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1. GENERALITIES I: Algebraic description of general
guantum systems and quantum field theories

A gquantum system is described by specifying:

O X : a Hilbertspace

O XRC B(X):a =algebra of operators, where:
e A= A" € Ris interpreted as an observable

e For ¢ € H with ||g|| = 1, the quantity
(A)e = (@] Al|g)

is interpreted as the expectation value of the observable A in
the state given by 1.

Mare generally: For p = trace-class operator on H with p = 0,
trace(p) = 1, we interpret (A), = trace(p A) as expectation
value of A in the state given by p.

Remark i) Often we want to consider unbounded operators as
observables which are not contained in B(H) — and thus we
would cften like R also to contain unbounded operators. But
these can be viewed as limits of bounded operators and thus
R C B(X) is not a physically relevant restriction.

ii) Often, R = B(H), but it can happen that R is a proper
subalgebra of B(H) — e.g. if R models the observables of a
subsystem of a larger (ambient) system, or in systems at finite

=1
temperature. Typical: H=H, 8 H,, R=B(K, =1
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1.1 Haag-Kastler operator algebraic framework of quantum
field theory

A quantum field F — $(F) induces a family of operator

algebras {R(O)}ocgs 3s follows:

R(Q) = {(closed) *_cubalgebra of B(H) generated by all
£PF) P —F supported in O}

The family of operator algebras then has the following properties:

a) Isotony: O,CcO; = RO CR(Oq)

b) Covariance: A € R(0) < U(LYAU(L)" € R(L(O)).
or U(L)R(Q)U(L)” =R(L(0)). LeEBL
c) Locality: If the space-time regions O, and Oy are causally
separated, then the corresponding operator algebras R(Oh)
and R(O2) commute elementwise:

= :.RLU]_} : B = _R[f_)_-_:l — E."’l... B] =1

d) Cyclicity of the vacuum:
{AQ2: A € UgR(O)} is dense in X

e) Weak additivity: If |, O, contains O, then the algebra
generated by the R(O,) contains R(O)

Aad
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f) Spectrum condition and existence of the vacuums: Writing
U, = U(1, a) = e"#", it holds that

PP —PI—P;—P;20 and B 20.

(Pesitivity of the energy in all Lorentz frames)

30 eD. ||« = 1. so that U(L)S2 = €1 and this vector
is uniquely determined up to 3 phase factor.

(Existence of a vacuum state, given by (. )n)

If the data

({R(O)}ocar, {Us}aenn,£2)
fulfill these properties, we say that they describe a quantum
field theory in vacuum representation on n-dim Minkowski
spacetime.
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Instead of a3 QFT in vacuum representation, one can also consider
a QFT in a relativistic thermal representation.

We say that
({LQ{D]}U‘;I“- {L-d}ll\.?ﬂ"~ ﬂ:]

is a oquantum field theory in a relativistic thermal

representation at inverse temperature 3 > 0 if:

There is a vector & € V.. having unit Minkowski length,
forall A, B € R(R") there is a function F 45 which is:
(1) analytic in {z € C*|Im(=) € Vi N (Be — Vi) L
(2) continuous at boundaries Im(=) = 0 and Im(=z) = fe
(3) boundary values Fyg(a) = (Q|AU,BUZ|N),

Faig(a +18e) = (Q|U.BU; A|2)

This is a relativistic generalization of the KMS-boundary condition
characterizing thermal equilibrium states of infinite quantum
systems due to Bros and Buchholz.
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2. GEMNERALITIES Il: Entanglement in quantum physics
and quantum field theory

A guantum system modelled by an algebra of cbservables R may
possess two (or more) subsystems modelled by two subalgebras
A and B

A ++ gbservables controlled by “Alice™

‘B « observables controlled by “Bob™

Standing assumptions:
e A and B are C"-subalgebras (with 1) of R C B(3H)
e can take %
AV BCRCBH
according to situation
e ACB . ie. AB=BAforal A€ A BEB

2.i Def (A,B) C R iscalled a bipartite quantum system
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1.ii Def Let (A,B) C R be a bipartite quantum system and
w( .) = trace{p. . ) a state on R

Then w is called entangied with resp. to (A, B) if it is not
separable, i.e. not the (weak) limit of convex sums of product
states over (A, B).

e w is a product state over (A, B) iff
3 states w, on A, wy on B such that

w(AB) = wa(A)un(B) VAEA BEeB.

e w is a convex sum of product states if

N
w = z D™ | i > O] ‘Z Ap =1
k=1 k

and each w'®! is a product state over (A, B).

