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Goal

Isolate the chief physical insight of quantum theory and general
relativity, explore their consequences on simple models, and

then try to generalize.
We will assume that...

QM sets a mathematical framework to describe physical
systems: Hilbert space, unitary representations, etc.

GR says that physical descriptions should be background
iIndependent.

We will also heavily rely on a Bayesian approach to quantum
mechanics: Quantum states represent our knowledge about
physical systems.

D. Poulin, quani-ph/0505081 (2005)



Goal

To every “orthodox" physical description, we apply the following
four rules:

1. Treat everything quantum mechanically.
2. Use Hamiltonians with appropriate symmetries.

3. Introduce equivalence classes between quantum states
related by an element of the symmetry group.

4. Interpret diagonal entries of density operators as probability
distributions.




Goal

To every “orthodox” physical description, we apply the following

four rules:

1. Treat everything quantum mechanically.

2. Use Hamiltonians with appropriate symmetries.

3. Introduce equivalence classes between quantum states
related by an element of the symmetry group.

4. Interpret diagonal entries of density operators as probability
distributions.

In appropriate “macroscopic” limits, this description is

equivalent to the orthodox description.

Away from this limit, the relational description leads to new

predictions.

The orthodox description is an approximation to the
fundamental relational description.
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There is nothing really innovative about these rules...
We will apply them with lots of zeal to a simple model.
We will get a fully relational theory, that we can easily interpret.

We will investigate the features of this theory.
New physical phenomenon.

Compare with more sophisticated relational theories:
“experimental quantum gravity".
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Orthodox description

Spin-3 particle S immersed in a magnetic field.

Choose i such that B = Bi.
Hamiltonian H° = —Bo°.

I

System’s initial state |4(0))° = a|1)° + 3|1)° in 0. basis.
At time ¢,

b)) = a@)INS + 805,
a(t) = acos(Bt/2)+:10sin(Bt/2)
G(t) = i1asm(Bt/2)+ Gcos(Bt/2).
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Orthodox description

To make a measurement at time . we need a measurement

apparatus A:
Initialize it in state (|/1)4 + |[)4)/V2.
Coupling H°A(t) = —gé(t — 7)o? @ o' with g = 7/2.

At time = immediately after , S and 4 are correlated:
¥(r )54 = a(7)|1)° ¢ ""1—31:'5_,_5 o
A is “classical", so it collapses to either |1)* or || )4:
S o lIVIIA

p = |a(T)| *. R IXTH + 18(7)|?

S and A are either both in up or both in down state, with
respective probabilities |a(7)|* and |3(7)|*.




Orthodox description

This description is not background independent.

Both B and A are treated classically, and refer to (or define) an
external coordinate system.
Magnetic field B ~ i.
The observable o2 of A is superselected.
The coupling H>#(#) is neither time independent or
rotationally invariant.

... So this is a pretty good model to illustrate our approach.
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Some notation

Systems are labeled by a calligraphic capital letter, e.g. A.

Operators, states, and Hilbert spaces associated to this particle
have the letter as a superscript.

Quantum number associated to total angular momentum is the
same capital letter in roman font.

Quantum number associated to the angular momentum along -
Is the same lower case letter.

For A, a spin-A particle, this gives
(JA)2|A,a)A = A(A +1)|A, a)A
J2A,a)* = alA,a)?,

A, a)* € HA =C24A+1
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RSY = R® ® RS is the unitary representation of the rotation
group on the pair S — G.



Vieasurement

To measure angular momentum, we need a gyroscope G.

Rule 1 says that it should be quantum mechanical, so to
recover the orthodox result, we choose it to be in a coherent
state |G, g = G)Y. We abbreviate this |G, G)°.

Define the TPCP map £°9 : B(HSY) — B(H®Y):

ES9%(p) = RS9 (Q)pR%(Q)1dQ,
JSO(3)

RSY = R® ® RS is the unitary representation of the rotation
group on the pair S — G.

d(} is the invariant Haar measure on SO(3).

