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1. Cosmological Concordance Model and Problems of M/String
Theory in Explaining the Observations.

2. Flux Compactification and Stabilization of Moduli,
Metastable de Sitter Space in String Theory

3. Ghost-Free de Sitter Supergravities as Consistent Reductions
of String and M-theory: collapsing universe

4. Landscape of String Theory, Statistics of Flux Vacua,
CC problem

S. Inflation in String Theory, Cosmic Strings, Scale of SUSY
breaking
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Our Universe is an Ultimate Test
of Fundamental Physics
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Our Universe is an Ultimate Test
of Fundamental Physics

m High-energy accelerators will probe the scale of
energies way below GUT scales
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Our Universe is an Ultimate Test
of Fundamental Physics

m High-energy accelerators will probe the scale of
energies way below GUT scales

m Cosmology and astrophysics are sources

of data in the gravitational sector of the
fundamental physics (above GUT, near
Planck scale)
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In view of the recent cosmological observations
supporting dark energy and inflation
it is fair to say that we do not really know what is
“fundamental physics”

“ Most embarrassing observation in physics — that’s the
only quick thing I can say about dark energy that’s also

true.” -—- Edward Witten
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What is so embarrassing about it?

Two general problems:
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What is so embarrassing about it?

Two general problems:

»  Why 1s the cosmological constant so small,
A < 10120 in Planck density units ?

: Wh}-' e Pmatter L
Coincidence problem.

addressed by anthropic principle, Weinberg 1987
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The third problem:

Two vears ago it was not clear how one could
possibly incorporate a positive cosmological
constant in string theory

This was the main reason of embarrassment
for string theorists, because of the
cosmological data suggesting that /\ - O
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One can argue that M/String theory is
fundamental
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Physics beyond the Standard Model at LHC

| | Start : summer 2007

a

Higgs, Standard Model Supersymmetry,
SPLIT SUPERSYMMETRY
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Physics beyond the Standard Model at LHC

' b A

Start : summer 2007

Higgs, Standard Model Supersymmetry,
SPLIT SUPERSYMMETRY
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LHC discovery reach

Time reach in squark/gluino mass
1 month at 1033 ~ 1.3 TeV

1 year at 1033 ~ 1.8 TeV

1 year at 1034 ~ 25 TeV

ultimate (300 fb-1) up to ~ 3 TeV

LHC should add many crucial pieces to our knowledge of fundamental physics

~ huge impact also on astroparticle physics and cosmology ?
~ in~ 3 years particle physics may enter the most glorious epach of its history ..
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[F SUSY IS THERE

The Signiﬁcance of (llscm-*er}‘ of supersvmmetrv in nature.
(whjch will manifests itself via existence of supersvmmetric particles)
is the discovery of the fermionic dimensions

of spacetime.

It will be the most fundamental discovery in
physics after Einstein’s relativity

(t, %) — (t',2) m_b b — (zhy
SUPERSYMMETRY
CC‘UJ, 9(_){) = ((CCM),, 9;{)
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The signiﬁcance of dlscm-*er}‘ of supersvmmetrv in nature.

(Whjch will manifests itself via exustence of supersvmmetric particles)

is the discovery of the fermionic dimensions

of spacetime.

It will be the most fundamental discovery in
physics after Einstein’s relativity

(t, ) — (¢, ") w2+ — (zH)
SUPERSYMMETRY
z#,0a) — ((zH)', 0,,) mmp ZY — (ZM),
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[F SUSY IS THERE

The significance of dlscm-’er}‘ of supersymmetry in nature.

(Whjch will manifests itself via exustence of supersvmmetric particles)

is the discovery of the fermionic dimensions

of spacetime.

It will be the most fundamental discovery in
physics after Einstein’s relativity

(t, %) — (t', ") mmp o+ — (zH)’
SUPERSYMMETRY
zH,00) — ((zH)',6,,) mmp ZM — (ZMY
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rif‘i f*#f\ f’*tr' nl»
SUS S THERE

The signiﬁcance of dlscm-*er}‘ of supersvmmetry in nature.

(whjch will manifests itself via existence of supersvmmetric particles)

is the discovery of the fermionic dimensions

of spacetime.

It will be the most fundamental discovery in
physics after Einstein’s relativity

(t, 7)) — (¢, ) = / — (zH)’

SUPERSYMMETRY
z#,00) — ((z#),6)) mmp ZM . (ZM)
Sp— Gravity —— Supergravity/Stzing

thanswr
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The significance of discovery of supersvmmetry i nature.

