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(DlIntroduction

2D String Theory Is the simplest example of
quantum gravity which is

(1) Exactly Solvable (via c=1 Matrix Model)
(2) Dynamical (3 massless scalar field)

(3) Non-perturbatively well-defined
(Especially in 2D typeO string)
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2D (Bosonic) String Theory

We consider (1+1) dim. spacetime: (X", ®).
On the world-sheet, there exist
X9 : Time-like free boson (c=1 matter)
@ : Liouville field (c=25)
with the linear dilaton
st g-=el? .
— We regulate the strongly coupled region
by the Liouville term y | dzZe2?
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2D String Theory

closed string

Liouville
wal.l :

>
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2D (Bosonic) String Theory

We consider (1+1) dim. spacetime: (X", ®).
On the world-sheet, there exist
X0 : Time-like free boson (c=1 matter)
@ : Liouville field (c=25)
with the linear dilaton
sk g-e‘*
— We regulate the strongly coupled region
by the Liouville term y | dzZe2?
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C=1 Matrix Model

2D string theory has a non-perturbative dual
description known as the c=1 matrix model.

2 2
S = jdf Tl‘[(DO(I)) +O7]
covariant derivative D ,®=c7.®+i[4,.D]
® - N x N Hermitian matrix,
[/(N)gaugesym.: ® > gP g™
Note: We always consider the matrix model after the double

scaling limit.
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C=1 Matrix Model

2D string theory has a non-perturbative dual
description known as the c=1 matrix model.

2 2
S = jdf Tl‘[(DO(I)) +O7]
covariant derivative D ,®=c7.®Q+i[4,.P]
® - N x N Hermitian matrix,
[U(N)gaugesym.: & > gD g™
Note: We always consider the matrix model after the double

scaling limit.
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By using the gauge sym. we can diagonalize the

matrix into N eigenvalues X

(i=1,2.....N) .

They exactly behave like N free fermions in the

inverse harmonic potential /(D) =-®"
The Fermi level is given by pj —X

E=0

Fermi surface

e A b

N ﬁfee ﬁermu:nns
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2D string theory has a non-perturbative dual
description known as the c=1 matrix model.

2 2
S = jdf Tl‘[(DO(I)) +O7]
covariant derivative D, ®=c7.®Q+i[4,.D]
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By using the gauge sym. we can diagonalize the

matrix into N eigenvalues X

(i=1,2.....N) .

They exactly behave like N free fermions in the

inverse harmonic potential /(D) =-®"
The Fermi level is given by pj —X
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Fermi surface
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C=1 Matrix Model

2D string theory has a non-perturbative dual
description known as the c=1 matrix model.

2 2
S = J.df Tr[(Doq)) +O7]
covariant derivative D ,®=c.®+i1[4,.P]
® : N x N Hermitian matrix,
U(N)gaugesym.: & > gD g™
Note: We always consider the matrix model after the double

scaling limit.
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By using the gauge sym. we can diagonalize the
matrix into N eigenvalues X; (i=12...N).

They exactly behave like N free fermions in the

inverse harmonic potential /(D) =-D".

-

The Fermi level is given by pj X — &

E=0

Fermi surface

S
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C=1 Matrix Model

2D string theory has a non-perturbative dual
description known as the c=1 matrix model.

2 2
S = jdf Tr[(Do(I)) +O7]
covariant derivative D, ®=c7.®+i[4,.D]
® - N x N Hermitian matrix,
U(N)gaugesym.: ® > gD g™
Note: We always consider the matrix model after the double

scaling limit.
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Historically, matrix models were originally
iIntroduced to discretize the string world-sheet.

Large N expansion
=Genus (g) expansion

Obviously, this is a beautiful A
mathematical interpretation ,
of the c=1 matrix model. phrreaparnfag

Triangulation of
Riemann Surface

However, recently, its more physical
understanding was proposed from the viewpoint of
open-closed duality (or holography).

Mcgreevy-Verlinde, Klebanov-Maldacena-Seiberg, Sen,........
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Open-Closed Duality in 2D String

c=1 matrix model = open string theory of

N unstable DO-branes
Roughly, we can identify the matrix () with the

open-string tachyon field T on the DO-branes.

One may be puzzled because

open string field theory actions generally include
many complicated interaction terms of higher powers
of T, while the matrix model is the free quadratic
oo - s




Historically, matrix models were originally
Introduced to discretize the string world-sheet.

Large N expansion
=Genus (g) expansion

Obviously, this is a beautiful A%
mathematical interpretation |
of the c=1 matrix model. of Matrix Model

Triangulation of
Riemann Surface

However, recently, its more physical
understanding was proposed from the viewpoint of
open-closed duality (or holography).

