Title: Advanced AdS/CFT Topics

Date: Jun 27, 2005 11:30 AM

URL: http://pirsa.org/05060096

Abstract:

All lecture notes (powerpoint) and suggested homework problems (ps) will be posted in my webpage:

http://phya.snu.ac.kr/~sjrey/index.html

Pirsa: 05060096 Page 2/52

Instantons

- So far, tested AdS/CFT for perturbative aspects on N=4 SYM and string theory sides.
- How about nonperturbative effects?
- In N=4 SYM theory, instanton effects are exponentially suppressed (cf. in QCD, infrared divergence dominates).

Pirsa: 05060096 Page 3/5/2

Instanton effects

- Type IIB string theory has D(-1)-brane, a localized Dbrane in Euclidean 10d spacetime
- Instanton location is parametrized by (r, X^m) ---matches with Yang-Mills instanton moduli (size, center)

Instantons in Large-N limit

- On N=4 SYM side, instanton effects are computable precisely in N → ∞ limit
- K-instantons in SU(N) gauge group obey N → ∞ saddle-point configuration for K << N:</p>
- Pointlike on AdS₅
- Dilutely spread in SU(N) group space
- Fermion biliinears are peaked at S₅

Pirsa: 05060096 Page 5/5/2

Instanton-induced Amplitudes

- What sort of amplitudes can we test?
- N=4 SYM has 16 supersymmetry and 16 superconformal symmetry
- Charge-K instanton in SU(N) gauge group has 4KN bosonic/fermionic zero modes
- Most of them are lifted up at strong coupling limit except 16 dictated by super(conformal)symmetry

Pirsa: 05060096 Page 6/52

R⁴ and superpartners

- Gross-Witten α′ ³ R⁴ terms (from Virasoro-Shapiro 4-point amplitude) receive D-instanton corrections
- Also, superpartners such as sixteen dilatinos $\lambda_1 \Lambda \lambda_{16}$
- not only coupling-parameter dependence but also numerical factors all agree between IIB string and N=4 SYM
- One of the most accurate test of AdS/CFT correspondence

Pirsa: 05060096 Page 7/5.

Application of AdS/CFT: D3-branes on "thermal" S₁

Pirsa: 05060096 Page 8/52

Instantons in Large-N limit

- On N=4 SYM side, instanton effects are computable precisely in N → ∞ limit
- K-instantons in SU(N) gauge group obey N → ∞ saddle-point configuration for K << N:</p>
- Pointlike on AdS₅
- Dilutely spread in SU(N) group space
- Fermion biliinears are peaked at S₅

Pirsa: 05060096 Page 9/52

Application of AdS/CFT: D3-branes on "thermal" S₁

Pirsa: 05060096 Page 10/52

Application of AdS/CFT: D3-branes on "thermal" S₁

- \square "thermal S₁" breaks N=4 susy completely
- ☐ At low-energy, 3d Yang-Mills + (junks)
- ☐ 5d AdS replaced by
 - 5d Euclidean black hole (time ↔ space)
- ☐ glueball spectrum is obtainable by studying bound-state spectrum of gravity modes

Note:

4d space-time, topology: gravity // gauge

Pirsa: 05060096 Page 11/52

YM₂₊₁ glueball spectrum

- \square 0⁺⁺: solve dilaton eqn=2nd order linear ode
- result:

	N=3 lattice	N=oo lattice	
	4.329(41)	4.065(55)	4.07(input)
*	6.52 (9)	6.18 (13)	7.02
**	8.23 (17)	7.99 (22)	
***	_	_	

[M. Teper]

 τ -direction is compactified on thermal S¹ of radius β = 1/T

2+1 dimensions (after double Wick rotation $\tau \leftrightarrow x^3$ in AdS side)

Here, low-energy excitations E $<< 1/\beta = 7$ Are described by 2+1 dim pure YM theor (+junks)

YM₂₊₁ glueball spectrum

- \square 0⁺⁺: solve dilaton eqn=2nd order linear ode
- result:

	N=3 lattice	N=oo lattice	
	4.329(41)	4.065(55)	4.07(input)
*	6.52 (9)	6.18 (13)	
**	8.23 (17)	7.99 (22)	

[M. Teper]

YM₃₊₁ glueball spectrum

- ☐ Use T>0 D4-brane instead
- \square 0⁺⁺: solve dilaton eqn=2nd-order linear ODE
- result:

N=3 lattice AdS/CFT

- . 1.61(15) 1.61(input)
- * 2.8 2.38
- ** 3.11
- *** 3.82

[M. Teper]

other glueballs fit reasonably well (why??)