(Whjch will manifests itself via existence of supersvmmetric particles)

is the discovery of the fermionic dimensions

of spacetime.

It will be the most fundamental discovery in
physics after Einstein’s relativity

(t,7) — (¢, ) =y t — (H)’

SUPERSYMMETRY
z#,0a) — ((z"), ) iy ZY — (ZM)
Smp— Gravity —— Supergravity/String

th anssr



Fundamental Physics

Astrophysics Cosmology — Field Theory
aft) - Equation of state w(z) — V(o)
V(é(a(t)))

The subtle slowing and
growth of scales with time |
- — map out the ‘
¢ cosmic history like tree ®
N rings map out the Earth’s rarnest
climate history. : |

=15 billion years
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Discovery! Acceleration

past «— today —» future

Blue region:

The expansion of the
universe slowed down for a
long time and then, with
dark energy, sped up.
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WMAP and the temperature of the sky




WMAP and the temperature of the sky
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DARK ENERGY

Total energy in 3d flat FRW universe

( 2~ 0.7>

QTZQD+QM=1
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H 1
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astro-ph/0407372 z

FIG. 10: Median (central line). 68% (inner. red) and 95%
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(outer. vellow) intervals of w( z) using all the data in the chains




constraimnts are reasonably model imdependent as long as w
is a smooth function of redshift. We find that the simplest
solution, w = —1, fits the data at all redshifts.
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Constraining Dark Energy with X-ray Galaxy Clusters,
Supernovae and the Cosmic Microwave Background

David Rapettil??*_Steven W. Allen'? and Jochen Weller!-*>

Spring 2005
sets. We examine a series of dark energy models with up to three free parameters: the
current dark energv equation of state wyg. the earlv time equation of state wet and the
scale factor at transition. a¢. From a combined analysis of all three data sets, assuming
a constant equation of state and that the Universe is flat. we measure wo = —1.057515.
Including w; as a free parameter and allowing the transition scale factor to vary over
the range 0.5 < a; < 0.95 where the data sets have discriminating power. we measure
wp = — L’ET:H:% and wee = —[I.li[ifgjéé. We find no significant evidence for evolution in
the dark energv equation of state parameter with redshift. Marginal hints of evolution
in the supernovae data become less significant when the cluster constraints are also
included in the analysis. The complementary nature of the data sets leads to a tight
constraint on the mean matter density. {),,, and alleviates a number of other parameter
degeneracies. including that between the scalar spectral index n.. the phvsical barvon
density Qph? and the optical depth 7. This complementary nature also allows us to ex-
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(+BBNS+HST) _ Clusters+CMB+SN
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Q

Figure 1. The 68.3 and 95.4 per cent confidence limits in the
‘QQm.wo) plane for the various pairs of data sets and for all three
lata sets combined. A constant dark energy equation of state

. Page 40/144
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New data
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New data

Boomerang..... WMAP. 2005 777
Planck, SNAP, LSST .... 2010-2012
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Cosmological Concordance Model

m Early Unmiverse Inflation m Current Acceleration
m Near de Sitter space m Near de Sitter space
m 13.7 billion vears ago = Now
® During 107{-35} sec ® During few billion vears
- = H ~ const
V ~ H2M?2 V ~ H*M?
f / 5
—5 5
Hipp < 107°Mp H,...;~1079Mp

a0




String Theory and Cosmology

All observations so far seem to fit 4d Emstein GR.
We need to know how to get this picture from the
compactified 10d string theory or 11d M-theorv and

supergravity
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All observations so far seem to fit 4d Emstein GR.
We need to know how to get this picture from the
compactified 10d string theory or 11d M-theory and

supergravity

How to get de Sitter or near de Sitter 4d space?

H; 5 < 1075M, H,. . ~107°OMp
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II. Stabilization of moduli in string
theory 1

—JRecent developments in fixing moduli near black
hole horizon and black hole attractors

D 1) A str Ll\JIlU role of stlmm corrections conv erth
a classical blIIUUlEII 1ty into a regular black hole
with the smﬁulal 1ty covered ba the horizon.

J2) An emergent relation between black hole
attractors and cosmology with regard to moduli

stabilization. Explicitly attractive K3
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II. Stabilization of moduli in string
theory I

JRecent developments in tfixing moduli near black
hole horizon and black hole attractors

D 1) A btlll\JIlU role of btrmm corrections conv ertmcr
a classical blIlUUlEll 1ty into a regular black hole
with the bmoulant\ covered ba the horizon.

