Title: Fault tolerant quantum dynamical decoupling

Date: Jun 15, 2005 04:00 AM

URL: http://pirsa.org/05060066

Abstract:

Pirsa: 05060066 Page 1/41

Perimeter Institute

June 15, 2005

Fault Tolerant Quantum Dynamical Decoupling

quant-ph/0408128

Daniel Lidar with Kaveh Khodjasteh

Perimeter Institute

June 15, 2005

Fault Tolerant Quantum Dynamical Decoupling

quant-ph/0408128

Daniel Lidar with Kaveh Khodjasteh

Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence

- Context: Open quantum systems & decoherence
- Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses
- Solution 2: Periodic DD with real (faulty) pulses it doesn't work so well
- Solution 3: Concatenated DD
 - ★ Analytical theory
 - **★**Numerical simulations on a spin-bath
- Generalizations & Implications

Pirsa: 05060066 Page 4/41

Controlled evolution of **system** + **bath** given by the following **ideal** Hamiltonian:

$$H = (H_S^{\text{int}} + H_{\text{Control}}) \otimes I_B + I_S \otimes H_B + \sum S_\alpha \otimes B_\alpha$$

H_{SB} causes decoherence (non-unitary evolution due to entanglement w/ bath) and (unitary) control errors

Pirsa: 05060066 Page 5/41

Controlled evolution of **system** + **bath** given by the following **ideal** Hamiltonian:

$$H = (H_S^{\text{int}} + H_{\text{Control}}) \otimes I_B + I_S \otimes H_B + \sum S_\alpha \otimes B_\alpha$$

H_{SB} causes **decoherence** (non-unitary evolution due to entanglement w/ bath) and (unitary) **control errors**

Instrument control errors

$$H_{\mathrm{Control}} \mapsto H_{\mathrm{C}} + \underbrace{W_{\mathrm{C}}}_{\substack{\mathrm{stochastic and/or systematic}}}$$

Pirsa: 05060066 Page 6/41

Controlled evolution of system + bath given by the following ideal Hamiltonian:

$$H = (H_S^{\text{int}} + H_{\text{Control}}) \otimes I_B + I_S \otimes H_B + \sum S_{\alpha} \otimes B_{\alpha}$$

H_{SB} causes decoherence (non-unitary evolution due to entanglement w/ bath) and (unitary) control errors

Instrument control errors

$$H_{\mathrm{Control}} \mapsto H_{\mathrm{C}} + \underbrace{W_{\mathrm{C}}}_{\substack{\mathrm{stochastic and/or systematic}}}$$

Pulse:
$$U(\delta) = T \exp(-i \int_0^{\delta} H(t) dt)$$

How to overcome **both** decoherence and faulty controls?

Pirsa: 05060066

Page 7/41

Controlled evolution of system + bath given by the following ideal Hamiltonian:

$$H = (H_S^{\text{int}} + H_{\text{Control}}) \otimes I_B + I_S \otimes H_B + \sum S_\alpha \otimes B_\alpha$$

H_{SB} causes **decoherence** (non-unitary evolution due to entanglement w/ bath) and (unitary) **control errors**

Methods to overcome decoherence

- Quantum error correcting codes
- Continuous feedback control
- Decoherence-free subspaces
- Dynamical decoupling pulses

Instrument control errors

$$\begin{array}{c} H_{\rm Control} \longmapsto H_{\rm C} + \underbrace{W_{\rm C}}_{\text{stochastic and/or systematic}} \end{array}$$

Pulse:
$$U(\delta) = T \exp(-i \int_0^{\delta} H(t) dt)$$

How to overcome **both** decoherence and faulty controls?

Pirsa: 05060066

Page 8/41

Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence

- Context: Open quantum systems & decoherence
- Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses
- Solution 2: Periodic DD with real (faulty) pulses it doesn't work so well
- Solution 3: Concatenated DD
 - ★ Analytical theory
 - ★Numerical simulations on a spin-bath
- Generalizations & Implications

Time Reversal: The Canonical DD cycle

A pulse producing a unitary evolution *P*, such that

$$PHP^{\dagger} = -H$$
 i.e., $\{P, H\} = 0$ (Carr-Purcell)