N=4 SYM in uniform instanton background

- important issues in QCD:
 confinement and (chiral symmetry breaking)
- 't Hooft criterion of confinement:
 - Wilson loop: $\langle W(C) \rangle \sim \exp(-\tau L \cdot T)$ area-law (linear confining potential)
- 't Hooft loop: $<H(C)> \sim \exp(-m(L+T))$ perimeter-law (screened potential)
- Any simple AdS/CFT-type model?

N=4 SYM in uniform instanton background

- important issues in QCD:
 confinement and (chiral symmetry breaking)
- 't Hooft criterion of confinement:
 - Wilson loop: $\langle W(C) \rangle \sim \exp(-\tau L \cdot T)$ area-law (linear confining potential)
- 't Hooft loop: $\langle H(C) \rangle \sim \exp(-m(L+T))$ perimeter-law (screened potential)
- Any simple AdS/CFT-type model?

Old (unfinished) idea

- Callan, Dashen, Gross: instanton gas in Yang-Mills theory drives confinement and chiral symmetry breaking
- unsuccessful and unfinshed (beyond analytic treatment -- nonperturbative)
- variant idea: instanton liquid model
- AdS/CFT picture: D3 + D(-1)

Pirsa: 05060096 Page 18/52

SUGRA solution of D3+D(-1)

Pirsa: 05060096 Page 19/52

SUGRA solution of D3+D(-1)

- □ N D3-branes + uniform D(-1) on R⁴
- \Box ds² = F^{1/2}(Z^{-1/2} dx₄² + Z^{1/2} dy₆²), G₅=same as before $e^{\Phi} = F$ and $C_0 |_{\text{Euclidean}} = (F-1)/F$
 - $Z = (1 + R^4/r^4)$, $F = (1 + q R^4 / r^4)$, $R^4 = g_{st} N = \lambda^2$
- \square q = $(Q/Vol_4)/N$: instanton density per each D3
- \Box string coupling e^{Φ} diverges near r=0
- \square decoupling limit: $\alpha' \to 0$ while r/α' , λ^2 , q = fixed
- \square Z \rightarrow R⁴/r⁴ but F remains intact

Pirsa: 05060096 Page 20/52

Geometry looks like...

Asymptotically AdS5*S5 10d flat spacetime

10d flat spacetime

SUGRA solution of D3+D(-1)

- □ N D3-branes + uniform D(-1) on R⁴
- \Box ds² = F^{1/2}(Z^{-1/2} dx₄² + Z^{1/2} dy₆²), G₅=same as before $e^{\Phi} = F$ and $C_0 |_{\text{Euclidean}} = (F-1)/F$
 - $Z = (1 + R^4/r^4)$, $F = (1 + q R^4/r^4)$, $R^4 = g_{st} N = \lambda^2$
- \square q = $(Q/Vol_4)/N$: instanton density per each D3
- \square string coupling e^{Φ} diverges near r=0
- \square decoupling limit: $\alpha' \to 0$ while r/α' , λ^2 , q = fixed
- \square Z \rightarrow R⁴/r⁴ but F remains intact

Pirsa: 05060096 Page 22/5/2

Geometry looks like...

Asymptotically AdS5*S5 10d flat spacetime

10d flat spacetime

Pirsa: 05060096 Page 23/52

or (poorly drawn)

Near-horizon geometry

- $ds^2 = F^{1/2} (r^2 dx_4^2 + dr^2 / r^2 + d\Omega_5^2)$
- Asymptotically, $r \rightarrow \infty$: AdS₅ × S₅
- Near the core, $r \rightarrow 0$: flat 10d spacetime
- Interpretation: constant instanton density "q" breaks conformal invariance in the infrared region
- Gravity dual to a certain class of N=2 SYM theory
- Nahm duality (= T-duality in string theory):
 U(N) with Q ↔ U(Q) with N (→ maximum Q)

Pirsa: 05060096 Page 25/52

SUGRA solution of D3+D(-1)