Mcgreevy-Verlinde, Klebanov-Maldacena-Seiberg, Sen,........

irsa: 05050021 Page 19/109




Open-Closed Duality in 2D String

c=1 matrix model = open string theory of

N unstable DO-branes
Roughly, we can identify the matrix () with the

open-string tachyon field T on the DO-branes.
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C=1 Matrix Model

2D string theory has a non-perturbative dual
description known as the c=1 matrix model.

2 2
S = jdf Tl‘[(DO(I)) +O7]
covariant derivative D ,®=c7.®+i[4,.P]
® : N x N Hermitian matrix,
[U(N)gaugesym.: ® - gD g™
Note: We always consider the matrix model after the double

scaling limit.
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Open-Closed Duality in 2D String

c=1 matrix model = open string theory of

N unstable DO-branes
Roughly, we can identify the matrix () with the

open-string tachyon field T on the DO-branes.

One may be puzzled because
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Actually, such a drastic simplification of open string
theory does occur in 2D string theory.

Takayanagi-Terashima
We can show that any on-shell scattering amplitudes
of open strings on DO-branes are trivial in 2D string.

Furthermore, with respect to the off-shell interactions,
we can claim:

S_(DP)=S5,.. (1)

Boundary string field theory for 2D string is equivalent

to the c=1 matrix model (at least classically) up to a
smooth field redefinition.

Pirsa: 05050021
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C=1 Matrix Model

2D string theory has a non-perturbative dual
description known as the c=1 matrix model.

2 2
Sy = de Tl‘[(DO(I)) +O7]
covariant derivative D ,®=c7.®+i[4,.D]
® : N x N Hermitian matrix,
U(N)gaugesym.: ® > gD g™
Note: We always consider the matrix model after the double

scaling limit.
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Actually, such a drastic simplification of open string
theory does occur in 2D string theory.

Takayanagi-Terashima
We can show that any on-shell scattering amplitudes
of open strings on DO-branes are trivial in 2D string.

Furthermore, with respect to the off-shell interactions,
we can claim:

S (P)=S,.(T)

Boundary string field theory for 2D string is equivalent

to the c=1 matrix model (at least classically) up to a
smooth field redefinition.
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Open-Closed Duality in 2D String

c=1 matrix model = open string theory of

N unstable DO-branes
Roughly, we can identify the matrix () with the

open-string tachyon field T on the DO-branes.

One may be puzzled because

open string field theory actions generally include
many complicated interaction terms of higher powers
of T, while the matrix model is the free quadratic
an. - -




In this way, 2D string theory (c=1 string) Is an
Instructive and intriguing toy example of open-closed
duality in string theory.

In this talk, we will discuss a simple but non-trivial
(time-dependent) deformation of ¢c=1 string, that is

c<1 string with time-like linear dilaton matter

(1) This theory has its matrix model dual.
(1) It i1s also equivalent to a topological string when
compactiﬁed. Takayanagi

Pirsa: 05050021 29/109
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2) c<1 String with Time-like Linear Dilaton Matter

Definition on the world-sheet
Time (matter) XY : time-like linear dilaton CFT

c,=1-6q2
Space (Liouville) ¢ : space-like linear dilaton CFT
c, =1+6Q2
. | | _
Cm+CL=26_} Q)=b+;* C]:/——b (0<b <)
' )

String coupling: ¢ = e
S

2b¢

> 7
- . Liouville term : ,lljd: €




Closed String Scattering off the Wall

Scattered closed strings will not go into the
strongly coupled region.

|} Liouville wall -

closed string
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2) c<1 String with Time-like Linear Dilaton Matter

Definition on the world-sheet
Time (matter) XY : time-like linear dilaton CFT

c,=1-6g°
Space (Liouville) ¢ : space-like linear dilaton CFT
c, =1+6Q2
- | | _
Cm+CL=26_} Q)=b+;* C]:/——b (()<b£l}
) )

String coupling: " eq_l'+Q¢
& K -

2b¢

i,
. Liouville term : ,lljd: €




Description as a background in 2D string

We can regard the c<1 string as a time-dependent
background in the ¢c=1 string, i.e. 2D string theory.

To see this, we consider the Lorentz boost

O
2

I

‘1' 0 ( j ‘X _I_ t:b : Z q ‘E' 0 (/j

Then we find the Conventlonal string coupling

~

(T—J*‘
{h.} £’ -

But, the Liouville term becomes time-dependent

(b —lhx 1if
;zjd. e e
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Description as a background in 2D string

We can regard the c<1 string as a time-dependent
background in the ¢c=1 string, i.e. 2D string theory.

