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Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence

B Context: Open quantum systems & decoherence

B Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses
B Solution 2: Periodic DD with real (faulty) pulses — it doesn’t work so well
B Solution 3: Concatenated DD

* Analytical theory

* Numerical simulations on a spin-bath

B Generalizations & Implications
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Open Systems Control Problem

Controlled evolution of system + bath given by the following ideal Hamiltonian:
H

S

H=H"+H,_ )®I +I. ®H +)Y S ®B.

H, causes decoherence (non-unitary evolution due to entanglement w/ bath) and

(unitary) control errors
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Open Systems Control Problem

Controlled evolution of system + bath given by the following ideal Hamiltonian:
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H=H"+H,_ )®I +I. ®H +Y S ®B

H, causes decoherence (non-unitary evolution due to entanglement w/ bath) and

(unitary) control errors

Instrument control errors

'l_.v_l
stochastic and/or
systematic
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Open Systems Control Problem

Controlled evolution of system + bath given by the following ideal Hamiltonian:
H

S

H=H"+H,_ )®I +I. QH, +Y S ®B

H, causes decoherence (non-unitary evolution due to entanglement w/ bath) and

(unitary) control errors

Instrument control errors

'l_.v_l
stochastic and/or
systematic

Pulse: U(5) = T exp(—i J‘:H(r)dr)

How to overcome
both decoherence
and faulty controls?
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Open Systems Control Problem

Controlled evolution of system + bath given by the following ideal Hamiltonian:
H

H=H"+H,_ )®I +I. ®H +Y S ®B

H, causes decoherence (non-unitary evolution due to entanglement w/ bath) and

(unitary) control errors

Instrument control errors
Methods to overcome decoherence
—
- Quantum error correcting codes HC"“I“’I HC e .WC,
- Continuous feedback control stochastic and/or
systematic
- Decoherence-free subspaces =
- Dynamical decoupling pulses Pulse: U(S) =T exp(—i L H()dt)

How to overcome
both decoherence
and faulty controls?
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Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence

B Context: Open quantum systems & decoherence

B Solution 1: Periodic Dynamical decoupling (DD) with ideal
pulses

B Solution 2: Periodic DD with real (faulty) pulses — it doesn’t work so well

B Solution 3: Concatenated DD
* Analytical theory

* Numerical simulations on a spin-bath

B Generalizations & Implications
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Time Reversal: The Canonical DD cycle

A pulse producing a unitary evolution P, such that
PHP' =——H ie {P.H}=0

(Carr-Purcell)

T 3 4

free evoluiion

One cycle

The time reversal onewo)-liner:

Pexp(—itH)P' exp(—itH) = exp(—it PHP" )exp(—it H)
=exp(itH )exp(—itH)=1
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Time Reversal: The Canonical DD cycle

irsa: 05060066

A pulse producing a unitary evolution P, such that

PHP' =—H ie, {P,H}=0

(Carr-Purcell)
- = XX-Z —>
r Hg Hg ST,
S H,, averaged to zero
H,=1Z®B (in I" order Magnus cxpan.)

The time reversal oneo)-liner:

Pexp(—itH)P' exp(—itH) = exp(—it PHP" )exp(—it H)
=exp(itH )exp(—itH)=1
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Universal Dynamical Decoupling

Approximately remove a general H_; from the evolution:
“Symmetrizing group” of pulses { g;} and their inverses are applied in series:

- (gyvEgy)(8:£8, (8 £8) ~exp(-ir) | g Hg))

£=cxp{—ill,r) \

first order Magnus expansion
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Universal Dynamical Decoupling

Approximately remove a general H_; from the evolution:
“Symmetrizing group” of pulses { g;} and their inverses are applied in series:

 (gvEgy)-+(8:£8,)(8 £8) ~exp(—it ) g, Hg:)

£f=cxp{—ill,7) \

first order Magnus expansion

Choose the pulses so that:

H ) Z _ g; H al = 0 Dynamical Decoupling Condition
[

(more generally: projection into group commutant)
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Universal Dynamical Decoupling

Approximately remove a general H_; from the evolution:
“Symmetrizing group” of pulses { g;} and their inverses are applied in series:

(gvEgy) - (8:£8, (8 £8) ~ exp(-it ) g H8,)

£f=cxpl—ill, 1) \

first order Magnus expansion

Choose the pulses so that:

H e Z | g; H = = 0 Dynamical Decoupling Condition
I

(more generally: projection into group commutant)

For a qubit the Pauli group G={X Y. Z.] |} (7 pulses around all three axes) removes an arbitrary H :

(X£X) (Y£Y) (Z£Z) (IfI) —=XfZfXfZf !

(we will focus on qubits)

Periodic DD: periodic repetition of the umiversal DD pulse sequence
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Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence
B Context: Open quantum systems & decoherence

B Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses

B Solution 2: Periodic DD with real (faulty) pulses — it doesn’t
work so well

B Solution 3: Concatenated DD
* Analytical theory

* Numerical simulations on a spin-bath

B Generalizations & Implications
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Ideal vs Real Pulses

HC He XX=—4L =
Ideal: H,-H,| |H,-H, time reversal”,
H , averaged to zero
Hy=AZQB, H.=X in 1" order Magnus expan.
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Ideal vs Real Pulses

Ideal:

|7H53‘H3 Hg-H,

H,=iZ®B, H.=X

ARX— L =

"time reversal",
H , averaged to zero

in 1* order Magnus expan.

Real:

Note: true also for QEC,

considered in fault-

Pirsa: 05060066

tolerance setting.

H.+W.+Hg+H, H_

T ;& +H

[H, ,H,]#0)

(H,,H_.]#0; control errors!

| H oy , W |#0

+H Loy BT

H_;NHB

(show up in 2™ order Page 17/41
Magnus expansion)




The effect of 2°¢ order Magnus errors for zero-width pulses:
Canonical DD as projection + rotation

H =Hy +H,
HJ_
anti-commuics
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The effect of 2°¢ order Magnus errors for zero-width pulses:
Canonical DD as projection + rotation

= h.t N
. . s I Suzuki-Trotter expansion:
= { H,— H =D,(H,)+0(1%)
. £ 3§ - 1
/ ? D, (H g) — moh E€+HH' =
anti-commuics : T Ehes. L|? I
with the pulse H: H: A =T HHe HHe
with the pulse A

¥

v
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The effect of 2°¢ order Magnus errors for zero-width pulses:
Canonical DD as projection + rotation

H = Hgg +H,

Suzuki-Trotter expansion:

H — H' =D,(H)+O0(A)

H" ‘
_irH virH L/
/' : : - Gr) " Lis"~
anti-commutes > e 1112 I
with the pulse /HE H' A =T HHE HHE
COmmKes H-
with the pulse x . )
Lemma: H1 |
D,(H) 1s a norm-decreasing map H | ~

= H_ 1s renormalized by the DD procedure
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The effect of 2°¢ order Magnus errors for zero-width pulses:
Canonical DD as projection + rotation

H —Hg, +H, : :
\ . Suzuki-Trotter expansion:
| ’
H' | H,— H, =D,(H,)+0(1)
/. ! 1 : (DP ( Hg) o e—frﬁjfz HE e—|—ifrHi‘ /2
anti-commutes S RN L|? Il
with the pulse H: H: A =T HHe HHe
umm.tm/ = HE
with the pulse 3 : A
Lemma: H
- - ‘i_
D,(H ) 1s a norm-decreasing map H, —

v

= H_ 1s renormalized by the DD procedure

Concatenate BB sequences! (as in QEC)
Renormahization = effective H, shnnks super-exponentially(?)
total pulse sequence time grows exp.
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Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence
B Context: Open quantum systems & decoherence
B Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses

B Solution 2: Periodic DD with real (faulty) pulses — it doesn’t work so well

B Solution 3: Concatenated DD
* Analytical theory

* Numerical simulations on a spin-bath

B Generalizations & Implications
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Concatenation and Renormalization

B Why do concatenated Quantum Error Correcting Codes work so well?