- □ N D3-branes + uniform D(-1) on R⁴
- $\Box ds^2 = F^{1/2}(Z^{-1/2} dx_4^2 + Z^{1/2} dy_6^2), G_5 = \text{same as before}$

$$e^{\Phi} = F$$
 and $C_0 |_{\text{Euclidean}} = (F-1)/F$

$$Z = (1 + R^4/r^4)$$
, $F = (1 + q R^4 / r^4)$, $R^4 = g_{st} N = \lambda^2$

- \square q = $(Q/Vol_4)/N$: instanton density per each D3
- \Box string coupling e^{Φ} diverges near r=0
- \square decoupling limit: $\alpha' \to 0$ while r/α' , λ^2 , q = fixed
- \square Z \rightarrow R⁴/r⁴ but F remains intact

Pirsa: 05060096 Page 26/52

Recall AdS Throat = D3-branes

- D-instantons probing (Euclidean) AdS5
- For U(N) gauge group, "homogeneous" instanton number < N (otherwise inhomogeneous)
- Q D-instanton cluster in approx. flat region $S_{Dinstanton} = -(1/g_{st} \alpha^{2}) Tr_{Q} [\Phi^{1}, \Phi^{2}]^{2} +$

- < Tr(Φ^1)² > \sim QL², < Tr(Φ^2)² > \sim Q² g_{st} α '² / L²
- rotational symmetry \rightarrow L⁴ = Q g_{st} α , $\alpha^2 = N$ g_{st} $\alpha^2 = N$

Near-horizon geometry

- $ds^2 = F^{1/2} (r^2 dx_4^2 + dr^2 / r^2 + d\Omega_5^2)$
- Asymptotically, $r \rightarrow \infty$: AdS₅ × S₅
- Near the core, $r \rightarrow 0$: flat 10d spacetime
- Interpretation: constant instanton density "q" breaks conformal invariance in the infrared region
- Gravity dual to a certain class of N=2 SYM theory
- Nahm duality (= T-duality in string theory):
 U(N) with Q ↔ U(Q) with N (→ maximum Q)

Pirsa: 05060096 Page 28/52

Recall AdS Throat = D3-branes

- D-instantons probing (Euclidean) AdS5
- For U(N) gauge group, "homogeneous" instanton number < N (otherwise inhomogeneous)
- Q D-instanton cluster in approx. flat region $S_{Dinstanton} = -(1/g_{st} \alpha^{2}) Tr_{Q} [\Phi^{1}, \Phi^{2}]^{2} +$

- < Tr(Φ^1)² > \sim QL², <Tr(Φ^2)² > \sim Q² g_{st} α '² / L²
- rotational symmetry \rightarrow L⁴ = Q g_{st} α , α = N g_{st} α

Coupling parameters

- dilaton $e^{\Phi} \rightarrow \lambda^2 = \lambda_{\infty}^2 (1 + q \lambda^2 / r^4)$
- axion C $\rightarrow \theta/2\pi = (1 + q \lambda^2/r^4)^{-1} 1$

$$S_{YM} = \int_{V} (\lambda^2/N) \operatorname{Tr} F \cdot F + \theta \operatorname{Tr} F \wedge F$$

- N=2 supersymmetry implies no α'-corrections
- String loop corrections may be important near the core → infrared cutoff set by the 4d volume of the gauge theory

Pirsa: 05060096 Page 30/52

SUGRA solution of D3+D(-1)

- □ N D3-branes + uniform D(-1) on R⁴
- \Box ds² = F^{1/2}(Z^{-1/2} dx₄² + Z^{1/2} dy₆²), G₅=same as before $e^{\Phi} = F$ and $C_0 |_{\text{Euclidean}} = (F-1)/F$
 - $Z = (1 + R^4/r^4)$, $F = (1 + q R^4/r^4)$, $R^4 = g_{st} N = \lambda^2$
- \square q = (Q/Vol₄)/N : instanton density per each D3
- \Box string coupling e^{Φ} diverges near r=0
- \square decoupling limit: $\alpha' \to 0$ while r/α' , λ^2 , q = fixed
- \square Z \rightarrow R⁴/r⁴ but F remains intact