For all p59 € B(HS9), £(p°9) is rotationally invariant.

Straightforward generalization to arbitrary number of
systems.
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Vieasurement

How do we justify the group average?
Denote p p a quantum state expressed in a reference frame R.

We should think of p , as the state given a reference frame
R, just like p(a|b) denotes the probability of « given the value
of b.

In an other reference frame R’, the same physical state is
PR = R(Q)p g R(2)" where Q is the group element relating R to
R
But what if we have no informa¥pn about R, say because it
doesn't exists?
Without knowledge of b, the probability of a is
p(a) = > _; p(alb)p(b).
The group averaging procedure £ is the exact analogue of
this rule.



Vieasurement

How do we apply this map in practice?
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How do we apply this map in practice?
RSY is generated by the total angular momentum operator

J56 =55 + J°.
Above, 7° = (03 ,05,0°) and J° = (JZ,J¢, J?) are the
system and gyroscope angular momentum operators.

So it will be convenient to express the state of S and G
¥)S9 — (al)° + BI1)°) ® |G, G)¢ in terms of (J59)2 and J5¢:
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Vieasurement

How do we apply this map in practice?
RSY is generated by the total angular momentum operator
56 =55 + J°.
Above, 7° = (03 ,05,0°) and J° = (JZ,J9, J?) are the

y
system and gyroscope angular momentum operators.

So it will be convenient to express the state of S and ¢
¥)S¢ — (all)® + BI1)%) @ |G, G)Y in terms of (J59)2 and J5¢:

b i
B | et

_ ! . NAE :
G+ G-k 36+ e tc

33 v2G + 1

a|G+3,G+3: 5:G)+

Quantum numbers: (J°9)2, J39, (¢°)2, and (JY)2.
(J°9)2, (6°)2, and (JY)? are rotationally invariant s they
commute with the generator J°¢



Vieasurement

Since J°¢ is the only operator depending on a coordinate system,

the effect of £5° can be readily anticipated: it randomizes the
associated quantum number and |leaves the other ones unchanged
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Vieasurement

How do we apply this map in practice?
RSY is generated by the total angular momentum operator
J56 =55+ JY.
Above, 7° = (03 ,05,0°) and J¢ = (JZ,J9, J?) are the
system aifd gyroscope angular momentum operators.

So it will be convenient to express the state of S and G
¥)SC — (all)® + 811)%) 2 |G, G)Y in terms of (J59)2 and JS€¢:

; ; ; 8vV2G
Q|G+%G+%%G‘+—G+ GG—5:5:G)+ \'__ 3
V2G +1 v2G +1

B et
Ill'h\
bl | =
| =

Quantum numbers: (J°9)2, J59, (¢°)2, and (JY)2.
(J°9)2, (6°)2, and (J¥)? are rotationally invariant as they

commute with the generator 59



Vieasurement

Since J°¢ is the only operator depending on a coordinate system,

the effect of £5° can be readily anticipated: it randomizes the

associated quantum number and leaves the other ones unchanged
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Vieasurement

Since J°¢ is the only operator depending on a coordinate system,
the effect of £5° can be readily anticipated: it randomizes the
associated quantum number and leaves the other ones unchanged
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2G +1 | 3
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T 2G+2 2G4+ G i iy 2G

We can remove the quantum number associated to J>¢ from
the physical description as it is always in a maximally mixed
state, and hence carries no information
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Vieasurement

Since J°¢ is the only operator depending on a coordinate system.

the effect of £55 can be readily anticipated: it randomizes the
associated quantum number and |leaves the other ones unchanged

Bacia  2G|1812
- (2 &= e —

8|* o
SR SN L S WMT G

2G +1 |

T

I.IlH

k|-

G+2: ;GG +

2
ja|” + 2 333 v
We can remove the quantum number associated to J>¢ from
the physical description as it is always in a maximally mixed
state, and hence carries no information
181 ] 2G|8)* B

G+%: 3:GNG+3: 3: G|+ G-—24:L.GG—
2G +1 | 7 7 2G + 1 i

B =

b=

5G e 2
Pphysical — |ia| L3

Rule 4 gives the desired interpretation.
When G — oc, we recover the orthodox result.
This description is fully relational.
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Dynamics

There is no symmetric single particle Hamiltonian: dynamics results
from interactions.

