Title: A Relational Formulation of Quantum Theory

Date: Jun 08, 2005 04:00 AM

URL: http://pirsa.org/05060062

Abstract:

Pirsa: 05060062

A Relational Formulation of Quantum Theory

David Poulin

School of Physical Sciences, The University of Queensland

Pirsa: 05060062 Page 2/93

Isolate the chief physical insight of quantum theory and general relativity, explore their consequences on simple models, and then try to generalize.

D. Poulin, quant-ph/0505081 (2005)

Pirsa: 05060062 Page 3/93

- Isolate the chief physical insight of quantum theory and general relativity, explore their consequences on simple models, and then try to generalize.
- We will assume that...
 - QM sets a mathematical framework to describe physical systems: Hilbert space, unitary representations, etc.
 - GR says that physical descriptions should be background independent.

D. Poulin, quant-ph/0505081 (2005)

Pirsa: 05060062 Page 4/93

- Isolate the chief physical insight of quantum theory and general relativity, explore their consequences on simple models, and then try to generalize.
- We will assume that...
 - QM sets a mathematical framework to describe physical systems: Hilbert space, unitary representations, etc.
 - GR says that physical descriptions should be background independent.
- We will also heavily rely on a Bayesian approach to quantum mechanics: Quantum states represent our knowledge about physical systems.

D. Poulin, quant-ph/0505081 (2005)

Pirsa: 05060062 Page 5/93

- To every "orthodox" physical description, we apply the following four rules:
 - Treat everything quantum mechanically.
 - 2. Use Hamiltonians with appropriate symmetries.
 - Introduce equivalence classes between quantum states related by an element of the symmetry group.
 - Interpret diagonal entries of density operators as probability distributions.

Pirsa: 05060062 Page 6/93

- To every "orthodox" physical description, we apply the following four rules:
 - Treat everything quantum mechanically.
 - Use Hamiltonians with appropriate symmetries.
 - Introduce equivalence classes between quantum states related by an element of the symmetry group.
 - Interpret diagonal entries of density operators as probability distributions.
- In appropriate "macroscopic" limits, this description is equivalent to the orthodox description.
- Away from this limit, the relational description leads to new predictions.
 - The orthodox description is an approximation to the fundamental relational description.

Pirsa: 05060062 Page 7/93

There is nothing really innovative about these rules...

Pirsa: 05060062 Page 8/93

- There is nothing really innovative about these rules...
- We will apply them with lots of zeal to a simple model.
- We will get a fully relational theory, that we can easily interpret.
- We will investigate the features of this theory.
 - New physical phenomenon.

Pirsa: 05060062 Page 9/93

- There is nothing really innovative about these rules...
- We will apply them with lots of zeal to a simple model.
- We will get a fully relational theory, that we can easily interpret.
- We will investigate the features of this theory.
 - New physical phenomenon.
 - Compare with more sophisticated relational theories: "experimental quantum gravity".

Pirsa: 05060062 Page 10/93

Outline

- Give orthodox description of a simple quantum mechanical system.
- Gradually apply our rules to arrive at a fully relational description.
 - Measurements.
 - Dynamics.
 - Time.
- Discussion
 - Relational time.
 - Fundamental decoherence.
 - Spin networks.
 - Connexion to other programs.
- Summary

Pirsa: 05060062 Page 11/93

Outline

- Give orthodox description of a simple quantum mechanical system.
- Gradually apply our rules to arrive at a fully relational description.
 - Measurements.
 - Dynamics.
 - Time.
- Discussion
 - Relational time.
 - Fundamental decoherence.
 - Spin networks.
 - Connexion to other programs.
- Summary

Pirsa: 05060062 Page 12/93

Spin- $\frac{1}{2}$ particle S immersed in a magnetic field.

- Choose \hat{x} such that $\vec{B} = B\hat{x}$.
- Hamiltonian $H^{S} = -B\sigma_{x}^{S}$.
- System's initial state $|\psi(0)\rangle^{\mathcal{S}} = \alpha |\uparrow\rangle^{\mathcal{S}} + \beta |\downarrow\rangle^{\mathcal{S}}$ in σ_z basis.
 - At time t,

$$|\psi(t)\rangle^{\mathcal{S}} = \alpha(t)|\uparrow\rangle^{\mathcal{S}} + \beta(t)|\downarrow\rangle^{\mathcal{S}},$$

$$\alpha(t) = \alpha\cos(Bt/2) + i\beta\sin(Bt/2)$$

$$\beta(t) = i\alpha\sin(Bt/2) + \beta\cos(Bt/2).$$

Pirsa: 05060062 Page 13/93

To make a measurement at time τ , we need a measurement apparatus \mathcal{A} :

Pirsa: 05060062 Page 14/93

To make a measurement at time τ , we need a measurement apparatus A:

- Initialize it in state $(|\uparrow\rangle^{\mathcal{A}} + |\downarrow\rangle^{\mathcal{A}})/\sqrt{2}$.
- Coupling $H^{\mathcal{SA}}(t) = -g\delta(t-\tau)\sigma_z^{\mathcal{S}}\otimes\sigma_y^{\mathcal{A}}$ with $g=\pi/2$.
 - At time τ_+ immediately after τ , S and A are correlated:

$$|\Psi(\tau_+)\rangle^{\mathcal{S}\mathcal{A}} = \alpha(\tau)|\uparrow\rangle^{\mathcal{S}}\otimes|\uparrow\rangle^{\mathcal{A}} + \beta(\tau)|\downarrow\rangle^{\mathcal{S}}\otimes|\downarrow\rangle^{\mathcal{A}}.$$

Pirsa: 05060062 Page 15/93

To make a measurement at time τ , we need a measurement apparatus A:

- Initialize it in state $(|\uparrow\rangle^{\mathcal{A}} + |\downarrow\rangle^{\mathcal{A}})/\sqrt{2}$.
- Coupling $H^{\mathcal{SA}}(t) = -g\delta(t-\tau)\sigma_z^{\mathcal{S}}\otimes\sigma_y^{\mathcal{A}}$ with $g=\pi/2$.
 - At time τ_+ immediately after τ , \mathcal{S} and \mathcal{A} are correlated:

$$|\Psi(\tau_+)\rangle^{\mathcal{S}\mathcal{A}} = \alpha(\tau)|\uparrow\rangle^{\mathcal{S}}\otimes|\uparrow\rangle^{\mathcal{A}} + \beta(\tau)|\downarrow\rangle^{\mathcal{S}}\otimes|\downarrow\rangle^{\mathcal{A}}.$$