The *time reversal one*(two)-*liner*:

$$P \exp(-i\tau H)P^{\dagger} \exp(-i\tau H) = \exp(-i\tau PHP^{\dagger}) \exp(-i\tau H)$$
$$= \exp(i\tau H) \exp(-i\tau H) = I$$

Pirsa: 05060066 Page 10/41

Time Reversal: The Canonical DD cycle

A pulse producing a unitary evolution P, such that

$$PHP^{\dagger} = -H$$
 i.e., $\{P, H\} = 0$ (Carr-Purcell)

The *time reversal one*(two)-*liner*:

$$P \exp(-i\tau H)P^{\dagger} \exp(-i\tau H) = \exp(-i\tau PHP^{\dagger}) \exp(-i\tau H)$$
$$= \exp(i\tau H) \exp(-i\tau H) = I$$

Pirsa: 05060066 Page 11/41

Universal Dynamical Decoupling

Approximately remove a general H_{SB} from the evolution:

"Symmetrizing group" of pulses $\{g_i\}$ and their inverses are applied in series:

$$(g_N^{\dagger} \mathbf{f} g_N) \cdots (g_2^{\dagger} \mathbf{f} g_2) (g_1^{\dagger} \mathbf{f} g_1) \approx \exp(-i\tau \sum_i g_i^{\dagger} H_{SB} g_i)$$

$$\mathbf{f} = \exp(-iH_{SB}\tau)$$

first order Magnus expansion

Pirsa: 05060066 Page 12/41

Universal Dynamical Decoupling

Approximately remove a general H_{SR} from the evolution:

"Symmetrizing group" of pulses $\{g_i\}$ and their inverses are applied in series:

$$(g_N^{\dagger} \mathbf{f} g_N) \cdots (g_2^{\dagger} \mathbf{f} g_2) (g_1^{\dagger} \mathbf{f} g_1) \approx \exp(-i\tau \sum_i g_i^{\dagger} H_{SB} g_i)$$

$$\mathbf{f} = \exp(-iH_{SB}\tau)$$

Choose the pulses so that:

first order Magnus expansion

$$H_{SB} \mapsto \sum_{i} g_{i}^{\dagger} H_{SB} g_{i} = 0$$

Dynamical Decoupling Condition

(more generally: projection into group commutant)

Universal Dynamical Decoupling

Approximately remove a general H_{SB} from the evolution:

"Symmetrizing group" of pulses $\{g_i\}$ and their inverses are applied in series:

$$(g_N^{\dagger} \mathbf{f} g_N) \cdots (g_2^{\dagger} \mathbf{f} g_2) (g_1^{\dagger} \mathbf{f} g_1) \approx \exp(-i\tau \sum_i g_i^{\dagger} H_{SB} g_i)$$

$$\mathbf{f} = \exp(-iH_{SB}\tau)$$

Choose the pulses so that:

first order Magnus expansion

$$H_{SB} \mapsto \sum_{i} g_{i}^{\dagger} H_{SB} g_{i} = 0$$

Dynamical Decoupling Condition

(more generally: projection into group commutant)

For a qubit the Pauli group $G=\{X,Y,Z,I\}$ (π pulses around all three axes) removes an arbitrary H_{SB} :

$$(XfX) (YfY) (ZfZ) (IfI) = XfZfXfZf$$

(we will focus on qubits)

Periodic DD: periodic repetition of the universal DD pulse sequence

Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence

- Context: Open quantum systems & decoherence
- Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses
- Solution 2: Periodic DD with real (faulty) pulses it doesn't work so well
- Solution 3: Concatenated DD
 - ★ Analytical theory
 - **★**Numerical simulations on a spin-bath
- Generalizations & Implications

Ideal vs Real Pulses

Ideal:

$$H_{\rm C}$$
 $H_{\rm C}$ $XZX = -Z$ \Longrightarrow "time reversal", $H_{\rm SB} = \lambda Z \otimes B$, $H_{\rm C} = X$ in 1st order Magnus expan.

Ideal vs Real Pulses

Ideal:

$$H_{\rm C}$$
 $H_{\rm C}$ $XZX = -Z$ \Longrightarrow "time reversal", $H_{\rm SB} = \lambda Z \otimes B$, $H_{\rm C} = X$ in 1st order Magnus expan.