. E - o w
=0 E7 P e
n=1 peff:p: doe we PR
< ‘F////‘
=0 5w o000 000 000

~H

P.. =P . code size grows only(!) exponentially

Effective system-bath interaction is renormalized (?)

Can this be done without encoding, fault-tolerantly?

Yes: Repeat concatenation idea in time rather than space.
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Concatenated Universal Dynamical Decoupling

Nest the universal DD pulse sequence into its own free evolution periods £ :

p(l)= X £ Z £ b i E E

Rirca:- OE060066. Roca 24/41
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Concatenated Universal Dynamical Decoupling

Nest the universal DD pulse sequence into its own free evolution periods £ :

p(l)= X £ oy xi A
p(2)= X p(1)Z p(1)X p(1)Z p(1)

CtcC.
Level Concatenated DD Series after multiplving Pauli matrices
1 XfZEXfZf
2 VA SFAREFAISTASTAISFTAISEFAI S FAS
3 PAFAISVAREVADISHA S VAV SFAREVAISHFAVANAISVARE VAP SFABFADISHAREFAISTAD S VA
I ENABEVADENABHADNSVABENAVSVANA VAP SHARSVADSHABVAD SV AR EVA D S5

AAAAAAAAA
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Motivation: Preserving an unknown quantum state in the presence of decoherence
B Context: Open quantum systems & decoherence

B Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses

B Solution 2: Periodic DD with real (faulty) pulses — it doesn’t work so well

B Solution 3: Concatenated DD
* Analytical theory

* Numerical simulations on a spin-bath

B Generalizations & Implications
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Geometry of Concatenated DD Pulse Sequences

Successive projections and rotations converge quickly to zero:

Pirsa: 05060066 Page 27/41




Convergence of Concatenated vs Periodic Zero-Width Pulses

H =I;®B,+ ) 0,®B,
a-X Y. 7

Assumptions:

1Boll> B[l 1By | 1B |

IB,|T =c <1

irsa: 05060066 Page 28/41




Convergence of Concatenated vs Periodic Zero-Width Pulses
g

oI OR: 2 c,®B,

a-XY,Z

“Infidelity” after ~ Assumptions:

max. # of levels
of concatenation HB“ "}"BI IBY"’HBE "

(T=4z=Npg | |[BT=c<1

>
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Convergence of Concatenated vs Periodic Zero-Width Pulses

H =I;®B,+ ) 0,®B,

=y
“Infidelity” after Assumptions:
of concatenation | 1Pol> 1Bx B3| s i
(=4 =Ny | |Bo|T =c <1 advantage for CDD!

—log, B, r/c
I fom < (C“Bo”f) s &l=—>0 g
1— foop 4(”30”1')2
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Convergence of Concatenated vs Periodic Zero-Width Pulses

H =I;®B,+ ) 0,®B,

a-XY,Z

Assumptions:
1Bo|> | B | B
IB,|T =<1

“Infidelity” after
max. # of levels

of concatenation
(I'=4"tr =N1

2 2

B,|

Super-polynomial
advantage for CDD!

—log, B, z/c
l_ﬁ;:DD < (C“Bﬂur) > By|z—0

>0

| f;‘m)

4(”Buuf)2

Why the difference?

-In PDD errors can build up if not completely removed in the basic cycle.

-in CDD the next-layer-up removes errors that were left from the lower layer;
this will work if errors are not too large: threshold (just as in concatenated QEC)

irsa: 05060066
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Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence
B Context: Open quantum systems & decoherence
B Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses

B Solution 2: Periodic DD with real (faulty) pulses — it doesn’t work so well

B Solution 3: Concatenated DD
* Analytical theory
* Numerical simulations on a spin-bath

B Generalizations & Implications
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Test System: The Spin-Barh (Model for GaAs, P/Sy, ...)