• \mathcal{A} is "classical", so it collapses to either $|\uparrow\rangle^{\mathcal{A}}$ or $|\downarrow\rangle^{\mathcal{A}}$:

$$\rho^{\mathcal{S}\mathcal{A}} = |\alpha(\tau)|^2 |\uparrow\rangle\langle\uparrow|^{\mathcal{S}} \otimes |\uparrow\rangle\langle\uparrow|^{\mathcal{A}} + |\beta(\tau)|^2 |\downarrow\rangle\langle\downarrow|^{\mathcal{S}} \otimes |\downarrow\rangle\langle\downarrow|^{\mathcal{A}}.$$

 ${\cal S}$ and ${\cal A}$ are either both in up or both in down state, with respective probabilities $|\alpha(\tau)|^2$ and $|\beta(\tau)|^2$.

Pirsa: 05060062 Page 16/93

This description is not background independent.

- Both \vec{B} and \mathcal{A} are treated classically, and refer to (or define) an external coordinate system.
 - Magnetic field $\vec{B} \propto \hat{x}$.
 - The observable σ_z^A of A is superselected.
 - The coupling $H^{SA}(t)$ is neither time independent or rotationally invariant.

... so this is a pretty good model to illustrate our approach.

Pirsa: 05060062 Page 17/93

Systems are labeled by a calligraphic capital letter, e.g. A.

Pirsa: 05060062 Page 18/93

Systems are labeled by a calligraphic capital letter, e.g. A.

Pirsa: 05060062 Page 19/93

- Systems are labeled by a calligraphic capital letter, e.g. A.
- Operators, states, and Hilbert spaces associated to this particle have the letter as a superscript.
- Quantum number associated to total angular momentum is the same capital letter in roman font.

Pirsa: 05060062 Page 20/93

- Systems are labeled by a calligraphic capital letter, e.g. A.
- Operators, states, and Hilbert spaces associated to this particle have the letter as a superscript.
- Quantum number associated to total angular momentum is the same capital letter in roman font.
- Quantum number associated to the angular momentum along z is the same lower case letter.
- For A, a spin-A particle, this gives
 - $(J^{\mathcal{A}})^2 |A, a\rangle^{\mathcal{A}} = A(A+1)|A, a\rangle^{\mathcal{A}}$
 - $J_z^{\mathcal{A}}|A,a\rangle^{\mathcal{A}} = a|A,a\rangle^{\mathcal{A}},$
 - $|A,a\rangle^{\mathcal{A}} \in \mathcal{H}^{\mathcal{A}} = \mathbb{C}^{2A+1}.$

Pirsa: 05060062 Page 21/93

lacksquare To measure angular momentum, we need a gyroscope \mathcal{G} .

Pirsa: 05060062 Page 22/93

- To measure angular momentum, we need a gyroscope G.
- Pule 1 says that it should be quantum mechanical, so to recover the orthodox result, we choose it to be in a coherent state $|G,g=G\rangle^{\mathcal{G}}$. We abbreviate this $|G,G\rangle^{\mathcal{G}}$.

Pirsa: 05060062 Page 23/93

- To measure angular momentum, we need a gyroscope G.
- Pule 1 says that it should be quantum mechanical, so to recover the orthodox result, we choose it to be in a coherent state $|G,g=G\rangle^{\mathcal{G}}$. We abbreviate this $|G,G\rangle^{\mathcal{G}}$.
- **●** Define the TPCP map \mathcal{E}^{SG} : $\mathcal{B}(\mathcal{H}^{SG}) \to \mathcal{B}(\mathcal{H}^{SG})$:

$$\mathcal{E}^{\mathcal{SG}}(\rho) = \int_{SO(3)} R^{\mathcal{SG}}(\Omega) \rho R^{\mathcal{SG}}(\Omega)^{\dagger} d\Omega,$$

*

 $R^{SG} = R^S \otimes R^G$ is the unitary representation of the rotation group on the pair S - G.

Pirsa: 05060062 Page 24/93

- To measure angular momentum, we need a gyroscope G.
- Rule 1 says that it should be quantum mechanical, so to recover the orthodox result, we choose it to be in a coherent state |G, g = G>^G. We abbreviate this |G, G>^G.
- **●** Define the TPCP map \mathcal{E}^{SG} : $\mathcal{B}(\mathcal{H}^{SG}) \to \mathcal{B}(\mathcal{H}^{SG})$:

$$\mathcal{E}^{\mathcal{SG}}(\rho) = \int_{SO(3)} R^{\mathcal{SG}}(\Omega) \rho R^{\mathcal{SG}}(\Omega)^{\dagger} d\Omega,$$

- $R^{SG} = R^S \otimes R^G$ is the unitary representation of the rotation group on the pair S G.
- $d\Omega$ is the invariant Haar measure on SO(3).
- For all $\rho^{SG} \in \mathcal{B}(\mathcal{H}^{SG})$, $\mathcal{E}(\rho^{SG})$ is rotationally invariant.
- Straightforward generalization to arbitrary number of systems.

Pirsa: 05060062 Page 25/93

How do we justify the group average?

Pirsa: 05060062 Page 26/93

How do we justify the group average?

- Denote $\rho_{|R}$ a quantum state expressed in a reference frame R.
 - We should think of $\rho_{|R}$ as the state given a reference frame R, just like p(a|b) denotes the probability of a given the value of b.

Pirsa: 05060062 Page 27/93

How do we justify the group average?

- Denote ρ_{|R} a quantum state expressed in a reference frame R.
 - We should think of $\rho_{|R}$ as the state given a reference frame R, just like p(a|b) denotes the probability of a given the value of b.
- In an other reference frame R', the same physical state is $\rho_{|R'}=R(\Omega)\rho_{|R}R(\Omega)^{\dagger}$ where Ω is the group element relating R to R'.

Pirsa: 05060062 Page 28/93

How do we justify the group average?