Real:

$$H_{\text{C}} + W_{\text{C}} + H_{\text{SB}} + H_{\text{B}} \quad H_{\text{C}} + W_{\text{C}} + H_{\text{SB}} + H_{\text{B}}$$

$$H_{\text{SB}} + H_{\text{B}} \quad H_{\text{SB}} + H_{\text{B}}$$

$$\stackrel{\delta}{\longleftrightarrow} \quad H_{\text{SB}} + H_{\text{B}}$$

Note: true also for QEC, considered in fault-Pirsa: 05060066 tolerance setting.

$$[H_{SB}, H_{B}] \neq 0$$

 $[H_{SB}, H_{C}] \neq 0$ control errors!
 $[H_{SB}, W_{C}] \neq 0$ (show up in 2nd order Magnus expansion)

(show up in 2nd order Magnus expansion)

Pirsa: 05060066 Page 18/41

Concatenate BB sequences! (as in QEC)

Renormalization \Rightarrow effective H_e shrinks super-exponentially (?) total pulse sequence time grows exp.

Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence

- Context: Open quantum systems & decoherence
- Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses
- Solution 2: Periodic DD with real (faulty) pulses it doesn't work so well
- Solution 3: Concatenated DD
 - ★ Analytical theory
 - ★Numerical simulations on a spin-bath
- Generalizations & Implications

Concatenation and Renormalization

Why do concatenated Quantum Error Correcting Codes work so well?

$$p_{\text{eff}} = p^{2^n}$$
, code size grows only(!) exponentially

: Effective system-bath interaction is renormalized (?)

Can this be done without encoding, fault-tolerantly?

Yes: Repeat concatenation idea in time rather than space.

Concatenated Universal Dynamical Decoupling

Nest the universal DD pulse sequence into its own free evolution periods £:

$$p(1) = X f Z f X f Z f$$

Pirsa: 05060066 Page 24/4

Concatenated Universal Dynamical Decoupling

Nest the universal DD pulse sequence into its own free evolution periods f:

$$p(1) = X f Z f X f Z f$$

 $p(2) = X p(1) Z p(1) X p(1) Z p(1)$
etc.

Level	Concatenated DD Series after multiplying Pauli matrices
1	XfZfXfZf
2	fZfXfZfYfZfXfZffZfXfZfYfZfXfZf
3	XfZfXfZfYfZfXfZffZfXfZfYfZfXfZfZfZfZfXfZfYfZfXfZfX

Pires: 05060066

Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence

- Context: Open quantum systems & decoherence
- Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses
- Solution 2: Periodic DD with real (faulty) pulses it doesn't work so well
- Solution 3: Concatenated DD
 - **★**Analytical theory
 - **★**Numerical simulations on a spin-bath
- Generalizations & Implications

Geometry of Concatenated DD Pulse Sequences

Successive projections and rotations converge quickly to zero:

$$H_e = I_S \otimes B_0 + \sum_{\alpha = X,Y,Z} \sigma_\alpha \otimes B_\alpha$$

Assumptions:

$$||B_0|| > ||B_X||, ||B_Y||, ||B_Z||$$

 $||B_0||T = c \ll 1$

Pirsa: 05060066 Page 28/41

$$H_e = I_S \otimes B_0 + \sum_{\alpha = X,Y,Z} \sigma_\alpha \otimes B_\alpha$$

"Infidelity" after max. # of levels of concatenation $(T = 4^n \tau = N\tau)$

Assumptions:

$$||B_0|| > ||B_X||, ||B_Y||, ||B_Z||$$

 $||B_0||T = c \ll 1$

$$H_e = I_S \otimes B_0 + \sum_{\alpha = X,Y,Z} \sigma_\alpha \otimes B_\alpha$$

"Infidelity" after max. # of levels of concatenation $(T = 4^n \tau = N\tau)$ Assumptions:

$$||B_0|| > ||B_X||, ||B_Y||, ||B_Z||$$

 $||B_0||T = c \ll 1$

Super-polynomial advantage for CDD!

$$\frac{1 - f_{\text{CDD}}}{1 - f_{\text{PDD}}} \le \frac{\left(c \|B_0\|\tau\right)^{-\log_4} \|B_0\|\tau/c}{4(\|B_0\|\tau)^2} \longrightarrow 0$$