-

s w is separable if 3 w,. o € ] so that

w(R) = lim wq,(R) vReXR

and each w, is 3 convex sum of product states over (4,B).
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Example: The Bell state for 3 bipartite quantum system, each
part having 2 degrees of freedom

A = B, B = B()

X = B(C)®@B(C)=B3(CaC)

101)

""F|E-E|l:l|.:"'l ¥ sl le == liEEI.Il."g n B]E’E“} .

|Bell) = % (D@ -()e@))

In experimental realization, the C*-states correspond to linear
polarization of photon states:

(A) = | 1) = “vertically polarized photon state”

(‘:) = | —) = "horizontally polarized photon state”
1 '3 =
| ’ ek
= ¥ ., ¥
B\ _
x b X
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lllustration:

Product state

Source (uate) of Ak :—. ...- Soure uiste)of B
N e b T
@ 3 o

Bell state

Lab (sutaystem) of “Akca®

optcally Monkrear
(=g 2 1]
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3. QUALIFYING ENTANGLEMENT

3.1 States with Paositive Partial Transpose (ppt states)

The original definition of ppt states is due to Peres (1996)
and applies to the case of a bipartite quantum system with
A B=B(CY), N eN

Let w(A ® B) = trace(p.(A @ B)) be a state on

B(CY) @ B(CY). then w is called ppt if the

partial transpose p'! is non-negative, where

(a) o~ _(B]
(e @eg'|p

'rl.l..""l o () £
k 2 By,

p_(a) o b) (a) = (b
= () @ e} |pulel’ ® e))

- T

Remark pfl depends on choice of bases, but the condition
pf‘ > 0 doesn't
For general quantum systems:

3.i Def Let (A,B) C R be a bipartite quantum system, and
let w be a state on ‘R. We call w a ppt state if

S w(AwA;BiBy) 20

k.1

holds for all choices of finitely many
.'1[....._"!.17‘ e A and f_'n'h....ff.;‘ !—:B

3.ii Lemma For general bipartite systems:
2 separable = w ppt equivalently ,

2 non-ppt (npt) = w entangled
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3.2 Bell-CHSH Inequalities

3.iii Def Let (A, B) C R be a bipartite quantum system, and
let wr be 3 state on R. One calls

B(w) = sup w(A(B'+ B)+ A'(B'— B)),
A AT B 8"

where A A e A and B,B" € B are
hermitean and norm-bounded by 1, the Bell-correlation of w.

e If A(w) = 2, one says that w fulfills the Bell inequalities

o If A(w) > 2, one says that w violates the Bell inequalities

e If G(w) = 22, one says that w violates the Bell
inequalities maximally

i.iv The Bell state violates Bell's inqualities maximally

States vioclating Bell's inequalities contain non-classical
correlations (entanglement). The entanglement of the Bell state
cannot be reproduced by classical 'protocols’, and this makes this
state particularly useful for tasks of gquantum communication,
mainly for secure key distribution and quantum teleportation.

3.v Lemnma A ppt state w on a general bipartite quantum
system fuifills Bell's inegualities.

Hence, a state vioclating Bell's ingualites is npt, therefore is
entangled.
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3.3 Distillability

For a class of entangled states the "degree of entangiement’ can
be enhanced (up to maximal violation of Bell's inequalities) for a
sub-ensemble of the original state by a process called distillation.
States far which this is possible are generzlly called distillable.
There is in principle a large class of distillation processes. The

commen underlying idea is that of LOCC,
local operations and classical communication .

The simplest type is 1-distillability:
Bipartte quaniism Fyalem

....................... classical I .
- communication - dx
channal / . SE)
O
-
T(w)(AB) = w(t{A)B), S(u)(AB)=w(Ae(B))
with 7 : 4 — A and & : B — B completely positive.
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3.3 Distillability

For a class of entangled states the 'degree of entanglement’ can
be enhanced (up to maximal viclation of Bell's inequalities) for a
sub-ensembie of the criginal state by a process called distillation.
States for which this is possible are generally called distillable.
There is in principle a large class of distillation processes. The
common underlying idea is that of LOCC,

local operations and classical communication .