Pirsa: 05060096 Page 31/52

SL(2, Z) and S-duality

- Type IIB string theory has SL(2, Z) symmetry:
- B₂ (NS-NS) ↔ C₂ (R-R)
 so F-string ↔ D-string (cf. Tye's lecture)
 NS5-brane ↔ D5-brane
- $(e^{-\Phi} + i C) \leftrightarrow 1/(e^{-\Phi} + i C)$ so weak coupling \leftrightarrow strong coupling
- D3-brane intact but (E, B) ↔ (B, E) S-duality
 IIB SL(2, Z) symmetry = S-duality on D3-brane

Pirsa: 05060096 Page 32/5/

Coupling parameters

- dilaton $e^{\Phi} \rightarrow \lambda^2 = \lambda_{\infty}^2 (1 + q \lambda^2 / r^4)$
- axion C $\rightarrow \theta/2\pi = (1 + q \lambda^2/r^4)^{-1} 1$

$$S_{YM} = \int_{V} (\lambda^2/N) \operatorname{Tr} F \cdot F + \theta \operatorname{Tr} F \wedge F$$

- N=2 supersymmetry implies no α'-corrections
- String loop corrections may be important near the core → infrared cutoff set by the 4d volume of the gauge theory

Pirsa: 05060096 Page 33/52

SL(2, Z) and S-duality

- Type IIB string theory has SL(2, Z) symmetry:
- B₂ (NS-NS) ↔ C₂ (R-R)
 so F-string ↔ D-string (cf. Tye's lecture)
 NS5-brane ↔ D5-brane
- $(e^{-\Phi} + i C) \leftrightarrow 1/(e^{-\Phi} + i C)$ so weak coupling \leftrightarrow strong coupling
- D3-brane intact but (E, B) ↔ (B, E) S-duality
 IIB SL(2, Z) symmetry = S-duality on D3-brane

Pirsa: 05060096 Page 34/52

Instanton-driven confinement

- Instanton condensates drive confinement
- To check this, we should find area-law behavior for <W> and perimeter-law behavior for <H>
- They are evaluated from minimal-area worldsheet for Fstring and D-string ending both ends at the boundary (see lecture notes 1 and 2)

Pirsa: 05060096 Page 35/5/2

Wilson loop

- Nambu-Goto action for F-string $S = \int d^2 \sigma (g_{mn} \det \partial X^m \partial X^n)^{1/2}$
- Compared to AdS₅ × S₅ case, extra metric factor F = (1 + q R⁴/U⁴) enters
- S = $\int d^2 \sigma F^{1/2} (U'^2 + U^4/R^4)^{1/2}$
- Homework: solve EOM and construct minimal string worldsheet

<u>Hint</u>: Near r = 0, change to $X = \lambda / U$

Pirsa: 05060096 Page 36/52

Confinement from brick wall...

 Without detailed computation, can see "why" confining behavior comes out

> flat 10d spacetime

String entering flat region exhibits area-law behavior

flat 10d space ime

Pirsa: 05060096

Page 37/52

Confinement originates from

- In flat spacetime, F-string is confining by definition (highly tensional string)
- Arranging the spacetime deep inside
 AdS₅ deformed back to flat 10d-like
- Putting together, deformed geometry induces "area-law" behavior of <W>
- Actually, flat 5d is sufficient

Pirsa: 05060096 Page 38/52

How about 't Hooft loop?

- To assert "confinement", it is also needed to check that 't Hooft loop <H> exhibits "perimeter-law" (screened) behavior
- <H> is evaluatable by computing D-string minimal-area worldsheet
- F-string and D-string are related by Sduality, so <H> can be deduced easily

Pigs 39/52

't Hooft loop

- $S_{D1} = \int d^2\sigma (e^{-2\Phi} C_E^2)^{1/2} (g_{mn} \partial X^m \partial X^n)^{1/2}$
- Extra factor depending on dilaton/axion plays a crucial role:

$$(e^{-2\Phi} - C_F^2) = (1 - q R^4/r^4)/(1 + q R^4/r^4)$$

- Inserting,
- $S_{D1} = \int d^2\sigma (1 q R^4 / U^4)^{1/2} (U'^2 + U^4/R^4)^{1/2}$
- This is the same as F-string action except q → - q in the funciton F!
- Consistent with SL(2, Z) and S-duality

Pirsa: 05060096 Page 40/52

Screening behavior emerges...