- Denote $\rho_{|R}$ a quantum state expressed in a reference frame R.
 - We should think of $\rho_{|R}$ as the state given a reference frame R, just like p(a|b) denotes the probability of a given the value of b.
- In an other reference frame R', the same physical state is $\rho_{|R'}=R(\Omega)\rho_{|R}R(\Omega)^{\dagger}$ where Ω is the group element relating R to R'.
- But what if we have no information about R, say because it doesn't exists?
 - Without knowledge of b, the probability of a is $p(a) = \sum_b p(a|b)p(b)$.
 - The group averaging procedure E is the exact analogue of this rule.

Pirsa: 05060062 Page 29/93

How do we apply this map in practice?

Pirsa: 05060062 Page 30/93

How do we apply this map in practice?

- P^{SG} is generated by the total angular momentum operator $\vec{J}^{SG} = \vec{\sigma}^S + \vec{J}^G$.
 - Above, $\vec{\sigma}^{S} = (\sigma_{x}^{S}, \sigma_{y}^{S}, \sigma_{z}^{S})$ and $\vec{J}^{G} = (J_{x}^{G}, J_{y}^{G}, J_{z}^{G})$ are the system and gyroscope angular momentum operators.
- So it will be convenient to express the state of \mathcal{S} and \mathcal{G} $|\Psi\rangle^{\mathcal{SG}} = (\alpha|\uparrow\rangle^{\mathcal{S}} + \beta|\downarrow\rangle^{\mathcal{S}}) \otimes |G,G\rangle^{\mathcal{G}}$ in terms of $(J^{\mathcal{SG}})^2$ and $J_z^{\mathcal{SG}}$:

$$\alpha|G+\tfrac{1}{2},G+\tfrac{1}{2};\tfrac{1}{2};G\rangle+\frac{\beta}{\sqrt{2G+1}}|G+\tfrac{1}{2},G-\tfrac{1}{2};\tfrac{1}{2};G\rangle+\frac{\beta\sqrt{2G}}{\sqrt{2G+1}}|G-\tfrac{1}{2},G-\tfrac{1}{2};\tfrac{1}{2};G\rangle.$$

Pirsa: 05060062 Page 31/93

How do we apply this map in practice?

- P^{SG} is generated by the total angular momentum operator $\vec{J}^{SG} = \vec{\sigma}^S + \vec{J}^G$.
 - Above, $\vec{\sigma}^{S} = (\sigma_{x}^{S}, \sigma_{y}^{S}, \sigma_{z}^{S})$ and $\vec{J}^{G} = (J_{x}^{G}, J_{y}^{G}, J_{z}^{G})$ are the system and gyroscope angular momentum operators.
- So it will be convenient to express the state of \mathcal{S} and \mathcal{G} $|\Psi\rangle^{\mathcal{SG}} = (\alpha|\uparrow\rangle^{\mathcal{S}} + \beta|\downarrow\rangle^{\mathcal{S}}) \otimes |G,G\rangle^{\mathcal{G}}$ in terms of $(J^{\mathcal{SG}})^2$ and $J_z^{\mathcal{SG}}$:

$$\alpha|G+\tfrac{1}{2},G+\tfrac{1}{2};\tfrac{1}{2};G\rangle+\frac{\beta}{\sqrt{2G+1}}|G+\tfrac{1}{2},G-\tfrac{1}{2};\tfrac{1}{2};G\rangle+\frac{\beta\sqrt{2G}}{\sqrt{2G+1}}|G-\tfrac{1}{2},G-\tfrac{1}{2};\tfrac{1}{2};G\rangle.$$

- Quantum numbers: $(J^{SG})^2$, J_z^{SG} , $(\sigma^S)^2$, and $(J^G)^2$.
- $(J^{SG})^2$, $(\sigma^S)^2$, and $(J^G)^2$ are rotationally invariant as they commute with the generator \vec{J}^{SG} .

Pirsa: 05060062 Page 32/93

Since J_z^{SG} is the only operator depending on a coordinate system, the effect of \mathcal{E}^{SS} can be readily anticipated: it randomizes the associated quantum number and leaves the other ones unchanged

$$\left[|\alpha|^2 + \frac{|\beta|^2}{2G+1} \right] |G + \frac{1}{2}; \frac{1}{2}; G \rangle \langle G + \frac{1}{2}; \frac{1}{2}; G | \otimes \frac{1 \mathbb{I}_{2G+2}}{2G+2} + \frac{2G|\beta|^2}{2G+G} |G - \frac{1}{2}; \frac{1}{2}; G \rangle \langle G - \frac{1}{2}; \frac{1}{2}; G | \otimes \frac{1 \mathbb{I}_{2G}}{2G},$$

Pirsa: 05060062 Page 33/9

How do we apply this map in practice?

- R^{SG} is generated by the total angular momentum operator $\vec{J}^{SG} = \vec{\sigma}^S + \vec{J}^G$.
 - Above, $\vec{\sigma}^{S} = (\sigma_{x}^{S}, \sigma_{y}^{S}, \sigma_{z}^{S})$ and $\vec{J}^{G} = (J_{x}^{G}, J_{y}^{G}, J_{z}^{G})$ are the system and gyroscope angular momentum operators.
- So it will be convenient to express the state of S and G $|\Psi\rangle^{SG} = (\alpha|\uparrow\rangle^{S} + \beta|\downarrow\rangle^{S}) \otimes |G,G\rangle^{G}$ in terms of $(J^{SG})^{2}$ and J_{z}^{SG} :

$$\alpha|G+\tfrac{1}{2},G+\tfrac{1}{2};\tfrac{1}{2};G\rangle+\frac{\beta}{\sqrt{2G+1}}|G+\tfrac{1}{2},G-\tfrac{1}{2};\tfrac{1}{2};G\rangle+\frac{\beta\sqrt{2G}}{\sqrt{2G+1}}|G-\tfrac{1}{2},G-\tfrac{1}{2};\tfrac{1}{2};G\rangle.$$

- Quantum numbers: $(J^{SG})^2$, J_z^{SG} , $(\sigma^S)^2$, and $(J^G)^2$.
- $(J^{SG})^2$, $(\sigma^S)^2$, and $(J^G)^2$ are rotationally invariant as they commute with the generator \vec{J}^{SG} .