To see this, we consider the Lorentz boost
o _ () . g =i g (___)
X 2 g/5 ¢ = A ?gﬁ
Then we find the conventlonal string coupling
{g : e Jj{“ﬁ
But, the Liouville term becomes time-dependent
,“J.d- em' E HX” b’ /ﬂ‘
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Description as a background in 2D string

We can regard the c<1 string as a time-dependent
background in the ¢c=1 string, i.e. 2D string theory.

To see this, we consider the Lorentz boost

O
2
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Then we find the conventlonal string coupling
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Description as a background in 2D string

We can regard the c<1 string as a time-dependent
background in the ¢c=1 string, I1.e. 2D string theory.

To see this, we consider the Lorentz boost

O
2

S —

- ()A 7 ¢,. b = "1’1“ y

Then we find the conventlonal string coupling

,..'

(T—J*‘
{h., £’ -

But, the Liouville term becomes time-dependent

(b —1Pl 1lf
;zjcl_ e sl s
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In this way, we have obtained a one-parameter
time-dependent background in 2D string.

This theory can be solvable on the world-sheet
as Is obvious In the ¢<1 string description.

The next question will be its matrix model dual.
There are two different approaches to this problem.

() To directly construct the matrix model by
applying the open-closed duality

(i) To find the corresponding time-dependent
background in c=1 matrix model.
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(3)Matrix Model Dual and Holography
(3-1) Direct Construction

Consider N unstable D0O-branes in the c<1 string.

Boundary State : ‘DO> — ‘Nermmnn}xu ®‘ZZ )

(i)

As In the ¢c=1 string case, the naive guess leads to

C

S = | dt e Te[(D,®)" + D]

I
(string coupliﬂg)'1 on the D-branes g;eqt
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Check of the quadratic action
We can check the action by computing the
open string tachyon scattering amplitudes.

: P “.'"{} ,.;'_'-1 - —E‘LET ()
On-shell vertex: |7 = ¢~ ¥y —¢

j i

Actually, the momentum conservation is very restrictive.
For the amplitude like <(V+ ) 26 (I“’_)X-> we find

¥ [ b
—N b +A—_ = i—b
-

4
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(3)Matrix Model Dual and Holography
(3-1) Direct Construction

Consider N unstable DO-branes in the c<1 string.

Boundary State: | DO0)=|Neumann) _, ®|ZZ)

(]

As In the c=1 string case, the naive guess leads to

C

S, = j dt ¢ Tr[(D,®)* + @]

I
(string coupling)'1 on the D-branes g;eqt
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Check of the quadratic action
We can check the action by computing the
open string tachyon scattering amplitudes.

On-shell vertex: E - ot /b e

) e

Actually, the momentum conservation is very restrictive.
For the amplitude like <(V+ )+ ([__:)_\_,_> we find

T 4 i,
—N b +A—_ = i—b
» B |

4
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Then it turns out that any non-trivial amplitudes are
vanishing when b? is irrational. This is because

N —y=(N_-x)b° > N, =y<lI

Since the physical properties should be continuous

with respect to b% , we can conclude that the open
string S-matrices are trivial in any c<1 string.

Thus this shows the action iIs given by the free
quadratic one which we proposed!

This also strongly supports that the c=1 matrix
model action is quadratic by taking the b=1 limit.
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Check of the quadratic action
We can check the action by computing the
open string tachyon scattering amplitudes.

: P “.'"1:} ,.;'_'-_1 - —E‘LET ()
On-shell vertex: 7 = ¢~ o=

) S

Actually, the momentum conservation is very restrictive.
For the amplitude like <(V+ ) 3 (I“’_)X-> we find
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Then it turns out that any non-trivial amplitudes are
vanishing when b? is irrational. This is because

N+—;(:(N_—;()bj = Iy — <)

Since the physical properties should be continuous

with respect to b% , we can conclude that the open
string S-matrices are trivial in any c<1 string.

Thus this shows the action iIs given by the free
quadratic one which we proposed!

This also strongly supports that the c=1 matrix
model action is quadratic by taking the b=1 limit.
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(3Matrix Model Dual and Holography

(3-1) Direct Construction

Consider N unstable DO-branes in the c<1 string.

Boundary State: | DO0)=|Neumann) _, ®|ZZ)

(i)

As In the c=1 string case, the naive guess leads to

C

S = | dt e Te[(D,®)" + D]

|
(string corupling)'1 on the D-branes g;eqt
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Then it turns out that any non-trivial amplitudes are
vanishing when b? is irrational. This is because

N.—y=(N_-xy)b° - N, =y<I

+

Since the physical properties should be continuous

with respect to b? , we can conclude that the open
string S-matrices are trivial in any c<1 string.