J12) An emer gent relation between black hole
attractors and cosmology with regard to moduli

stabilization. Explicitly attractive K3




A Simple Example of Moduli Fixing

Aspinwall, R.K.

We analyze M-theory compactified on K3xK3 with

fluxes and 1its F-theory |

mit. which 1s dual to an

orientifold of the tvpe

B string on K3 x T?/Z;

We argue that instanton effects will

generically fix

all of the modul.i.

Before branes are introduced

Moduli space is no more
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Cosmology, Supersymmetry and
Special Geometry



Cosmology, Supersymmetry and
Special Geometry

In familiar case of Near Extremal Black Holes
DUALITY SYMMETRY protects exact entropy
formula from large quantum corrections
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Cosmology, Supersymmetry and

Special Geometry

In famu!

1ar case of Near Extremal Black Holes

DUALITY SYMMETRY protects exact entropy
formula from large quantum corrections

DUALITY SYMMETRY (shift ssmmetrv)
protects the flatness of the potential

in D3/D7 inflation model from large quantum
corrections
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Shift Symmetry of g

m Flatness of the effective supergravity
inflaton potential follows from the shift

svmmetry of
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Shift Symmetry of g

m Flatness of the effective supergravity
inflaton potential follows from the shift

svmmetry of G =K+ In|W|?
V =eY[|Gz|* - 3]

We need models where the position of the
D3 brane after stabilization of the volume 1s
still a modulus
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SHIFT SYMMETRY
and volume stabilization
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m Supersvmmetric Ground State of Branes in Stabilized Volume
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Inflaton Trench e

m Supersvmmetric Ground State of Branes in Stabilized Volume

SHIFT SYMMETRY
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m Supersvmmetric Ground State of Branes in Stabilized Volume
SHIFT SYMMETRY

The motion of branes does not destabilize the volume
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String Theory and
N=2 Special Geometry



String Theory and
N=2 Special Geometry

Angelantonj, D'Auria, Ferrara and Trigiante

m Type IIB string theory compactified on
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String Theory and
N=2 Special Geometry

Angelantonj, D'Aurnia, Ferrara and Trigiante

m Type IIB strinﬂr theory compactified on
K3 X ZQ

= orientifold with fluxes,
mobile D3 branes and

heavy D7 branes
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String Theory and
N=2 Special Geometry

Angelantonj, D'Aurnia, Ferrara and Trigiante

m Tyvpe IIB strinﬂr theory compactified on
K3 X ZQ

= orientifold with fluxes.
mobile D3 branes and

heavy D7 branes

Coset Space
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String Theory and
N=2 Special Geometry

Angelantonj, D'Auria, Ferrara and Trigiante

m Type IIB string tdeon* compactified on
K3 X ZQ

= orientifold with fluxes,
mobile D3 branes and

heavy D7 branes

SU(1,1) SO(2,2+n3)
Coset Space (1) X 50(2)x50(2+n3)

Pirsa: 05050018




String Theory and
N=2 Special Geometry

Angelantonj, D'Auria, Ferrara and Trigiante

m Type 1IB string t'leorv compactified on

K3 x L

= orientifold with fluxes,
mobile D3 branes and

heavy D7 branes

Z Z2 Isometry of the compactified
space provides shift symmetry
slichtly broken by quantum
corrections

SU(1.1) SO(2,24n23)
Coset Space (1) X 50(2)x50(2+n3)
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Special Kahler geometry

N=2 supergravity with vector multiplets
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Special Kahler geometry

N=2 supergravity with vector multiplets

m SvmplecticVectors de Wit. Van Proeven. 1984

(1)-( D)) SEatDR
K=—log [i(TlFl = le-*)]

m Kihler potential 1s a svmplectic invariant
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Special Kahler geometry

N=2 supergravity with vector multiplets

k| S}TllplCCﬁCVGCtOI’ S de Wit. Van Proeven.1984

(1) - 2)()  SEatDR
K = —log [i(X"Fy — FAX")

m Kihler potential 1s a svmplectic invariant

Supersymmetric Black Hole Entropy
~Symplectic Invariant




Duality and symplectic
transformations

1 = (M NAg) F, F*5 — &(Re Nag)e* P Fiy F oo
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Special Kahler geometry

N=2 supergravity with vector multiplets

m SvmplecticVectors de Wit, Van Proeven. 1984

(1) - 2)() SEatDR
K = —log [i(X"Fy — FAX")

m Kihler potential 1s a svmplectic invariant

Supersymmetric Black Hole Entropy

P"Sa:SS}efi‘[lpleCtiC Invarant Ferrara. R. K.. Strominger. 1996«




Duality and symplectic
transformations

1 = (M NAg) F, F*% — &(Re Na)e* P Fiy, F oo
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Inflaton Shift is a Duality

!