Pirsa: 05060062 Page 34/93

Since J_z^{SG} is the only operator depending on a coordinate system, the effect of \mathcal{E}^{SS} can be readily anticipated: it randomizes the associated quantum number and leaves the other ones unchanged

$$\left[|\alpha|^2 + \frac{|\beta|^2}{2G+1} \right] |G + \frac{1}{2}; \frac{1}{2}; G \rangle \langle G + \frac{1}{2}; \frac{1}{2}; G | \otimes \frac{1 \mathbb{I}_{2G+2}}{2G+2} + \frac{2G|\beta|^2}{2G+G} |G - \frac{1}{2}; \frac{1}{2}; G \rangle \langle G - \frac{1}{2}; \frac{1}{2}; G | \otimes \frac{1 \mathbb{I}_{2G}}{2G},$$

Pirsa: 05060062 Page 35/93

Since J_z^{SG} is the only operator depending on a coordinate system, the effect of \mathcal{E}^{SS} can be readily anticipated: it randomizes the associated quantum number and leaves the other ones unchanged

$$\left[|\alpha|^2 + \frac{|\beta|^2}{2G+1} \right] |G + \frac{1}{2}; \frac{1}{2}; G \rangle \langle G + \frac{1}{2}; \frac{1}{2}; G | \otimes \frac{1 \mathbb{I}_{2G+2}}{2G+2} + \frac{2G|\beta|^2}{2G+G} |G - \frac{1}{2}; \frac{1}{2}; G \rangle \langle G - \frac{1}{2}; \frac{1}{2}; G | \otimes \frac{1 \mathbb{I}_{2G}}{2G},$$

We can remove the quantum number associated to J_z^{SG} from the physical description as it is always in a maximally mixed state, and hence carries no information

$$\rho_{\mathrm{physical}}^{\mathcal{SG}} = \left[|\alpha|^2 + \frac{|\beta|^2}{2G+1} \right] |G + \frac{1}{2}; \frac{1}{2}; G\rangle\langle G + \frac{1}{2}; \frac{1}{2}; G| + \frac{2G|\beta|^2}{2G+1} |G - \frac{1}{2}; \frac{1}{2}; G\rangle\langle G - \frac{1}{2}; \frac{1}{2}; G|.$$

Pirsa: 05060062 Page 36/93

Measurement

Since $J_z^{\mathcal{SG}}$ is the only operator depending on a coordinate system, the effect of $\mathcal{E}^{\mathcal{SS}}$ can be readily anticipated: it randomizes the associated quantum number and leaves the other ones unchanged

$$\left[|\alpha|^2 + \frac{|\beta|^2}{2G+1} \right] |G + \frac{1}{2}; \frac{1}{2}; G \rangle \langle G + \frac{1}{2}; \frac{1}{2}; G | \otimes \frac{1 \mathbb{I}_{2G+2}}{2G+2} + \frac{2G|\beta|^2}{2G+G} |G - \frac{1}{2}; \frac{1}{2}; G \rangle \langle G - \frac{1}{2}; \frac{1}{2}; G | \otimes \frac{1 \mathbb{I}_{2G}}{2G},$$

We can remove the quantum number associated to Jzg from the physical description as it is always in a maximally mixed state, and hence carries no information

$$\rho_{\mathrm{physical}}^{\mathcal{SG}} = \left[|\alpha|^2 + \frac{|\beta|^2}{2G+1} \right] |G + \frac{1}{2}; \frac{1}{2}; G) \langle G + \frac{1}{2}; \frac{1}{2}; G| + \frac{2G|\beta|^2}{2G+1} |G - \frac{1}{2}; \frac{1}{2}; G) \langle G - \frac{1}{2}; \frac{1}{2}; G|.$$

- Rule 4 gives the desired interpretation.
- When $G \to \infty$, we recover the orthodox result.
- This description is fully relational.

Pirsa: 05060062 Page 37/93

There is no symmetric single particle Hamiltonian: dynamics results from interactions.

Pirsa: 05060062 Page 38/93

There is no symmetric single particle Hamiltonian: dynamics results from interactions.

• We need a magnet \mathcal{M} pointing in the \hat{x} direction:

$$|M,M\rangle_x^{\mathcal{M}} = \frac{1}{2^M} \sum_{m=-M}^M \binom{2M}{M+m}^{1/2} |M,m\rangle^{\mathcal{M}}.$$

Pirsa: 05060062 Page 39/93

The solution to Schrödinger's equation of motion is

$$\left|\Psi(t)\right\rangle^{\mathcal{SM}} = \left|M,M\right\rangle_{x}^{\mathcal{M}} \otimes \left|\psi(t)\right\rangle^{\mathcal{S}} + C(t) \left[\frac{1}{\sqrt{2M}} |M,M\rangle_{x}^{\mathcal{M}} \otimes \left|\downarrow\right\rangle^{\mathcal{S}} + |M,M-1\rangle_{x}^{\mathcal{M}} \otimes \left|\uparrow\right\rangle^{\mathcal{S}}\right]$$

- $|\psi(t)\rangle^{S}$ is the solution in the orthodox description with $B = \lambda(2M+1)$.
- $C(t) = i\sqrt{M}2(\alpha \beta)\sin(Bt/2)/(2M + 1)$ vanishes as $M \to \infty$.

San.

Pirsa: 05060062 Page 40/93

We reintroduce the gyroscope and apply the map $\mathcal{E}^{\mathcal{SMG}}$ to obtain

$$ho_{
m physical}^{\mathcal{SMG}} pprox rac{1}{2^{2M}} \sum_{n=-M}^{M-1} {2M \choose M+n} |\Psi_n(t)
angle \left|\Psi_n(t)
ight|^{\mathcal{SMG}}$$

Pirsa: 05060062 Page 41/93

We reintroduce the gyroscope and apply the map $\mathcal{E}^{\mathcal{SMG}}$ to obtain

$$ho_{
m physical}^{\mathcal{SMG}} pprox rac{1}{2^{2M}} \sum_{n=-M}^{M-1} {2M \choose M+n} |\Psi_n(t)
angle \left|\Psi_n(t)
ight|^{\mathcal{SMG}}$$

where

$$|\Psi_{n}(t)\rangle^{\mathcal{SMG}} = \alpha(t)|G+\tfrac{1}{2}+n;G+\tfrac{1}{2}\rangle^{\mathcal{SMG}} + \beta(t)\sqrt{\frac{M-n}{M+n+1}}|G+\tfrac{1}{2}+n;G-\tfrac{1}{2}\rangle^{\mathcal{SMG}}$$

referring to the rotationally invariant quantum numbers $(J^{SMG})^2$ and $(J^{SG})^2$.