Thus this shows the action iIs given by the free
quadratic one which we proposed!

This also strongly supports that the c=1 matrix
model action is quadratic by taking the b=1 limit.
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Relation to ¢c=1 matrix model action

After we diagonalize the matrix ¢, we obtain

S, =|dte Y [(3,)+(3,)]

If we define new eigenvalues x (f)=e¢ ¥ jyI (1),
then it becomes equivalent to the c=1 matrix model

P

L Jcﬁ' Z;l (;‘i"f..)j +%(?‘f,)

=

This Is natural since we know that the c<1 string
Is Identical to a background in 2D string.
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Relation to ¢c=1 matrix model action

After we diagonalize the matrix ¢, we obtain

S =|dre Y 13, +(3)°]

If we define new eigenvalues x (f)=e¢ ¥ jyg (1),
then it becomes equivalent to the c=1 matrix model

A

S = jcﬁ Z;l (;‘i",)j +%(?‘f,)

=

This is natural since we know that the c<1 string
Is Identical to a background in 2D string.
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(3-2) Description in c=1 Matrix Model

On the other hand, we can regard the c<1 string
as a time-dependent bg. in 2D string theory.

Generally speaking, any time-dependence in 2D
string corresponds to some time-dependent

motion of the fermi surface in c=1 matrix model.

Polchinski, Moore-Plesser,... ...
Alexandrov-Kazakov-Kostov,
Karczmarek-Strominger, ... ...

In our case, we can determine the form of fermi
surface explicitly by comparing the matrix model
results with the string theory ones.
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Matrix Model Dual of c<1 String

We argue that the matrix model dual is given by
the following fermi surface in the c=1 matrix model

(h~™—1)t

(~p—X)" (p—x)=pe

Note1: At b=1, we reproduce the familiar static
vacuum of c=1string H=p —x’=-u.
Note2: The consistency of the above fermi surface can be
seen by writing it as

[(ﬁ—p = x')e"]b [(p = x)e*‘]= 78
Note3: The similar results can also be obtained Iin
| 2D type O string case.

Takayanagi-Toumbas, Douglas-Klebanov-Kutasov-Maldacena-Martinec-Seiberg |




Matrix Model Dual of c<1 String

We argue that the matrix model dual is given by
the following fermi surface in the c=1 matrix model

(b==1)t

(~p—x)" (p—x)=pe

Notel: At b=1, we reproduce the familiar static
vacuum of c=1string H=p —x"=-u.
Note2: The consistency of the above fermi surface can be
seen by writing it as

[(—p = T [(p - x)e*‘]= AL
Note3: The similar results can also be obtained Iin
| 2D type O string case.

Takayanagi-Toumbas, Douglas-Klebanov-Kutasov-Maldacena-Martinec-Seiberg |




Time Evoluion of Fermi Surface
t: -CO t*-’iO

- =
p=—x A p=x

p=x p=x
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Matrix Model Dual of c<1 String

We argue that the matrix model dual is given by
the following fermi surface in the c=1 matrix model

(Hh==1)t

(—p—x) (p—x)=uc

Notel: At b=1, we reproduce the familiar static
vacuum of c=1string H=p —x" =—u
Note2: The consistency of the above fermi surface can be
seen by writing it as

[(ﬁ—p = x')e‘f]b [(p = x)e*‘]= M.
Note3: The similar results can also be obtained Iin
| 2D type O string case.
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Time Evoluion of Fermi Surface
t: -CO t{O

e P i
p==x% A p=x

B
=X h, p=X
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(1) At t=-co: The fermi surface Is pushed into infinity
— No spacetime.

(i1) At t=co: The fermi surface reaches at y =0.
— Linear dilaton vacuum.

This time-dependent behavior is consistent with the
Liouville term (=closed string tachyon condensation)

b1 X +(h7+1)¢

1. —ue ;

closed

because /.., becomes o« at t=-c0 and 0 at t=c0.
- (Remember that we are assuming 0 <b <] ).,




Asymptotic Behavior
The deviation of the fermi surface from the lines

p==x is identified with the closed string field in the
asymptotic region

o o.n(t. x |
potx)=Fxx 10D s o)
X Polchinski
The eigenvalue direction x can be identified with the

space coordinate as | X |~ e

Then the closed string tachyon field is given by
T, (X°.¢)=e -n(X".¢)
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(1) At t=-co: The fermi surface Is pushed into infinity
— No spacetime.

(i) At t=co: The fermi surface reaches at y =0.
— Linear dilaton vacuum.