A spin-1/2 qubit as the system, coupled to N-1 other interacting spin-1/2s:

i. .f "-’-_""r'r

N y
H = ijl +ﬁ)bz Z:- -+ Z ];:H;}'
i=2 > f

where H”. = Xst + }:Y + Z:.ZI. is the Heisenberg interaction

and jﬂ. 1s an exponentially decaying exchange constant.

Numerically exact solution,
compute Error Measure: e =1-Tt[p’] .

(Non-Markovian bath : revivals, so € oscillates)

Pulsing Apparatus:

*Limited switching times

*Faulty controls

We compare Periodic/Concatenated DD/Pulse-free
pulse-free evolution, total time 7'
concatenated DD, and

periodic DD with the same pulse interval t. pulse width &

Pirsa: 05060066
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Numerical Results — CDD vs PDD as Function of Coupling ;

l‘}gw[l Y, Tﬂ P; 1’]
! ~ |

# - [/
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10T N—5

. . 4 L

ne 22" j (in units of 1/T)

-

"% j (in units of 1/7)

Concatenated DD

Periodic DD
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Numerical Results — Concatenated DD for Systematic Noise

2—10'T_ ;T35 N=-5
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averaged over 3 noise realizations




Numerical Results -- CDD vs PDD tor Systematic Noise

ngm[l = Tr(pé )]

OF

Pulse-free =
U*E'E'E 8-g- > B Og 3]

i o

S

[Wp| =1, 1/11 1, |
& 'Y ;T30 N5

Pirsa: 05060066 Page 36/41

averaced over 10 noise realizations




Numerical Results — CDD with Random Noise

log,,[1-Tr(p;)

"J-O'H/
_ o000
-1} i
<l

e
nt Wpl=im, |1/ 1, |

60

BT 02 N2
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averaged over 30 noise realizations




Numerical Results — CDD vs PDD with Random Noise

log,,[1—Tr(p5)]

( | e
g

pulse-free

LiZx G5 6T 02

IprI = H/P |-fr-||HP ||

é=10"T, jT=02, N=2
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averaged over 30 noise realizations




Outline

Motivation: Preserving an unknown guantum state in the presence of decoherence
B Context: Open quantum systems & decoherence

B Solution 1: Periodic Dynamical decoupling (DD) with 1deal pulses

B Solution 2: Periodic DD with real (faulty) pulses — it doesn’t work so well

B Solution 3: Concatenated DD

* Analytical theory

* Numerical simulations on a spin-bath

B Generalizations & Implications
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Directions for the Future — What About Computation’

DD pulses can mterfere with computational pulses.
How can they be reconciled?

B Use encoded qubits from a stabilizer error-correcting code.

Then DD pulses can be chosen as stabilizer elements (time-reversal
requires they anti-commute with errors), logic gates can be chosen
as normalizer elements (they commute with stabilizer).

B Hybrid method: CDD combined with composite pulses.
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Concluding Remarks

Iquant—ph/0408128|

B Typical pulse-based decoupling methods use a given pulse-
sequence periodically.

B A concatenated (recursively nested) pulse sequence i1s strictly
advantageous at equal cost.

- More robust against systematic and random control errors
- Improved performance over wide range of couplings

B Can be used to dynamically generate symmetries, then combined
with decoherence-free subspace encoding for (almost) full
decoherence protection.

B Quantum error correcting codes needed against Markovian
uncorrelated errors, where DD/DFS does not apply.

PATVAIATARGVAISATA I VAV A VARG VAV AVAVAVAINTARS VAV VAL VA) A VARG VA D AVA P AVAD A VA
B S VA DA VA FAPA VA RS VA DA VAVAVAD AVARRVAD A VAL FAPA VARG 7AD (74| oo