For clarity, the quantum numbers $(\sigma^S)^2 = S(S+1)$, $(J^M)^2 = M(M+1)$, and $(J^G)^2 = G(G+1)$ have been omitted.

Pirsa: 05060062 Page 42/93

We reintroduce the gyroscope and apply the map $\mathcal{E}^{\mathcal{SMG}}$ to obtain

$$ho_{
m physical}^{\mathcal{SMG}} pprox rac{1}{2^{2M}} \sum_{n=-M}^{M-1} {2M \choose M+n} |\Psi_n(t)
angle \left|\Psi_n(t)
ight|^{\mathcal{SMG}}$$

where

$$|\Psi_n(t)\rangle^{\mathcal{SMG}} = \alpha(t)|G+\tfrac{1}{2}+n;G+\tfrac{1}{2}\rangle^{\mathcal{SMG}} + \beta(t)\sqrt{\frac{M-n}{M+n+1}}|G+\tfrac{1}{2}+n;G-\tfrac{1}{2}\rangle^{\mathcal{SMG}}$$

referring to the rotationally invariant quantum numbers $(J^{SMG})^2$ and $(J^{SG})^2$.

- For clarity, the quantum numbers $(\sigma^S)^2 = S(S+1)$, $(J^M)^2 = M(M+1)$, and $(J^G)^2 = G(G+1)$ have been omitted.
 - The binomian distribution is peaked around n=0, with fluctuations of size $\Delta n \sim \sqrt{M}$.

Pirsa: 05060062 Page 43/93

We reintroduce the gyroscope and apply the map $\mathcal{E}^{\mathcal{SMG}}$ to obtain

$$ho_{
m physical}^{\mathcal{SMG}} pprox rac{1}{2^{2M}} \sum_{n=-M}^{M-1} {2M \choose M+n} |\Psi_n(t)
angle \left|\Psi_n(t)
ight|^{\mathcal{SMG}}$$

where

$$|\Psi_{n}(t)\rangle^{\mathcal{SMG}} = \alpha(t)|G+\tfrac{1}{2}+n;G+\tfrac{1}{2}\rangle^{\mathcal{SMG}} + \beta(t)\sqrt{\frac{M-n}{M+n+1}}|G+\tfrac{1}{2}+n;G-\tfrac{1}{2}\rangle^{\mathcal{SMG}}$$

referring to the rotationally invariant quantum numbers $(J^{SMG})^2$ and $(J^{SG})^2$.

- For clarity, the quantum numbers $(\sigma^S)^2 = S(S+1)$, $(J^M)^2 = M(M+1)$, and $(J^G)^2 = G(G+1)$ have been omitted.
 - The binomian distribution is peaked around n=0, with fluctuations of size $\Delta n \sim \sqrt{M}$.
 - In this range, the term under the square root is $1 + O(1/\sqrt{M})$.

Pirsa: 05060062 Page 44/93

Thus, with probability approaching one as $M \to \infty$,

$$|\Psi_n(t)\rangle \approx \alpha(t)|G+\tfrac{1}{2}+n;G+\tfrac{1}{2}\rangle^{\mathcal{SMG}} + \beta(t)|G+\tfrac{1}{2}+n;G-\tfrac{1}{2}\rangle^{\mathcal{SMG}}$$

for some random $n \in [-\sqrt{M}, \sqrt{M}]$.

Pirsa: 05060062 Page 45/93

Thus, with probability approaching one as $M \to \infty$,

$$|\Psi_n(t)\rangle \approx \alpha(t)|G+\tfrac{1}{2}+n;G+\tfrac{1}{2}\rangle^{\mathcal{SMG}} + \beta(t)|G+\tfrac{1}{2}+n;G-\tfrac{1}{2}\rangle^{\mathcal{SMG}}$$

for some random $n \in [-\sqrt{M}, \sqrt{M}]$.

lacksquare The state of $\mathcal S$ and $\mathcal G$ obtained from tracing out the magnet is

$$\rho_{\mathrm{physical}}^{\mathcal{SG}} \approx \left|\alpha(t)\right|^2 \left|G + \frac{1}{2}; G; \frac{1}{2}\right\rangle \langle G + \frac{1}{2}; G; \frac{1}{2}\right| + \left|\beta(t)\right|^2 \left|G - \frac{1}{2}; G; \frac{1}{2}\right\rangle \langle G - \frac{1}{2}; G; \frac{1}{2}\right|.$$

Pirsa: 05060062 Page 46/93

Thus, with probability approaching one as $M \to \infty$,

$$|\Psi_n(t)\rangle \approx \alpha(t)|G+\frac{1}{2}+n;G+\frac{1}{2}\rangle^{\mathcal{SMG}}+\beta(t)|G+\frac{1}{2}+n;G-\frac{1}{2}\rangle^{\mathcal{SMG}}$$

for some random $n \in [-\sqrt{M}, \sqrt{M}]$.

lacksquare The state of $\mathcal S$ and $\mathcal G$ obtained from tracing out the magnet is

$$\rho_{\rm physical}^{\mathcal{SG}} \approx |\alpha(t)|^2 |G+\tfrac{1}{2};G;\tfrac{1}{2}\rangle\!\langle G+\tfrac{1}{2};G;\tfrac{1}{2}|+|\beta(t)|^2 |G-\tfrac{1}{2};G;\tfrac{1}{2}\rangle\!\langle G-\tfrac{1}{2};G;\tfrac{1}{2}|.$$

- Can be established through direct calculations.
- Can use the fact that $[Tr_{\mathcal{B}}, \mathcal{E}^{\mathcal{AB}}] = 0$ when the symmetry group acts unitarily on \mathcal{B} , combined with the result concerning measurement.

Pirsa: 05060062 Page 47/93

Our description still uses an external time coordinate.