We need a magnet M pointing in the z direction:

M

_ ] 3 2M '/
v A s M
_-1[. _1[ ..E. — i ‘_‘n.f (‘.1[ §Y f??) j‘!ﬁ Ir’ »

m——M




Dynamics

The solution to Schrodinger’s equation of motion is

=
Fod
—
U

A

M, MM @ 11)S + | M, M —1)-

—." A _‘Lf:f D |¥(t) B + C(t) = =

|\]'lt:|.$'

[ 2]

W

¥(t))° is the solution in the orthodox description with

B = A2M +1).
C(t) = ivM2(a — 3)sin(Bt/2)/(2M + 1) vanishes as
_‘:I—* o .




Dynamics

We reintroduce the gyroscope and apply the map £5*¢ to obtain

— 2M

= - 1 : &
SMG i ‘- SMG
Pphysical ~ o2 M e W, ()N T, (¢t
3 n=—M "~

|




Dynamics

We reintroduce the gyroscope and apply the map £5*¢ to obtain

1 -1II_1 2_‘1!

P:qﬂ.:jts?cal ~ 2 M Z i Tn(t) ¥a(t) T
" n=—M 3
where
'I'n{tj':s*ug:Cllﬁ:i'{j-f—%*ﬂ;c"‘—!‘,:s"“g‘f—jl.fl- —lf_r: (__',—-—5‘_-—-—“'_-"}— :T SMG
F = | M+n+1 o o
refering to the rotationally invariant quantum numbers (J°*9)? and
(J59)2.
For clarity, the quantum numbers (65)2 = S(S+1),

(JM)2 = M(M +1), and (J9)2 = G(CG + 1) have been omitted.



Dynamics

We reintroduce the gyroscope and apply the map £5*¢ to obtain

S g M- 2 M =
PgE?S?CEl ~ 22 M _21” s o) W () FFa(t) SM¢
where '
: 5 MG M —n . i
¥ () M9 —a@)IC+ L +m G+ 1M +8(0), M G+ +mG— 3 SMg
2 ; N } _
refering to the rotationally invariant quantum numbers (J5*¢)% and
A g o

For clarity, the quantum numbers (¢°)% = S(S + 1),

(JM)Y2 = M(M +1), and (J9)? = G(G + 1) have been omitted.
The binomian distribution is peaked around n = 0, with
fluctuations of size An ~ VM. ¥




Dynamics

We reintroduce the gyroscope and apply the map £5*¢ to obtain

-'.r_l .')_"'I

= = 1 e
S MG =5 \ ' S MG
PFh}'!iCEl i~ "]2_"-! y i 1 11_ T ‘pn|fl '¢1|f|
b n=—M A
where
SMG . 1 1\ SMG _ M—mn 2 j ¥ SMG
v (t))"" :::tit}eG'—l-—i-'—n;G-i-q, T+ B8(t)y —m—— |G+ =+ G — = -

| M +n+1
refering to the rotationally invariant quantum numbers (J°*9)? and
(J-SG):':.
For clarity, the quantum numbers (¢°)% = S(S + 1),
(JM)2 = M(M +1), and (J9)2 = G(G + 1) have been omitted.
The binomian distribution is peaked around n = 0, with
fluctuations of size An ~ VM.
In this range, the term under the square root is
1+ O(l;“&ﬁ).




Dynamics

Thus, with probability approaching one as M — ~,

i . # e SMGC 2 = 1 - 1. S MG
:ﬁrﬂ:tj.::alhf_,ﬁ-%—ntf_;—% 15-:.? 4+ +nnG — = (s

for some random n € [V M, VM].