(yr)’ = yr + 3 S =S8 y—1 w—2

S:AB
C D
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Inflaton Shift is a Duality
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Inflaton Shift is a Duality
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A Stringy Cloak for a Null
Siﬂglllarity Dabholkar, R. K., Maloney

hep-th/ 0410076
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Inflaton Shift is a Duality
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Inflaton Shift is a Duality
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5881 #200 0 §
\3 000 1/ \0 00 3 0

e A8 FD-Ve-8 o Cc'n-1

Conclusion: G(p, p; ¢ — 5)
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A Stringy Cloak for a Null
Si]lgllla l‘ity Dabholkar. R. K., Maloney

& i : hep-th/ 0410076
m A first explicitely computable class of

string theorv/supergravity models when

c-( R....)- terms modity a classically singular solution
with vanishing horizon into a regular black hole with
smgularity clothed by a finite area of the horizon
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m A first explicitely computable class of

string theorv/supergravity models when

c-( R... ) terms modity a classically singular solution
with vanishing horizon mnto a regular black hole with
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A Stringy Cloak for a Null
Sillgllla l‘ity Dabholkar, R. K, Maloney

i R : hep-th/ 0410076
m A first explicitely computable class of

string theorv/supergravity models when

c-( R....)- terms modity a classically singular solution
with vanishing horizon mto a regular black hole with
singularity clothed by a finite area of the horizon

Sel = lAcl = S—2 A= 471'\/621)9’

C, depends on topology of Calabi-Yau
(second Chern-class coefticient)
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A Stringy Cloak for a Null
Singularity Dabholkar, R. K., Maloney

i L : hep-th 0410076
m A first explicitely computable class of

string theorv/supergravity models when

¢-( R....) terms modity a classically singular solution
with vanishing horizon nto a regular black hole with
smngularity clothed by a finite area of the horizon

Sel = lAcl = S—cA— 47r\/62pq

C, depends on topology of Calabi-Yau
(second Chern-class coettficient)
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N=2 BPS mass formula, M=|Z|

m The BPS mass 1s equal to the central charge.
which depends on moduli and charges:
svmplectic invariant

Mgps = 1ZI" = |(Q.V)I" =" |grX"(2) = p Fr(2)[

m The ADM mass of the black hole 1s equal to
the value of the central charge when moduli
are at mfinity

e M2 0y = 1Z(p, 4, 200, Zoo|?




Attractor equations

m Introduce a svmplectic vector
Y? %
IT = ( . ) where Y' =Z X'
F_,r{} }

m At the attractor point there 1s an algebraic
relation between the fixed values of moduli
and charges
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Calabi-Yau black holes
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S T 2T \/QODABCP G g
m Classical area=0 1if Dagepp®p© =0

® Quantum corrected entropv and area

. Co 2 DA @
A=dn|Zli = 8'—\/ 2-*{))4“0‘

Co 4 DG
@ 4ﬁ_\/ 24 [ |10\
24
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Stabilization of modul1 via
instantons: breaking the 1sometries
of the manifold

® When 1s this possible?

B Can we use fluxes and mmstanton
corrections to fix all moduli but the
inflaton?
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Flux vacua and ;
supersymmetric attractors

We propose a universal formulation of supersvmmetric attractor equation:
It 1s valid for the flux vacua or for BPS black holes. depending

on the choic
of the components of flux either in the compact space or in 4d

space. As a
example. we define flux vacua with a rigid explicitly attractive K3 surface wher
a class of moduli are fixed by fluxes. The explicit values of complex structure
are extracted from the previously known solution of the attractor equation fc
the black holes with the same symmetry.
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Flux vacua and :
supersymmetric attractors

We propose a universal formulation of supersvmmetric attractor equation:
It 1s valid for the flux vacua or for BPS black holes. depending on the choic
of the components of flux either in the compact space or in 4d space. As a
example. we define flux vacua with a nigid explicitly attractive K3 surface wher
a class of moduli are fixed by fluxes. The explicit values of complex structure
are extracted from the previously known solution of the attractor equation fc
the black holes with the same symmetry.
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Flux vacua and
supersymmetric attractors

We propose a universal formulation of supersvmmetric attractor equation:
It 1s valid for the flux vacua or for BPS black holes. depending on the choic
of the components of flux either in the compact space or in 4d space. As a
example. we define flux vacua with a rigid explicitly attractive K3 surface wher
a class of moduli are fixed by fluxes. The explicit values of complex structure
are extracted from the previously known solution of the attractor equation fc
the black holes with the same svmmetry.
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] Flux vacua and
supersymmetric attractors