Pirsa: 05060062 Page 48/93

Thus, with probability approaching one as $M \to \infty$,

$$|\Psi_n(t)\rangle \approx \alpha(t)|G+\frac{1}{2}+n;G+\frac{1}{2}\rangle^{\mathcal{SMG}}+\beta(t)|G+\frac{1}{2}+n;G-\frac{1}{2}\rangle^{\mathcal{SMG}}$$

for some random $n \in [-\sqrt{M}, \sqrt{M}]$.

ullet The state of $\mathcal S$ and $\mathcal G$ obtained from tracing out the magnet is

$$\rho_{\rm physical}^{\mathcal{SG}} \approx |\alpha(t)|^2 |G + \tfrac{1}{2}; G; \tfrac{1}{2} \rangle \langle G + \tfrac{1}{2}; G; \tfrac{1}{2} | + |\beta(t)|^2 |G - \tfrac{1}{2}; G; \tfrac{1}{2} \rangle \langle G - \tfrac{1}{2}; G; \tfrac{1}{2} |.$$

- Can be established through direct calculations.
- Can use the fact that $[Tr_{\mathcal{B}}, \mathcal{E}^{\mathcal{AB}}] = 0$ when the symmetry group acts unitarily on \mathcal{B} , combined with the result concerning measurement.

Pirsa: 05060062 Page 49/93

Our description still uses an external time coordinate.

Pirsa: 05060062 Page 50/93

Our description still uses an external time coordinate.

- To keep tract of time, we need a clock C.
- Pule 1 says that it needs to be quantum mechanical $|C,C\rangle^{\mathcal{C}}$.

Pirsa: 05060062 Page 51/93

Our description still uses an external time coordinate.

- To keep tract of time, we need a clock C.
- Pule 1 says that it needs to be quantum mechanical $|C,C\rangle^{\mathcal{C}}$.
- We need a magnet $\mathcal N$ to power this clock $|N,N\rangle_x^{\mathcal N}$.
 - Heisenberg coupling $H^{CN} = -2\lambda \vec{J}^C \cdot \vec{J}^N$.
 - $\Lambda = M/N$ should be an integer greater than 1, so that the clock's period is longer than the system's period.

Pirsa: 05060062 Page 52/93

This group average is given the same Bayesian justification as above.

Pirsa: 05060062 Page 53/93

Our description still uses an external time coordinate.

- To keep tract of time, we need a clock C.
- Pule 1 says that it needs to be quantum mechanical $|C,C\rangle^{\mathcal{C}}$.
- We need a magnet \mathcal{N} to power this clock $|N, N\rangle_x^{\mathcal{N}}$.
 - Heisenberg coupling $H^{CN} = -2\lambda \vec{J}^C \cdot \vec{J}^N$.
 - $\Lambda = M/N$ should be an integer greater than 1, so that the clock's period is longer than the system's period.
- We eliminate time using Rule 3 exactly as we did for orientation:

$$T(\rho) = \frac{1}{T^{\mathcal{C}}} \int_0^{T^{\mathcal{C}}} U(t) \rho U(t)^{\dagger} dt.$$

Pirsa: 05060062 Page 54/93

This group average is given the same Bayesian justification as above.

Pirsa: 05060062 Page 55/93

This group average is given the same Bayesian justification as above.

- Denote ρ_{|T}(t) a quantum state at time t, where the time refers to an external time coordinate system T.
 - We should think of $\rho_{|T}(t)$ as the state given a coordinate system T.

Pirsa: 05060062 Page 56/93

This group average is given the same Bayesian justification as above.

- Denote $\rho_{|T}(t)$ a quantum state at time t, where the time refers to an external time coordinate system T.
 - We should think of $\rho_{|T}(t)$ as the state given a coordinate system T.
- In an other coordinate system T', the same physical state is $\rho_{|T'}(t) = e^{-iH\Delta}\rho_{|T}e^{iH\Delta}$ where Δ is the time translation relating T to T'.

Pirsa: 05060062 Page 57/93

We apply the same procedure as above:

Pirsa: 05060062 Page 58/93

We apply the same procedure as above:

- Solve equations of motion for S, M, C, and N.
- Introduce gyroscope into the picture and perform rotation group average.
- Perform time average T and trace our magnets, or vice and versa.

Pirsa: 05060062 Page 59/93

We apply the same procedure as above:

- Solve equations of motion for S, M, C, and N.
- Introduce gyroscope into the picture and perform rotation group average.
- Perform time average T and trace our magnets, or vice and versa.
- Remove maximally mixed non-relational degrees of freedom from physical description.

$$\begin{split} \sum_{c} \sum_{s,s',r,r'} \frac{a_s a_{s'}^*}{2} \frac{1}{2^{2C}} \sqrt{\binom{2C}{C+c+\Lambda s} \binom{2C}{C+c+\Lambda s'}} (-1)^{(r-1/2)(s-1/2) + (r'-1/2)(s'-1/2)} \\ \times \sum_{u} d_{u-r,c+\Lambda s}^C d_{u-r',c+\Lambda s'}^C |G+u;G+u-r\rangle \langle G+u;G+u-r'|^{\mathcal{SCG}} \end{split}$$

• Quantum numbers $(J^{CG})^2$ and $(J^{SCG})^2$.

Pirsa: 05060062 Page 60/93

- To "read time", we must measure $(J^{CG})^2$: this yields an outcome G + u.
 - Interpretation: Clock's needle is at an angle $\theta = \cos^{-1}(u/C)$ with respect to \mathcal{G} , so it's θ o'clock.

Pirsa: 05060062 Page 61/93

We apply the same procedure as above:

- Solve equations of motion for S, M, C, and N.
- Introduce gyroscope into the picture and perform rotation group average.
- Perform time average T and trace our magnets, or vice and versa.
- Remove maximally mixed non-relational degrees of freedom from physical description.

$$\begin{split} \sum_{c} \sum_{s,s',r,r'} \frac{a_s a_{s'}^*}{2} \frac{1}{2^{2C}} \sqrt{\binom{2C}{C+c+\Lambda s} \binom{2C}{C+c+\Lambda s'}} (-1)^{(r-1/2)(s-1/2) + (r'-1/2)(s'-1/2)} \\ \times \sum_{u} d_{u-r,c+\Lambda s}^C d_{u-r',c+\Lambda s'}^C |G+u;G+u-r\rangle \langle G+u;G+u-r'|^{\mathcal{SCG}} \end{split}$$

• Quantum numbers $(J^{CG})^2$ and $(J^{SCG})^2$.