The simplest type is 1-distillability:
Boarsts LALLM Tysiem

T(w)(AB) = w(r(A)B). S(w)(AB)=w(Aa(B))

with 7 4 — A and o : B — ‘B completely positive.
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3.wi Def Let w be a state on a general bipartite quantum
system (A, B) C R

w is called 1-distillable if for each = > 0 there are
e 3 completely pesitive map = : B(C?) — A, (1)
» a completely pesitive map o @ B{J] — B, (1)
so that

< 1, and
<1,

| gy (X @ Y) — w(r(X)a(Y))/w(r(D)a(D)) | < e|| XY

holds for all X @ ¥ € B(C*) @ B(CY).

Remark There are more general distillation processes, eg. one
couid replace 7( . )a(.) by > . me(-)ou(.).

It is important that operations of this type don't induce
entangiement in non-entangled states. To this end, let completely
positive maps

Tl —+ A, "B —+B, kE=1.... K.

be given.

3.vii Prop Let o be a state on the bipartite gquantum
system (A, E). If » is ppt. then the positive functional on
the bipartite system (A,., Baux).

= = -Haux-;jlu.rt = z Tl Aaux ) Tk | Do

is also ppt.

In particular, 2 ppt state . is not distillable by this kind of
a LOCC process.
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4. REEH-SCHLIEDER and DISTILLABILITY

Standing assumptions: A and B are von Meumann algebras on
a common Hilbert space H. The states considered are normal
states.

4.i Def Let (A, B) be a bipartite quantum system. A vector
9 € H is said to have the Reeh-Schlieder property with
respect to A if ¢ is cyclic for A, ie.

A = {Ay|A € A} isdensein K.
4.ii Thm Let (A,B) be a bipartite quantum system with

both A and B non-abelian and let v & ™ be a unit vector.
Suppose that ' is Reeh-Schlieder for 4. Then the state

wwl . ) = (] . |y) is 1-distillable.
violates
Reeh-Schiledar m‘ Ball-inegs
— stilla | —
proporty | ]!
distillable | — |notppt | —> [ antangled |
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5. DISTILLABILITY in QFT

Let ({R(O)}ocan, {Ua}eca=, (1) be a QFT on n-dimensional
Minkowski spacetime in the operator-algebraic setting, fulling the
usual assumptions:

isotony, locality, covariance, weak additivity
in a Hilbert space (separable) representation which is either:

& 3 vacuum representation with vacuum vector {2,
ie. U, = Q. and {U.}lican fulfills the relativistic
spectrum condition.

e a relativistic KMS representation where ({1].|f1) is an
equilibrium state fulfilling the relativistic KMS condition
[Bros, Buchholz (1994)] at inverse temperature G > 0.

5i Thm If the open regions Oa and Og in Minkowski
spacetime are spacelike separated by a non-zero spacelike

distance, then the state . = (11| . [(1) is 1-distillable on the
bipartite system (A = R(0,4), B = R(Og))-

The set of vector states (x| .|x) on R = A v B which are
1-distillable on (A,B) is strongly dense in the set of ail

™

normal states on .

Remark There are related resuits:

Bell-inequalities: Summers and Werner (1985...1995), Rezmik,
Retzker and Silman (2003)
Entanglement: Clifton and Halvorson (2000), Jakel (2001)
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5.ii Thm If the openm regions Oy and Og in M are
causally separated by a non-zero spacelike distance, then

the state o = (12|.|12) is l-distillable on the bipartite
system (A = R(0a), B = R(On))-

The set of vector states (x|.|x) on R = A v B which are
1-distillable on (A, ) is strongly dense in the set of all

normal states on .

Remark: “Distillability beyond spacetime horizons™

The regions Oy and Og can be separated by a spacetime
horizon (event horizon or cosmological herizon) — then one
finds an abundance of distillable states on (R(Ox), R(Og))
(but the actual distillation process regquiring two-way classical
communication between “Alice” localized in Qs and “Bob”
localized in Og cannot be carried out)

Example: Klein-Gordon field in representation of the Hartle-
Hawking state on a static black hole spacetime.
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