This time-dependent behavior is consistent with the
Liouville term (=closed string tachyon condensation)

1) X +(h>+1)od

I. —ne ,,

closed

because /_,,.,; becomes oo at t=-c0 and 0 at t=co.
e (Remember that we are assuming 0 <b <] ).




Asymptotic Behavior
The deviation of the fermi surface from the lines

p==x is identified with the closed string field in the
asymptotic region

. ol s |
po(6,)=Fx+ ZIED (s o
X Polchinski
The eigenvalue direction x can be identified with the

space coordinate as | X |~ "B

Then the closed string tachyon field is given by
T, (X°.4)=e -n(X".¢)
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Deviation of fermi surface and closed string field
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Asymptotic Behavior
The deviation of the fermi surface from the lines

p==xx is identified with the closed string field in the
asymptotic region

e o.n(t. x |
po(tx)=Fxx 10D s
X Polchinski
The eigenvalue direction x can be identified with the

space coordinate as | X |~ "Bt

Then the closed string tachyon field is given by
T, (X%, ¢)=€" -n(X°,9)
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Asymptotic Behavior
The deviation of the fermi surface from the lines

p==*x Iis identified with the closed string field in the
asymptotic region

. o.n(t. x |
potx)=Fxx 0D s )
x Polchinski
The eigenvalue direction x can be identified with the

space coordinate as | X |~ A

Then the closed string tachyon field is given by
T, (X°.¢)=e -n(X".¢)
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In our case, its asymptotic behavior is given by

e 2 (B2 RIS /B
p—xmpue® ™V |x[™ and pHxm—p't 4V |V

Thus we obtain the closed string tachyon field

(B*-DHX"+(B*+1)¢ b’ o1 bHX +(141/6% )¢

x e .

closed
In terms of the coordinate of c<1 string, this becomes
=

Sge "ty e

C f O85€¢( '!7

This first term is equal to the original Liouville term.
The second term is precisely the same as what is
known as the dual cosmological constant.
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Deviation of fermi surface and closed string field
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In our case, its asymptotic behavior is given by

> 1)1 VB (LN g LD
' | x|

and p+x=—u’ e

p—x= e X

Thus we obtain the closed string tachyon field

(B2-DHX+(b*+D) ¢ 1-q1ﬁr-MHb%I
X le T .

L‘f O .'_"-'L’Lf?

In terms of the coordinate of c<1 string, this becomes

—&

2b¢ b-
e Tt e

L‘ f O85€( '!7

This first term is equal to the original Liouville term.
The second term is precisely the same as what is
known as the dual cosmological constant.
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In our case, its asymptotic behavior is given by

hz_ ; _]2 _.F}Z ‘g _hZ. bt _.;}2
p xxme Yixl ad ptx=n & Cix}

Thus we obtain the closed string tachyon field

JLZGJ —lri —|—1f‘r —|—ir¢l —’—‘[[ ‘r' 11 | f‘r . 8 —|—1l—|—lf‘m-

L‘f oS L’L}'?

In terms of the coordinate of c<1 string, this becomes

—&

2bg h*
e Tt e

L‘f (AN L’Lf

This first term is equal to the original Liouville term.
The second term is precisely the same as what is
known as the dual cosmological constant.
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Matrix Model Dual of c<1 String

We argue that the matrix model dual is given by
the following fermi surface in the c=1 matrix model

h™—1)t

(—p=x)" (p—x)=p¢

Note1: At b=1, we reproduce the familiar static
vacuum of c=1string H=p —x"=-u.
Note2: The consistency of the above fermi surface can be
seen by writing it as

[(ﬁ—p = ::f')e"'*]b [(p = x’)e*‘]= 78
Note3: The similar results can also be obtained In
| 2D type O string case.

Takayanagi-Toumbas, Douglas-Klebanov-Kutasov-Maldacena-Martinec-Seiberg |




Asymptotic Behavior
The deviation of the fermi surface from the lines

p==x is identified with the closed string field in the
asymptotic region

. o.n(t. x |
potx)=Fxx 0D s
X Polchinski
The eigenvalue direction x can be identified with the

space coordinate as | X |= "R

Then the closed string tachyon field is given by
z::h}lw{j (‘X‘:} ‘¢ ) = ej[" : ’](X{:} ﬁ;é )
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S-matrix from Matrix Model

Though we are considering a time-dependent bg. ,
we can still define the incoming and outgoing states.

4 &, (7. L‘C) * -3
Y

P.~Ttx

Since the incoming waves just become the outgoing
ones, we find the Polchinski's scattering equation

L

s (X -g)=¢ (5{ — ¢ —log(s (X" -4)/ 2)) |

time-decay depends
on each trajectory

i — Non-trivial S-matre™-




Deviation of fermi surface and closed string field

D
Y pP—X

¢
>
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S-matrix from Matrix Model

Though we are considering a time-dependent bg. ,
we can still define the incoming and outgoing states.