Dynamics

Thus, with probability approaching one as M — ~c,

SMG & ]
- -+ 3 - E—

+ 3({t)| &G +

.

% [™

+n; G +

%[5
[ ]

| Fn(t)) =~ a(t) |G +

for some random n € [—VM,VM].
The state of S and G obtained from tracing out the magnet is

SC i v2 L, v Ly L, v X 2 ~ 1 Ly o L, v 1
Pphy!ical"" xlt) G'{-T:'L:E (J_-E (_ri'-' e ]| & — 2 L 3 > — g0 3




Dynamics

Thus, with probability approaching one as M — ~c,

SMG - e y - 1. S MG
“+8(t) | + +mG — 5 =

| Tn(t)) = alt]|G-|- =4+n: G+

(%"

[ %] [ S]

for some random n € [—VM,VM].
The state of S and G obtained from tracing out the magnet is

SG e * b
PPEymcal*" a(t)| G+-I§ G NG+ G — ,5—:f_.:% G G 5

bd|=

G = + |8(t)

b=
b=

Can be established through direct calculations.

Can use the fact that [Trz, £4%] = 0 when the symmetry
group acts unitarilly on B, combined with the result
concerning measurement.




1Time

Our description still uses an external time coordinate.




Dynamics

Thus, with probability approaching one as M — ~c,

i S ; Ay 1 e 1.3 MG
|11rn1t};::c:lt1:G-|-.1—,—n:r_,— ME"-E:r:f_;-%ﬁ-q;f_,—ﬁ“ s

[%] ]

for some random n € [—VM,VM].
The state of S and G obtained from tracing out the magnet is

SG

B B e
Pphysical ~ ':”ﬂ G+‘-j-G~'j"ﬂr- : G

b=

| + |8(¢t) G —s0G

|
b=

[ S]]

Can be established through direct calculations.

Can use the fact that [Trz, £45] = 0 when the symmetry
group acts unitarilly on B, combined with the result
concerning measurement.
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1Time

Our description still uses an external time coordinate.
To keep tract of time, we need a clock C.

Rule 1 says that it needs to be quantum mechanical |C, C)°.

-
We need a magnet \ to power this clock |V, N )Y .

Heisenberg coupling HN = —2)0J¢ - JV.

A = M /N should be an integer greater than 1, so that the
clock’s period is longer than the system’s period.
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This group average is given the same Bayesian justification as
above.




1Time

Our description still uses an external time coordinate.
To keep tract of time, we need a clock C.
Rule 1 says that it needs to be quantum mechanical |C, C)°.
We need a magnet \/ to power this clock [N, N )V .
Heisenberg coupling HN = —20J° . JV.

A = M /N should be an integer greater than 1, so that the
clock’s period is longer than the system’s period.

We eliminate time using Rule 3 exactly as we did for orientation:

TC

T(p) = TC i U(t)pU(t)" dt.
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Time

This group average is given the same Bayesian justification as
above.
Denote pr(£) a quantum state at time ¢, where the time refers
to an external time coordinate system 7.
We should think of p\1(¢) as the state given a coordinate
system T'.




1Time

This group average is given the same Bayesian justification as
above.
Denote p(£) a quantum state at time ¢, where the time refers
to an external time coordinate system 7.
We should think of p-(¢) as the state given a coordinate
system T'.

In an other coordinate system 7", the same physical state is
pir(t) = e "HAp re'HA where A is the time translation relating

TtoT'.
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Solve equations of motion for S, M, C, and V.

Introduce gyroscope into the picture and perform rotation group
average.

Perform time average 7 and trace our magnets, or vice and
versa.



1Time

We apply the same procedure as above:

Solve equations of motion for S, M, C, and V.

Introduce gyroscope into the picture and perform rotation group
average.

Perform time average 7 and trace our magnets, or vice and
versa.

Remove maximally mixed non-relational degrees of freedom
from physical description.