Pirsa: 05060062 Page 62/93

- To "read time", we must measure $(J^{CG})^2$: this yields an outcome G + u.
 - Interpretation: Clock's needle is at an angle $\theta = \cos^{-1}(u/C)$ with respect to \mathcal{G} , so it's θ o'clock.

Pirsa: 05060062 Page 63/93

- To "read time", we must measure $(J^{CG})^2$: this yields an outcome G + u.
 - Interpretation: Clock's needle is at an angle $\theta = \cos^{-1}(u/C)$ with respect to \mathcal{G} , so it's θ o'clock.
- Given this outcome, the state ρ^{SGC} updates according to von Neumann postulate, which in this case is equivalent to a classical Bayesian update.

Pirsa: 05060062 Page 64/93

- To "read time", we must measure $(J^{CG})^2$: this yields an outcome G + u.
 - Interpretation: Clock's needle is at an angle $\theta = \cos^{-1}(u/C)$ with respect to \mathcal{G} , so it's θ o'clock.
- Given this outcome, the state ρ^{SGC} updates according to von Neumann postulate, which in this case is equivalent to a classical Bayesian update.
- Conditioned on this outcome u, we measure $(J^{SCG})^2$ and obtain the outcome G + u + s with probability $P(s|\theta)$.
 - $s = \pm 1/2$ is directly interpreted as the system's spin relative to the gyroscope.

Pirsa: 05060062 Page 65/93

We apply the same procedure as above:

- Solve equations of motion for S, M, C, and N.
- Introduce gyroscope into the picture and perform rotation group average.
- Perform time average T and trace our magnets, or vice and versa.
- Remove maximally mixed non-relational degrees of freedom from physical description.

$$\sum_{c} \sum_{s,s',r,r'} \frac{a_{s} a_{s'}^{*}}{2} \frac{1}{2^{2}C} \sqrt{\binom{2C}{C+c+\Lambda s} \binom{2C}{C+c+\Lambda s'}} (-1)^{(r-1)} (s-1/2) + (r'-1/2)(s'-1/2)$$

$$\times \sum_{u} d_{u-r,c+\Lambda s}^{C} d_{u-r',c+\Lambda s'}^{C} |G+u;G+u-r\rangle \langle G+u;G+u-r'|^{\mathcal{SCG}}$$

• Quantum numbers $(J^{CG})^2$ and $(J^{SCG})^2$.

Pirsa: 05060062 Page 66/93

- To "read time", we must measure $(J^{CG})^2$: this yields an outcome G + u.
 - Interpretation: Clock's needle is at an angle $\theta = \cos^{-1}(u/C)$ with respect to \mathcal{G} , so it's θ o'clock.
- Given this outcome, the state ρ^{SGC} updates according to von Neumann postulate, which in this case is equivalent to a classical Bayesian update.
- Conditioned on this outcome u, we measure $(J^{SCG})^2$ and obtain the outcome G + u + s with probability $P(s|\theta)$.
 - $s = \pm 1/2$ is directly interpreted as the system's spin relative to the gyroscope.

San.

Pirsa: 05060062 Page 67/93

a) Probability distribution for the measurement outcome of $(J^{\mathcal{CG}})^2$ for clock size C=20. Dash line is $1/\pi\sqrt{C^2-u^2}$ corresponding to a flat distribution of θ .

Pirsa: 05060062 Page 68/93

- a) Probability distribution for the measurement outcome of $(J^{\mathcal{CG}})^2$ for clock size C=20. Dash line is $1/\pi\sqrt{C^2-u^2}$ corresponding to a flat distribution of θ .
- b) Conditional probability of $(J^{SCG})^2$ indicating s=-1/2 for clock size

 $C=20,\,40,\,100,\,$ and 400. Dash line indicate orthodox prediction.

rsa: 05060062 Page 69

What have we done so far?

- We have applied our four rules to the simple example. This forced us to...
 - Quantize the spacial and temporal reference frame, by introducing a quantum mechanical gyroscope and clock.
 - Quantize the external fields generating dynamics.

Pirsa: 05060062 Page 70/93

What have we done so far?

- We have applied our four rules to the simple example. This forced us to...
 - Quantize the spacial and temporal reference frame, by introducing a quantum mechanical gyroscope and clock.
 - Quantize the external fields generating dynamics.
- All physical quantities described in this theory are background independent.
- In the appropriate macroscopic limits, the predictions are the same as those of the orthodox theory.

Pirsa: 05060062 Page 71/93

What have we done so far?

- We have applied our four rules to the simple example. This forced us to...
 - Quantize the spacial and temporal reference frame, by introducing a quantum mechanical gyroscope and clock.
 - Quantize the external fields generating dynamics.
- All physical quantities described in this theory are background independent.
- In the appropriate macroscopic limits, the predictions are the same as those of the orthodox theory.
- But this limit is an approximation to reality...
- We will now explore some features of this relational theory.

Pirsa: 05060062 Page 72/93

Relational time

• As a consequence of the time average, $[\rho_{physical}, H] = 0$.

Pirsa: 05060062 Page 73/93

Relational time

- As a consequence of the time average, $[\rho_{physical}, H] = 0$.
 - This differs from the usual Wheeler-DeWitt equation $H|\Psi\rangle=0$, which is a special case of our constraint.

Pirsa: 05060062 Page 74/93

Relational time

- As a consequence of the time average, $[\rho_{physical}, H] = 0$.
 - This differs from the usual Wheeler-DeWitt equation $H|\Psi\rangle=0$, which is a special case of our constraint.
 - Should the constraint be applied at the level of $\mathcal{B}(\mathcal{H})$ or \mathcal{H} ?
 - The mixed state solution is more natural in a Bayesian approach. (How could we know which energy eigenstate is realized by the universe from within the universe?)

Pirsa: 05060062 Page 75/93

Fundamental decoherence

Arrow of time?

Pirsa: 05060062 Page 76/93

Fundamental decoherence

Arrow of time?

Solutions all agree at $\theta = 0$, but deteriorate as θ increase.