5 0a] L
z

pP.=TX

Since the incoming waves just become the outgoing
ones, we find the Polchinski's scattering equation

e

e (X°-g)=¢_ (5{ —¢ —log(s (X -4)/ 2)) .

time-decay depends
on each trajectory

3 s — Non-trivial S-matrre™-




Deviation of fermi surface and closed string field

P -
A pP—X

e
>
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S-matrix from Matrix Model

Though we are considering a time-dependent bg. ,
we can still define the incoming and outgoing states.

L. X) L
=

P.~=~TX

Since the incoming waves just become the outgoing
ones, we find the Polchinski's scattering equation

L

s (X’ -g)=¢ (5{' —¢ —log(e (X -4)/ 2)) .

time-decay depends
on each trajectory

£ — Non-trivial S-matrre=-




S-matrix from Matrix Model

Though we are considering a time-dependent bg. ,
we can still define the incoming and outgoing states.

LEY) . 3
p

D =1TX

Since the incoming waves just become the outgoing
ones, we find the Polchinski's scattering equation

L

s (X’ -g)=¢ (5[ —¢ —log(s, (X —¢)/ 2)) .

time-decay depends
on each trajectory

& — Non-trivial S-matrre=




By applying this to our time-dependent model,
we can obtain the tree level 1—n scattering

= 1‘: E_ —J. =

- - (b’ Y Kb @ 11 o

CI“LU( 'T )= anl | n—l ' — - g (t}” i ((—:]—}7( ,T ).)H ) ;
2 -w 1(be 12 »

| |
J‘:f—t;/ﬁ _T=f+(é
Incoming waves outgoing waves

It is possible to check that these S-matrix elements
agree with string theoretic world-sheet computations

(except the leg factor).

world-sheet computation: Difrancesco-Kutasov
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Asymptotic Behavior
The deviation of the fermi surface from the lines

p==xx is identified with the closed string field in the
asymptotic region

- o.n(t.x |
potx)=Fxx 10D s )
P Polchinski
The eigenvalue direction x can be identified with the

space coordinate as | X |= e

Then the closed string tachyon field is given by
T, (X%, ¢)=€" -5(X°,9)
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By applying this to our time-dependent model,
we can obtain the tree level 1—n scattering

. 1 r( —]_)_15'1. + l)

: - O
on(y)=> —

- ; — : (t’m_l }(ﬂ({?'_?']( ¥ })” ) +
2 -w FE(be tXZ n

| |
yv=t—¢ yv=t+4¢
Incoming waves outgoing waves

It is possible to check that these S-matrix elements
agree with string theoretic world-sheet computations

(except the leg factor).

world-sheet computation: Difrancesco-Kutasov
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By applying this to our time-dependent model,
we can obtain the tree level 1—n scattering

# {Z){g_l b’ _)”_1 | i —Z)_IE'T +1) e -
25 e T e " @ _n(»))")
2 -w (e tl n

| ' |
J‘Zf—tgfﬁ _T=f+|jﬁ
Incoming waves outgoing waves

It is possible to check that these S-matrix elements
agree with string theoretic world-sheet computations
(except the leg factor).

world-sheet computation: Difrancesco-Kutasov
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Matrix Model Dual of c<1 String

We argue that the matrix model dual is given by
the following fermi surface in the c=1 matrix model

(b==1)t

(~p—=x)" (p—x)=pe

Notel: At b=1, we reproduce the familiar static
vacuum of c=1string H=p —x"=-u.
Note2: The consistency of the above fermi surface can be
seen by writing it as

[(_—P 5 & T [(p = x')ef]z L.
Note3: The similar results can also be obtained In
| 2D type O string case.

Takayanagi-Toumbas, Douglas-Klebanov-Kutasov-Maldacena-Martinec-Seiberg |




(3-3) Decaying D-branes

In the c=1 matrix model description, the classical
trajectory of a single eigenvalue can be identified
with a decaying D-brane.

Klebanov-Maldacena-Seiberg
This should also be true for our time-dependent bg.

o)
Decaying DO-brane

Prediction of new rolling
\\\ tachyon boundary states
Fep_:?'ioﬁ's_

>X In the time-like linear

1/ / dilaton CFT.
e o p=—x

P=X

Pirsa: 05050021




By applying this to our time-dependent model,
we can obtain the tree level 1—n scattering

> 1 r( —;_)_15'1. + l)

- {blf_l : )
c;mjﬂ=§;ﬂ '

n—1 ; e : ('ff'm_l }cﬁ'({‘:;_}?( y })H ) :
2 = I ba 12 n

| |
yv=t—¢ v=t+4¢
Incoming waves outgoing waves

It is possible to check that these S-matrix elements
agree with string theoretic world-sheet computations
(except the leg factor).

world-sheet computation: Difrancesco-Kutasov
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(3-3) Decaying D-branes

In the c=1 matrix model description, the classical
trajectory of a single eigenvalue can be identified
with a decaying D-brane.