"'d'lt.r

Y \ T \ > 1 /Y L 4 1./2 4 1 /2
3 1 | 20 ; 20 \f ylr—1/2We—1/2)H —1/2)(a —1,;2)
iwC Ea,a".r.r" 2 22C "'u \C+ct+As)! CH+ec+Aa" )’ 1)
- {._" C -y 5 v v B v r u'_':l;_d'-:
x T‘.—udu-r.c-l-;\adu—rf.g-.-.\g-f G+uGt+u—rGt+uiGt+u—r o

Quantum numbers (J€9)2 and (JS€9)2.
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To “read time", we must measure (J“Y)?: this yields an
outcome G + wu.
Interpretation: Clock’s needle is at an angle # = cos™ ' (u/C)
with respect to G, so it’s # o’clock.




Time

We apply the same procedure as above:
Solve equations of motion for S, M, C, and V.

Introduce gyros!ope into the picture and perform rotation group
average.

Perform time average 7 and trace our magnets, or vice and
versa.

Remove maximally mixed non-relational degrees of freedom
from physical description.

-
’ ’
Tagd & W \ | Y L il k. (r—1/2¥sa L/ V4l —1/2V(a' —1/2)

il : V¢ — 1) —1/2 2
Ec Ea,a’.r‘.r" ] 22C l,r \C+ectAs/! C4+c+As’ )} 1)

v . el
- i C e o i ¥ 5 . I | . 1 o
X lowm du-r.cﬂ-;\adu—r’.c_.__\a-f G u; &+ u riG u; &+ u L

Quantum numbers (J€9)2 and (JS€9)2.
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To “read time", we must measure (J“)?: this yields an
outcome G + wu.

Interpretation: Clock’s needle is at an angle # = cos™ ' (u/C)
with respect to G, so it’s # o’clock.

Given this outcome, the state p°% updates according to von

Neumann postulate, which in this case is equivalent to a
classical Bayesian update.



1Time

To “read time", we must measure (J“Y)?: this yields an
outcome G + wu.
Interpretation: Clock’s needle is at an angle # = cos™ ' (u/C)
with respect to G, so it’s  o'clock.

Given this outcome, the state p°9C updates according to von
Neumann postulate, which in this case is equivalent to a
classical Bayesian update.

Conditioned on this outcome «, we measure (J5°9)? and obtain
the outcome G + u + s with probability P(s|9).
s = +1/2 is directly interpreted as the system’s spin relative
to the gyroscope.



Time

We apply the same procedure as above:
Solve equations of motion for S, M, C, and V.

Introduce gyroscope into the picture and perform rotation group
average.

Perform time average 7 and trace our magnets, or vice and
versa.

Remove maximally mixed non-relational degrees of freedom
from physical description.

=
gl & W7 1 2 \ i e h _# e . SAE
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Quantum numbers (J€9)2 and (JS€9)2.



Time

To “read time", we must measure (J“Y)?: this yields an
outcome G + wu.
Interpretation: Clock’s needle is at an angle # = cos™ ' (u/C)
with respect to G, so it’s  o'clock.

Given this outcome, the state p°9 updates according to von
Neumann postulate, which in this case is equivalent to a
classical Bayesian update.

Conditioned on this outcome «, we measure (J5°)? and obtain
the outcome G + u + s with probability P(s|d).
s = +1/2 is directly interpreted as the system’s spin relative
to the gyroscope.
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a) Probability distribution for the measurement outcome of (J¢9)? for

clock size C = 20. Dash line is 1/7/ C? — u? corresponding to a flat
distribution of 6.
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a) Probability distribution for the measurement outcome of (J¢9)? for

clock size C = 20. Dash line is 1/7/ C? — u? corresponding to a flat
distribution of 4.

b) Conditional probability of (/°¢)? indicating s = —1/2 for clock size
C = 20, 40, 100, and 400. Dash line indicate orthodox prediction.
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We have applied our four rules to the simple example. Thisg
forced us to...

Quantize the spacial and temporal reference frame, by
intfroducing a quantum mechanical gyroscope and clock.

Quantize the external fields generating dynamics.
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independent.

