK5

BN
N., ,=dim@., )= NANLN3 ---N,,

aaa...a aaa...a. 10n2
70
1@1

| =5 . -1 . dd
=(b|(N,) |ay=G|uyd] (ula)+...= /D:Jr

Thus the quantumdimension controls the rate of growth of
the n-particle Hilbert space. The normalization factor

D = \/Z d’

e ~eallad thha #Aatal Arrarmtrims Airmmanciam ~fF thea armvvearn madal

b b
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The quantum dimension

b
5 db . O Q = =
a b -

Y N =Y N°d
Ur UL C

Therefore, the vector of quantum dimensions is the (Perron-
Frobenius) eigenvector of each fusion rule matrix, with
eigenvalue 4

2 (N,)d =dd, = Nd=(d,)d
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Braiding: the B-matrix B: 17/, >V

For the n-anyon Hilbert space, we may use the standard basis:

o i e L L LT @y, 4y

a,
E11 E’z 53 ‘54 ‘55 E’ﬁ bﬂ—z

The effect of braiding can be expressed in this basis:

: (TR e b .
~ . (B 7 \e'un ¢
= abc , ‘ ‘
a d ey , d

euv' 2

And ... the matrix B i1s determined by R and F:

b,
| 8 2ol 1)







Braiding: the B-matrix B [fﬁ o

abc °

For the n-anyon Hilbert space, we may use the standard basis:

{1’2 {1’3 {?4 {1’5 {?6 HT GF’I—I {TH

S@EES

a,
E’1 ‘52 ‘53 ‘54 ‘55 "55 E’H—E

The effect of braiding can be expressed in this basis:

, oy h :
= . _ B‘ ;e ¢
2= abc , ‘ I
d d E?'I“ da - d

euv' 2

And ... the matrix B is determined by R and F:

b, |

>

F




Topological quantum computation («itaev 97, FLW 00)

I\ T.\. T.\ ‘I'\. annihilate pairs?

111X X ]|
B
110 i
|me I. / I. / I. / I. / create pairs

Freedman




Topological qguantum computation

1. Create pairs of particles of specified types.
2. Execute a braid.
3. Fuse neighboring particles, and observe whether they annihilate.

Claim: This process can be simulated efficiently by a quantum circuit.

Need to explain:

1. Encoding of topological Hilbert space.

2. Simulation of braiding (B-matrix as a two-qudit gate).

3. Simulation of fusion (F-matrix plus a one-qudit projective measurement).

- a - > - . Q(n-2)
| ] | cf BV,
g5 - - == 0N
: E’I ‘E’z 5'3 E'H—E B i
Although the topological vector spaces are not j
themselves tensor products of subsystems, they all ﬁd

fit into a tensor product of d-dimensional systems,

where this qudit is the “total fusion space” of three d = Z *\'T{}b
anyons. .. _—
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Imulating topological quantum computation

The B-matrix and the F-matrix are two-qudit unitary gates:

.E/ -X(8L); L L

d d

. : b M€ e
I 1 L -
T - e | g
a f 7 f = = d 3
C S
a )t ?

To determine whether » and ¢ will annihilate, perform an F-
move and then measure the qudit to find out whether ¢=0.
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Topological qguantum computation

a, 4az 4, Ay Ay

i fy L g(ﬁd)@”‘z)

a

; bl bZ 63 E?H—E i

Therefore, the topological model is no more powerful than the quantum
circuit model. But Is it as powerful? The answer depends on the model of
anyons, and in particular on the properties of the R-matrix and F-matrix.

To simulate a quantum circuit, we encode qubits in the topological vector
space, and use braiding to realize a set of universal guantum gates acting
on the qubits.

That is, the image of our representation of the braid group B, on » strands
should be dense in SU(2"), for some r linear in n.

Example: in the Fibonacci model, we can encode a qubit in the two-
dimensional Hilbert space I;‘iu of four anyons with trivial total charge.

y S

0.1 But what are R and F
@ || oa<toy

1 In this model?  ruweem

a




Consistency of braiding and fusing

he R-matrix (braiding), and the F-matrix (associativity of fusing) are highly

onstrained by algebraic consistency requirements (the Moore-Seiberg polynomial
uations). In the case of the Fibonacci model, these equations allow us to
ompletely determine R and F from the fusion rules.

y a sequence of “F-moves” and “R-moves,” we obtain an isomaorphism between two
pological Hilbert spaces, that is, a relation between two different canonical bases.
his relation must not depend on the particular sequence of maves, only on the

asis we start with and the basis we end up with. For example, there are 5 different
ays (without any exchanges) to fuse five pariicles, related by /~-maoves:

. \Y/\ \Y F, \P/
\“i« Y Pentagon equation:

5 5 C 5 fiF
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F/ R,

onu.sfen,fyof braldlng and fuseng

11

= « Ny, 4 /
P o i
R E \
aF/'u : /l\ R tr'
: - e ——

Hexagon € juation:

2.

b

FJr
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Furthermaore, if the pentagon and hexagon equations are satfisfied, then all sequences
of F- and R-moves from an initial basis to a final basis yield e same isong{or;ﬁism!

onstructing any.n models:
. Assume a fusin rul ©
"¢ pentagon and hexagon

R o S D e R

. systematic (in principle) procedure fur

- If no solutions, the fusion ru.us are
iIncomp _ible with local quantum physics.

- If multiple scrlutlons echis a vaahdo
model.




Hexagon equation:

onsistency of braiding and fusing

b

Z(Fii ),; R, (F b ); =R, (F s )f R;;

b

Furthermare, if the pentagon and hexagon equations are satisfied, then al/l sequences
of F- and R-maoves from an initial basis to a final basis yield the same isomaorphism

onstructing anyon models:
. Assume a fusion rule.

[P B S, 1 ee— . I

systematic (in principle) procedure for

"SetPe pentagon and hexagon

- If no solutions, the fusion rules are
iIncompatible with local quantum physics.

- If multiple solutions, each is a valig,
model.




onsistency of braiding and fusing

F#

Hexagon equation: T

2

b

A

F.,) =R;(F;,) R;

Furthermare, if the pentagon and hexagon
of F- and R-moves from an initial basis to a

equations are satisfied, then all sequences
final basis yield the same isomorphism!

systematic (in principle) procedure for
onstructing anyon models:

. Assume a fusion rule.

"SetPE pentagon and hexagon

PG B e, 1 e ——— N

- If no solutions, the fusion rules are
iIncompatible with local quantum physics.

- If multiple solutions, each is a valig,
model.




Example: Fibonacci model

This solution is unique (aside from freedom to redefine phases

and take the parity conjugate) Furthermore, products of the
LS ~ ' honcommuting matrices R and FRF!

(representing the generators of the
e braid group B) are dense in SU(2),...




=xample: Fibonacci model smwe ok v g

We encode a qubit in four anyons. To simulate a quantum circuit, we need
to do (universal) two-qubit gates.

The two-qubits are embedded in the
13-dimensional Hilbert space of eight
anyons.

The representation of B; determined by our R and F matrices Is
universal —I.e., dense in SU(13), so in particular we can approximate
any SU(4) gate arbitrarily well with some finite number of exchanges. If
we fix accuracy of the approximation to the gate, we can use quantum
error- correcting codes and fault-tolerant simulation to perform an
efficient and reliable quantum computation.

~gre quantum-error correction might be needed to correct for the (small),,
flaws in the gates, but not to correct for storage errors.




‘Leakage”

!!!!!!!!!!!!!

The computation takes place in the r~qubit subspace of a system of 4r
anyons. As errors accumulate, the state of the computer might drift our of
this subspace (the “leakage” problem).

But we can include leakage
corrector gates in our
simulation. This gate is the
Identity acting on data in the
computational space, but
replaces a leaked qubit by
the standard state |0 in the
computational space.

unleaked
data

leaked
data

unchanged
unleaked data

0)

For example, we can use a quantum teleportation protocol for leakage
gortection (in effect, this turns quantum leakage into classical leakagel™ ™




Topological qguantum computation

To summarize, we can simulate a universal quantum computer using (for
example) Fibonacci anyons, if we have these capabilities:

1. We can create pairs of particles.

2. We can guide the particles along a specified braid.

3. We can fuse particles, and distinguish complete annihilation from
Incomplete annihilation.

— The temperature must be small compared to the energy gap, so that stray
anyons are unlikely to be excited thermally.

- The anyons must be kept far apart from one another compared to the
correlation length, to suppress charge-exchanging virtual processes, except
during the initial pair creation and the final pair annihilation.
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(Nonabelian) anyons . ;

An anyon model is characterized by its label set,
fusion rules, F-matrix, and R-matrix.

Classifying the models (finding all solutions to
the pentagon and hexagon equations) is an

-
important (hard) unsolved mathematical problem:. F

We know how to find some examples (e.g., T
Chern-Simons theories), but we don't know how
rich the possibilities are.

X R
Such a classification would be an important step S > L—I—,_

toward classifying topological order in two
dimensions.