Klebanov-Maldacena-Seiberg
This should also be true for our time-dependent bg.

P 2
Decaying DO-brane o

e Prediction of new rolling
\X\ tachyon boundary states
Feq:?'ioﬁ_i;_

>X In the time-like linear

w/ dilaton CFT.
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4) c<1 String from 2D Black holes

Noncritical string theories like 2D string theory or
minimal strings often turn out to be equivalent to the
topological models such as topological strings.

Examples
(1) c=1 string at self-dual radius
= topological string on conifold Ghoshal-vafa
= Twisted N=2 SL(2,R)/U(1) at the level 3
Muhki-Vafa
(2) (1,n) minimal string (c<1 minimal string)
= Twisted N=2 SU(2)/U(1) at the level n ...

= topological string on x+y"+zw=0
Pirsa: 05050021 Aganagic-Dijkgraaf-Klemm-Marino-\eateaios




Such a kind of equivalence is very helpful for
further understandings of the string theory from
topological or geometrical viewpoints.

Below we would like to claim that
our non-minimal ¢<1 string also have a topological
String description:

c=1-6(n—1)"/n String at the radius R = Ja'n
(2
~ Twisted N =2 | 2258 | f7 Model
U(1)
= Topological LG model W =X""

see also Aharony-Ganor-Sonnenschein-Yankielowicz-Sochen, ...,Oogun-Vafg, .




Such a kind of equivalence is very helpful for
further understandings of the string theory from
topological or geometrical viewpoints.

Below we would like to claim that
our non-minimal ¢<1 string also have a topological
String description:

c=1-6(n—1)"/n String at the radius R = Va'n
(2
~ Twisted N=2 | 258 | /7 Model
U(1)
= Topological LG model W =X""

see also Aharony-Ganor-Sonnenschein-Yankielowicz-Sochen, ..., Oogun-Vafg, .




Such a kind of equivalence is very helpful for
further understandings of the string theory from
topological or geometrical viewpoints.

Below we would like to claim that
our non-minimal ¢<1 string also have a topological
String description:

c=1-6(n—1)"/n String at the radius R = V'
149,
~ Twisted N=2 | 2582 | f7 Model
U(1)
= Topological LG model W =X""

see also Aharony-Ganor-Sonnenschein-Yankielowicz-Sochen, ...,Oogun-Vafg, . .-




Remarks

- We have assumed that n is a positive integer.
For general values of n, many results suggest

| = = : 24
c=1-6(n—-1)"/n String at theradius R =, |—
1

= Twisted N =2 SL(2.R),_,/U(l) Model

- For a rational value n=p/q, its central charge
Is the same as that of (p,q) minimal model.
For example, we can find for n=1/2

non - minimal (1.2) string at the radius R =~/ 2«

c=-2strng

ooz tOpological twist of 2D black hole mn tvpe O strisgs




Such a kind of equivalence is very helpful for
further understandings of the string theory from
topological or geometrical viewpoints.

Below we would like to claim that
our non-minimal ¢<1 string also have a topological
String description:

c=1-6(n—1)"/n String at the radius R = V'
(2
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Remarks

- We have assumed that n is a positive integer.
For general values of n, many results suggest

: 0. e 3 (_ZT
c=1-6(n—-1)"/n String at theradius R =, |—
1

= Twisted N =2 SL(2.R),,_ /U(l) Model

- For a rational value n=p/q, its central charge
Is the same as that of (p,q) minimal model.
For example, we can find for n=1/2

non - minimal (1.2) string at the radius R = +/2¢

c=-2strng




Evidences for the Equivalence
(1) Physical Spectrum in Free Field Representation

N =2 SL(2.R)/U(l) Kazama - Suzuki Model

= ¢ @(ﬁ */)@X®(fzb)®(rﬂf//)

—1:H/n

l

1 Topological Twist T—>T+55J

i, @(,@«ﬁf’)/@ 2  d (/r; )(‘B(!// 7

c=1+6(n+1)% /' n c=1-6(n—1)"/n c=-26

Liouville field Time (Matter) (b,c) ghost

= ¢=1-6(n—1)"/n noncritical string
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Evidences for the Equivalence
(1) Physical Spectrum in Free Field Representation

N =2 SL(2.R)/U(l) Kazama - Suzuki Model

= ¢ @(/8 v)@X®(fzs:)@(wv/)

c=14+6/n
1 Topological Twist 1 —>T+%E'J
¢ D (L7 )@ X & (7; ) D (. )
c=16(miD):/in =2 e=1-6(n-1)2/n -
Liouville field Time (Matter) (b,c) ghost

= ¢=1-6(n—1)"/n noncritical string
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Evidences for the Equivalence
(1) Physical Spectrum in Free Field Representation
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= ¢=1-6(n—1)"/n noncritical string
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Such a kind of equivalence is very helpful for
further understandings of the string theory from
topological or geometrical viewpoints.