In the appropriate macroscopic limits, the predictions are the
same as those of the orthodox theory.



What have we done so far?

We have applied our four rules to the simple example. This
forced us to...

Quantize the spacial and temporal reference frame, by
infroducing a quantum mechanical gyroscope and clock.

Quantize the external fields generating dynamics.

All physical quantities described in this theory are background
independent.

In the appropriate macroscopic limits, the predictions are the
same as those of the orthodox theory.

But this limit is an approximation to reality...
We will now explore some features of this relational theory.
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Relational time

As a consequence of the time average, |pphysical, H| = 0.
This differs from the usual Wheeler-DeWitt equation
H|W¥) = 0, which is a special case of our constraint.

Should the constraint be applied at the level of B(H) or H?

The mixed state solution is more natural in a Bayesian
approach. (How could we know which energy eigenstate is
realized by the universe from within the universe?¥
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Fundamental decoherence

Arrow of time?
Solutions all agree at ¢ = 0, but deteriorate as ¢ increase.

Fundamental decoherence due to quantum fluctuations of the
clock, equivalent to fluctuations of H.

Bayesian approach: clock measurement used to estimate the
coordinate time p@ d) = p(0|t)p(t) /p(6).

Given clock measurement outcome 4, the state of S Is
p°(0) = [ p(t10)p(t)dt = [ p(t|0)e "Htp(0)e*Hidt
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Spin networks

To solve equations of motion, we first introduced two new
operators .J; and .J, satisfying J° + JM + J, = 0 and
Er > _L-o

\JS

—

Ji

/M

To read the time, we introduced an other operator J; satisfying

J% + J» + Jz = 0, or in other words Jz = —(J + 7V + JY9).
1o measure the system’s state relative to the gyroscope and
clock, we introduced .J;;.; satisfying J; + J3 + J.otat = 0, OF

equivalently J;oa = J° + JM + J¢ + PV + JY.
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Spin networks

Putting all this together yields the diagram
JY T

JT otal

The next step was the group average. On the diagram, this
essentially boils down to removing the arrows!!!
J — j such that (J)2 = j(j +1).
Not all edges are in an eigenstate of the operator (.J)?2, so
we need superposition of graphs.

The amplitudes are linear functions of the non-relational
amplitudes and Clebsch-Gordan coefficients.

7s




Spin networks

This yields the diagram

kx".\\‘::; C_; (: : j :
: : . -4 Y 4
Z P(Jtotat) [ Z Qtj, jaja \/' J1 * J3 L J2 ]
Jtotal j1J2]3 / | \
/M | Jtotal N\

W




Spin networks

This yields the diagram

N S G C /
Z P(jtotal) [ Z ﬂju:;z) J1 = L B / ]
- = /j[ ]?‘rut-ﬂ \‘\

Where ) . p;[|T;)| stands for ) . p; |T'; (Tl
The final step was to perform a timeﬂ'average which imposed an
energy superselection rule.
This implies superselection of j;(j; + 1) + j2(52 + 1), which
can be imposed by a Kronecker delta in the previous sum.
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Spin networks

Each decorated graph I' is a spin network corresponding to a
basis state of the relational theory.

Vertex with edges j,, j», and j; carries an intertwining operator
Chrnth) g €202+ g C2=Us+1) — C, which in our simple model,
give the Clebsch-Gordan coefficients required to remove the
arrows. ¥

The “sum over histories” 7, usually performed using spin
foams, is here implemented at the level of B(H) rather than H.



Connexions to other programs

The program was motivated by the noiseless subsystems
method of quantum information science.
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The “orthodox” description is a semi-classical limit, so it is
approximate.
Elementary quantum mechanics with no classical
approximations allowed us to recover interesting results:
Relational time of Page and Wootters.
Fundamental decoherence of Gambini et al.
Spin network representation.

But our results were slightly different.
Hamiltonian constraint [pphysical, H| = 0 rather than WDW.

Relational time rises from classical correlations rather than
entanglement.