There would still be more to do, though ... For example, this would be a
classification of gapped two-dimensional bulk theories, and one bulk theory
can correspond to more than one (1+1)-dimensional theory describing edge
excitations. And of course, we would like to know, both for practical and
friedirétical reasons, whether the model can be realized robustly with s&fiie




Chemn-Simons theory axb = Z N .c

The fusion rules of a Chern-Simons theory are a truncated version of the
fusion rules of a compact Lie group. For example, in the theory denoted
SU(2),, the labels are half integers analogous to angular momenta, where

Jj<k’Z2andjiscontainedinj, xjonlyifj,+5,+/<k.

E F .
—x—=0+ Therefore:

Example: SU(2), - = “« 3
EXI =5 d  — \/5
l X l = O

The polynomial equations for these fusion rules have several similar
solutions (only one of which describes the braiding properties of the SU(2),
maodel), but no solution has computationally universal braiding rules.
Rathier, braiding simulates Clifford group computation, which can be ™™

o - = e = . . . - BN




Chermn-Simons theory axb = Z N, c

But the SU(2), models for k = 3 are computationally universal:

Example=SUZ), '." o:; I x1=0+1
: ? =
p- l)(i=0
i){l:i.{.‘_ 2
2 .S 5
~xZ=1 2
0

The Fibonacci (Yang-Lee) model is obtained by a further truncation to
SO(3); (with the noninteger labels eliminated).

All anyon models with no more than four labels have been classified by
Wang, and all are closely related to the models found in Chern-Simons
HSQry.
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Models of nonabelian topological order

Kitaev (quant-ph/9/70/7021 and unpublished), Freedman, Nayak,
Shtengel, Walker, and Wang (cond-mat/030/511), Levin and Wen
(cond-mat/040461/), and Fendley and Fradkin (cond-mat/05020/1
have constructed nonabelian anyon models that arise from a two-  Kitaev
dimensional lattice Hamiltonian with local interactions.

= -_—
-
i - &«
4

Variables on oriented links
of a honeycomb lattice are
the anyon labels. The
Hamiltonian imposes an
energetic penalty the labels
meeting at a site disobey
the fusion rules.

Low energy configurations
are branching string
networks that respect the
fusion rule. Quasiparticles
appear at the ends of
‘BYOREN strings.

Freedman

Wen

0
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Models of nonabelian topological order

Kitaev (quant-ph/9707021 and unpublished), Freedman, Nayak
Shtengel, Walker, and Wang (cond-mat/030/511), and Levin and
Wen (cond-mat/0404617) have constructed nonabelian anyon
models that arise from a two-dimensional lattice Hamiltonian with
local interactions.

-

Kitaev

The Hamiltonian also Freedman

enforces that the
ground state is
iInvariant under a
deformation of a
string that moves it
across a plaquette.

Wen

irsa: 05060104
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Models of nonabelian topological order

Fufhermore, 'she Hamiltonian H
enforc:s that thi-g¥mund statais
= jnvariant und=Nan ¥-move. " je
~~"quasipartir‘es are persuaded to
~ehave just like the particles iff™
the anyon model (evcer* thdt ige
* model Is “parity dudbled”). 5

" a .’

1 a‘l £ -—

e F ,j
- ( abcd )e

The topoulogica! orde is expected
IC

ta suryive when tRtz Samiltoniar. .s
slightly pertt.-bed <

n

L
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Models of nonabelian topological order

Furthermore, the Hamiltonian
enforces that the ground state is
invariant under an F-move. The

quasiparticles are persuaded to
behave just like the particles In
the anyon model (except that the
model is “parity doubled”).

0 7
_( abcd )€

The topological order is expected
Q. sifyvive when the Hamiltonian is

slightly perturbed.
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Quantum many-body physics:
Exotic phases In optlcal lattices

Atoms can be trapped In
an optical lattice. The
lattice geometry and
Interactions between
neighbors can be chosen
by the “material designer’
(direction-dependent and
spin dependent tunneling
between sites).

particular, Duan, Lukin, and Demler (cond-mat/0210564) have
escribed how Kitaev's honeycomb lattice model, which supports

Pirsa: 05060104 Page 78/80

onabelian anyons, can be simulated using an optical lattice.




Topological quantum computing

» Error correction and fault tolerance will be essential in the
operation of large scale quantum computers.

» The “brute force” approach to fault-tolerant quantum computing
uses clever circuit design to overcome the deficiencies of
quantum hardware. It works in principle, but achieving it in
practice will be challenging.

» Topological quantum computing Is a far more elegant
approach, in which the "hardware” is intrinsically robust due to
principles of local quantum physics (if operated at a temperature
well below the mass gap).

 The topological approach also looks daunting from the
perspective of current technology. But it is an attractive and
promising long-term path toward realistic quantum computing.

As.a.bonus, there are fascinating connections with deep isgugs
N catiantiim manv-hodv theorv
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