Below we would like to claim that
our non-minimal ¢<1 string also have a topological
String description:

c=1-6(n—1)"/n String at the radius R = VJa'n
(2
- Twisted N=2 | 258 | [7 Mogel
(1)
= Topological LG model W =X""

see also Aharony-Ganor-Sonnenschein-Yankielowicz-Sochen, ...,Oogun-Vafg,, ...




Remarks

- We have assumed that n is a positive integer.
For general values of n, many results suggest

_ 0. e ) [ZT
c=1-6(n—-1)"/n String at theradius R =, |—
n

= Twisted N =2 SL(2.R),,_ /U(l) Model

- For a rational value n=p/q, its central charge
Is the same as that of (p,q) minimal model.
For example, we can find for n=1/2

non - minimal (1.2) string at the radius R = +/2¢
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Evidences for the Equivalence
(1) Physical Spectrum in Free Field Representation

N =2 SL(2.R)/U(l) Kazama - Suzuki Model
= @(ﬁ v)@X®(fz ‘:)@(V/ f/f)

c=1+6/n
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¢ D (L7 )@ X G (7; ) D (. )
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Liouville field Time (Matter) (b,c) ghost

= ¢=1-6(n—1)"/n noncritical string
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Tachyon States

For example, we can find the following physical state
In the twisted theory.

I, =7 exspN2/ni(j+n/ DX +(j+n/2+1)p)

This corresponds to the tachyon state in the c<1
string with the momentum » =2 n(;+1 2).

Other physical states also match with the c<1 string.

(2) Three Point Function of tachyons
— Leg Factors can be reproduced.
(3) Topological LG model
L= — General N particle scattering amplitudes-agree.




Evidences for the Equivalence
(1) Physical Spectrum in Free Field Representation
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Tachyon States

For example, we can find the following physical state
In the twisted theory.

TT_f = f/-_fexpl_” zf;H(f{ j+‘|‘ H/Z:LY +{:]- +n/2 +l)¢ )J

This corresponds to the tachyon state in the c<1
string with the momentum p =2 »n(;+1 2).

Other physical states also match with the c<1 string.

(2) Three Point Function of tachyons
— Leg Factors can be reproduced.
(3) Topological LG model
e — General N particle scattering amplitudes-agree.




Tachyon States

For example, we can find the following physical state
In the twisted theory.

o=y expl_«./l Ini(j+n/ DX +(j+n/2+1)¢ )J

This corresponds to the tachyon state in the c<1
string with the momentum p =2 »n(;+1 2).

Other physical states also match with the c<1 string.

(2) Three Point Function of tachyons
— Leg Factors can be reproduced.
(3) Topological LG model
& — General N particle scattering amplitudes-agree.




(5) Conclusion
* We have defined the (non-minimal) c<1 string
and constructed its matrix model dual. This is
the simplest time-dependent bg. in 2D string.

* Open string theory on unstable DO-branes
In this model have the quadratic action
(l.e. matrix model) because S-matrix is trivial.

 The compactified c<1 strings are argued to be
equivalent to the twisted N=2 SL(2,R)/U(1) at
- Jgenenihaicsoliicibwi = = @ .




Future Problems

« Matrix model analysis beyond the tree level
* D-brane interpretation of the loop operator

« Construction of boundary states for the decaying
D-branes in the time-like linear dilaton CFT

« Geometrical picture of the twisted model

* Type 0 non-critical string = N=2 twisted SCFT'?
* Non-critical N=2 String and matrix model
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4) c<1 String from 2D Black holes

Noncritical string theories like 2D string theory or
minimal strings often turn out to be equivalent to the
topological models such as topological strings.

Examples
(1) c=1 string at self-dual radius
= topological string on conifold Ghoshal-vafa
= Twisted N=2 SL(2,R)/U(1) at the level 3
Muhki-Vafa
(2) (1,n) minimal string (c<1 minimal string)
= Twisted N=2 SU(2)/U(1) at the level n Li..

= topological string on x+y"+zw=0
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