Fundamental decoherence due to quantum fluctuations of the clock, equivalent to fluctuations of H.

Pirsa: 05060062 Page 77/93

Fundamental decoherence

Arrow of time?

- Solutions all agree at $\theta = 0$, but deteriorate as θ increase.
- Fundamental decoherence due to quantum fluctuations of the clock, equivalent to fluctuations of H.
- Bayesian approach: clock measurement used to estimate the coordinate time $p(t|\theta) = p(\theta|t)p(t)/p(\theta)$.
- Given clock measurement outcome θ , the state of S is $\rho^{S}(\theta) = \int p(t|\theta)\rho(t)dt = \int p(t|\theta)e^{-iHt}\rho(0)e^{iHt}dt$

Pirsa: 05060062 Page 78/93

To solve equations of motion, we first introduced two new operators $\vec{J_1}$ and $\vec{J_2}$ satisfying $\vec{J}^S + \vec{J}^M + \vec{J_1} = 0$ and $\vec{J}^C + \vec{J}^N - \vec{J_2} = 0$:

Pirsa: 05060062 Page 79/93

To solve equations of motion, we first introduced two new operators $\vec{J_1}$ and $\vec{J_2}$ satisfying $\vec{J}^S + \vec{J}^M + \vec{J_1} = 0$ and $\vec{J}^C + \vec{J}^N - \vec{J_2} = 0$:

- To read the time, we introduced an other operator \vec{J}_3 satisfying $\vec{J}^{\mathcal{G}} + \vec{J}_2 + \vec{J}_3 = 0$, or in other words $\vec{J}_3 = -(\vec{J}^{\mathcal{C}} + \vec{J}^{\mathcal{N}} + \vec{J}^{\mathcal{G}})$.
- To measure the system's state relative to the gyroscope and clock, we introduced \vec{J}_{total} satisfying $\vec{J}_1 + \vec{J}_3 + \vec{J}_{total} = 0$, or equivalently $\vec{J}_{total} = \vec{J}^S + \vec{J}^M + \vec{J}^C + \vec{J}^N + \vec{J}^G$.

Pirsa: 05060062 Page 80/93

Putting all this together yields the diagram

Pirsa: 05060062

Putting all this together yields the diagram

The next step was the group average. On the diagram, this essentially boils down to removing the arrows!!!

Pirsa: 05060062 Page 82/93

Putting all this together yields the diagram

- The next step was the group average. On the diagram, this essentially boils down to removing the arrows!!!
 - $\vec{J} \rightarrow j$ such that $(\vec{J})^2 = j(j+1)$.
 - Not all edges are in an eigenstate of the operator $(\vec{J})^2$, so we need superposition of graphs.

Pirsa: 05060062 Page 83/93

Putting all this together yields the diagram

- The next step was the group average. On the diagram, this essentially boils down to removing the arrows!!!
 - $\vec{J} \rightarrow j$ such that $(\vec{J})^2 = j(j+1)$.
 - Not all edges are in an eigenstate of the operator $(\vec{J})^2$, so we need superposition of graphs.
 - The amplitudes are linear functions of the non-relational amplitudes and Clebsch-Gordan coefficients.

Pirsa: 05060062 Page 84/93

This yields the diagram

Pirsa: 05060062

This yields the diagram

- Where $\sum_i p_i[|\Gamma_i\rangle]$ stands for $\sum_i p_i |\Gamma_i\rangle\langle\Gamma_i|$.
- The final step was to perform a time average which imposed an energy superselection rule.
 - This implies superselection of $j_1(j_1 + 1) + j_2(j_2 + 1)$, which can be imposed by a Kronecker delta in the previous sum.

Pirsa: 05060062 Page 86/93

Each decorated graph \(\Gamma\) is a spin network corresponding to a basis state of the relational theory.

Pirsa: 05060062 Page 87/93

- Each decorated graph \(\Gamma\) is a spin network corresponding to a basis state of the relational theory.
- Vertex with edges j_1 , j_2 , and j_3 carries an intertwining operator $\mathbb{C}^{j_1(j_1+1)}\otimes\mathbb{C}^{j_2(j_2+1)}\otimes\mathbb{C}^{j_3(j_3+1)}\to\mathbb{C}$, which in our simple model, give the Clebsch-Gordan coefficients required to remove the arrows.

Pirsa: 05060062 Page 88/93

- Each decorated graph \(\Gamma\) is a spin network corresponding to a basis state of the relational theory.
- Vertex with edges j_1 , j_2 , and j_3 carries an intertwining operator $\mathbb{C}^{j_1(j_1+1)}\otimes\mathbb{C}^{j_2(j_2+1)}\otimes\mathbb{C}^{j_3(j_3+1)}\to\mathbb{C}$, which in our simple model, give the Clebsch-Gordan coefficients required to remove the arrows.
- The "sum over histories" \mathcal{T} , usually performed using spin foams, is here implemented at the level of $\mathcal{B}(\mathcal{H})$ rather than \mathcal{H} .

Pirsa: 05060062 Page 89/93

Connexions to other programs

The program was motivated by the noiseless subsystems method of quantum information science.

Pirsa: 05060062 Page 90/93

Summary (if you buy my rules...)

- Quantum theory is fundamentally relational.
 - The "orthodox" description is a semi-classical limit, so it is approximate.

Pirsa: 05060062 Page 91/93

Summary (if you buy my rules...)

- Quantum theory is fundamentally relational.
 - The "orthodox" description is a semi-classical limit, so it is approximate.
- Elementary quantum mechanics with no classical approximations allowed us to recover interesting results:
 - Relational time of Page and Wootters.
 - Fundamental decoherence of Gambini et al.
 - Spin network representation.

Pirsa: 05060062 Page 92/93

Summary (if you buy my rules...)

- Quantum theory is fundamentally relational.
 - The "orthodox" description is a semi-classical limit, so it is approximate.
- Elementary quantum mechanics with no classical approximations allowed us to recover interesting results:
 - Relational time of Page and Wootters.
 - Fundamental decoherence of Gambini et al.
 - Spin network representation.
- But our results were slightly different.
 - Hamiltonian constraint $[\rho_{physical}, H] = 0$ rather than WDW.
 - Relational time rises from classical correlations rather than entanglement.

Pirsa: 05060062 Page 93/93