Pirsa: 05060066 Page 30/41

$$H_e = I_S \otimes B_0 + \sum_{\alpha = X,Y,Z} \sigma_\alpha \otimes B_\alpha$$

"Infidelity" after max. # of levels of concatenation $(T = 4^n \tau = N\tau)$ Assumptions:

$$||B_0|| > ||B_X||, ||B_Y||, ||B_Z||$$

 $||B_0||T = c \ll 1$

Super-polynomial advantage for CDD!

$$\frac{1 - f_{\text{CDD}}}{1 - f_{\text{PDD}}} \le \frac{\left(c \|B_0\|\tau\right)^{-\log_4 \|B_0\|\tau/c}}{4\left(\|B_0\|\tau\right)^2} \xrightarrow{\|B_0\|\tau \to 0} 0$$

Why the difference?

- -In PDD errors can build up if not completely removed in the basic cycle.
- -In CDD the next-layer-up removes errors that were left from the lower layer; this will work if errors are not too large: threshold (just as in concatenated QEC)

Pirsa: 05060066 Page 31/41

Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence

- Context: Open quantum systems & decoherence
- Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses
- Solution 2: Periodic DD with real (faulty) pulses it doesn't work so well
- Solution 3: Concatenated DD
 - ★ Analytical theory
 - **★**Numerical simulations on a spin-bath

Generalizations & Implications

Test System: The Spin-Bath (Model for GaAs, P/Si, ...)

A spin-1/2 qubit as the system, coupled to N-1 other interacting spin-1/2s:

$$H = \omega_s Z_1 + \omega_b \sum_{i=2}^{N} Z_i + \sum_{i>j}^{i,j$$

where $H_{ij} = X_i X_j + Y_i Y_j + Z_i Z_j$ is the Heisenberg interaction

and j_{ii} is an exponentially decaying exchange constant.

Numerically exact solution,

compute Error Measure: $e = 1 - \text{Tr}[\rho_s^2]$.

(Non-Markovian bath : revivals, so e oscillates)

Pulsing Apparatus:

- ·Limited switching times
- •Faulty controls

We compare Periodic/Concatenated DD/Pulse-free

pulse-free evolution, total time T

concatenated DD, and

periodic DD with the same pulse interval τ , pulse width δ

Pirsa: 05060066 Page 33/41

Numerical Results – CDD vs PDD as Function of Coupling j

Concatenated DD

Periodic DD

 $\delta = 10^{-4} T, N = 5$

Page 34/41

Numerical Results - Concatenated DD for Systematic Noise

$$\delta = 10^{-4} T$$
, $jT = 15.0$, $N = 5$

Numerical Results -- CDD vs PDD for Systematic Noise

 $\delta = 10^{-5} T$, jT = 3.0, N = 5

Numerical Results - CDD with Random Noise

 $\delta = 10^{-5}T$, jT = 0.2, N = 2

Page 37/41

Numerical Results - CDD vs PDD with Random Noise

 $\delta = 10^{-5} T$, jT = 0.2, N = 2

Page 38/41

Outline

Motivation: Preserving an unknown quantum state in the presence of decoherence

- Context: Open quantum systems & decoherence
- Solution 1: Periodic Dynamical decoupling (DD) with ideal pulses
- Solution 2: Periodic DD with real (faulty) pulses it doesn't work so well
- Solution 3: Concatenated DD
 - ★ Analytical theory
 - ★Numerical simulations on a spin-bath

■ Generalizations & Implications

Pirsa: 05060066 Page 39/41

Directions for the Future - What About Computation?

DD pulses can interfere with computational pulses.

How can they be reconciled?

Use encoded qubits from a stabilizer error-correcting code.
Then DD pulses can be chosen as stabilizer elements (time-reversal requires they anti-commute with errors), logic gates can be chosen as normalizer elements (they commute with stabilizer).

Hybrid method: CDD combined with composite pulses.

Pirsa: 05060066 Page 40/41

Concluding Remarks

quant-ph/0408128

- Typical pulse-based decoupling methods use a given pulsesequence periodically.
- A concatenated (recursively nested) pulse sequence is strictly advantageous at equal cost.
 - More robust against systematic and random control errors
 - Improved performance over wide range of couplings
- Can be used to dynamically generate symmetries, then combined with decoherence-free subspace encoding for (almost) full decoherence protection.
- Quantum error correcting codes needed against Markovian uncorrelated errors, where DD/DFS does not apply.