- q → q: S-dual spacetime geometry has spacetime singularity at r = q^{1/4} R
- The D-string action takes exactly the same form as F-string action in AdS₅
 Schwarzschild black hole
- In the latter, string melted as it hits the horizon, where the metric factor → 0.
- Homework: confirm this by explicitly solving for minimal-surface worldsheet of D-string

Pirsa: 05060096 Page 41/52

Screening behavior emerges...

- q → q: S-dual spacetime geometry has spacetime singularity at r = q^{1/4} R
- The D-string action takes exactly the same form as F-string action in AdS₅
 Schwarzschild black hole
- In the latter, string melted as it hits the horizon, where the metric factor → 0.
- Homework: confirm this by explicitly solving for minimal-surface worldsheet of D-string

Pirsa: 05060096 Page 42/52

Adding Flavors!

- Add N_F Dp-branes in bulk spacetime (p>3, $N_F \ll N$)
- quarks = open string stretching between D3 and Dp representation = (N*, N_F), (N, N_F*) mass = distance between D3 and Dp

Meson spectrum is again computable in two methods * small J: fluctuation of Dp-brane worldvolume shape

* large J: open string attached to Dp-brane (heavy quark in uniform rotation)

Prisat 05060096 – Over at $J=(g^2_{YM}N)^{1/2}$: Regge —> Coulomb poterpage 43/52

Dynamical Test

- What about time-varying phenomena?
- OK, take the meson at separation L
- Shake Q and send signal to Q* (Thomson scattering)
- How long does it take for signal to reach?
- Does Huygens' principle hold?
- Do Gravity and Gauge theory agree?

Pirsa: 05060096 Page 44/52

Gravity: signal along the string

YM distance scale

Pirsa: 05060096

Gauge: signal between the two quarks

Pirsa: 05060096

• light signal along the string $U = U(\sigma)$:

$$\sqrt{Z}U^{2} = \frac{1}{\sqrt{Z}}(-dt^{2} + d\sigma^{2})$$

$$\rightarrow (\Delta t)_{grav} = \int_{-L/2}^{L/2} d\sigma \sqrt{ZU'^{2} + 1}$$

string satisfies first integral of motion:

$$Z^{2}U'^{2} + Z = Z_{*} = \frac{g^{2}N}{U_{*}^{4}}$$

$$\to (\Delta t)_{grav} = B \frac{\sqrt{g^{2}N}}{U_{*}} \qquad B = \frac{2\sqrt{\pi}\Gamma(5/4)}{\Gamma(3/4)}$$

using ''geometric UV-IR duality'' relation,

$$(\Delta t)_{\text{grav}} = A(\Delta t)_{\text{gauge}}$$

$$A = \frac{\Gamma(5/4)\Gamma(1/4)}{\Gamma^2(3/4)} = 2.188...$$

Gravity: signal along the string

Pirsa: 05060096 Page 49/52

• light signal along the string $U = U(\sigma)$:

$$\sqrt{Z}U^{2} = \frac{1}{\sqrt{Z}}(-dt^{2} + d\sigma^{2})$$

$$\rightarrow (\Delta t)_{grav} = \int_{-L/2}^{L/2} d\sigma \sqrt{ZU'^{2} + 1}$$

string satisfies first integral of motion:

$$Z^{2}U'^{2} + Z = Z_{*} = \frac{g^{2}N}{U_{*}^{4}}$$

$$\to (\Delta t)_{grav} = B \frac{\sqrt{g^{2}N}}{U_{*}} \qquad B = \frac{2\sqrt{\pi}\Gamma(5/4)}{\Gamma(3/4)}$$

using "geometric UV-IR duality" relation,

$$(\Delta t)_{\text{grav}} = A(\Delta t)_{\text{gauge}}$$

$$A = \frac{\Gamma(5/4)\Gamma(1/4)}{\Gamma^2(3/4)} = 2.188...$$

So.....

- Causal time-delay does not match on both sides (strong field effects, strong coupling dynamics...)
- Huygens' principle?
- More surprise of AdS/CFT may be revealed by understanding time-varying phenomena better

Pirsa: 05060096 Page 51/52

Time to stop...

- AdS/CFT as indispensible tool for string theory and gauge theory altogether
- Act II by Balasubramanian this week
- Act III by Aharony next week
- Enjoy and Have Fun!

Pirsa: 05060096 Page 52/5/