We propose a universal formulation of supersymmetric attractor equations.
It 1s valid for the flux vacua or for BPS black holes. depending on the choice
of the components of flux either in the compact space or in 4d space. As an
example. we define flux vacua with a rigid explicitly atiractive K3 surface where
a class of moduli are fixed by fluxes. The explicit values of complex structures
are extracted from the previously known solution of the attractor equation for
the black holes with the same symmetry.
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There 1s a direct relation between the mathematical structure.

established for supersymmetric black hole attractors and flux vacua.

These flux vacua of string theory are considered quite seriously in
the context of string cosmology where a landscape of such vacua

seem to exist.
We will show here that the supersymmetric attractor equations
studied in the past for black holes give us a new tool in studies of

flux vacua. A specific example will show how to use the supersym-

metric attractor equations studied for black holes to find in flux
vacua an explicit dependence of the complex structure moduli on

fluxes.
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Attractors and special geometry

We start with a short overview of attractors and special geome-
try. However. we will present it in a form where the origin of the
svmplectic flux vector (p™.ga) is not specified. It will be associated
later with various fluxes of string theory. those which break Lorentz
svmmetry of 4d (fluxes with components in 4d) and those which do
not break it (fluxes with components only in the compact space).

Special Kahler manifold can be defined by constructing flat sym-
plectic bundle of dimension 2n+2 over Kahler-Hodge manifold with

svimplectic section defined as

V — (1. My). A=0.1.
: where (L. M) obev the svmplectic constraint i(LAMy — LA, ) =1
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We start with a short overview of attractors and special geome-

[ |w

tryv. However. we will present it in a form where the origin of the |-
svmplectic flux vector (p™.ga) is not specified. It will be associated
later with various fluxes of string theory. those which break Lorentz
svmmetry of 4d (fluxes with components in 4d) and those which do
not break it (fluxes with components only in the compact space).

Special Kahler manifold can be defined by constructing flat sym-
plectic bundle of dimension 2n+2 over Kahler-Hodge manifold with
svimplectic section defined as

V = (LY. My). -0 w

where (L. A[) obey the svmplectic constraint i(LANy — LANMy) =1
and LA(z.2) and M(z.3) depend on scalar fields z. Z. which are
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LA and My are covariantly _

di

|
the coordinates of the “moduli space
holomorphic (with respect to Kahler connection)

DE}Z“L o (()K = %h'g:, '}L‘l

where K is the Kahler potential. Symplectic invariant form of the
Kahler potential can be found from this equation by introducing

the holomorphic section (X*. Fy)

R’azf_x z

o . ‘e My =e (O XA = 9 Fp =0)

T —
. The Kahler

__Ini{ X2F, — X2F,)
Page97/l44 3
TR

The Kahler potential is K
metric is given by gz = OrOg . Finally from special geometry one

imde that thare avicte a comnlevy cvmmetrice (n L1V v (nh L 1Y ymmatriy
| 'E" r | A4af 28 [y | ~
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the coordinates of the “modull space . L™ and M are covarianitly

[ |w

holomorphic (with respect to Kahler connection). e.g.

s : | e

. A . \TA

- DEL :(UE—;IXE_}L —

where K is the Kahler potential. Symplectic invariant form of the

Kahler potential can be found from this equation by introducing
| the holomorphic section (X*. Fy):

= "yt My = 52F, . (Or X2 =0pFy =0) .

The Kiahler potential is K = —Ini(XAFy — X*F,) . The Kahler
metric is given by ¢z = Ordp A . Finally from special geometry one
1 finds that there exists a complex symmetric (n+1) x (n+1) matrix

pi
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Nax such that

el : I 1 E b e
J[_\ — _\AEL‘ : Illl_\_yg[ﬁilg - Ay D;J[A = _\iEDﬂ_r‘_'

: | One can introduce a symplectic vector charge which in the future
o will be either an electric-magnetic charge of a 4d black hole or a
svmplectic flux in a compactified Calabi-Yau manifold.

() = (5%.)

In the generic point of the moduli space there are two symplec-
tic invariants homogeneous of degree 2 in electric and magnetic

charges:
1 pds
: [1:[1(;).{}..:.3}:—SPt-\/l{_\ 1 oo
: ]
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=| where K is the Kahler potential. Symplectic invariant form of the
Kahler potential can be found from this equation by introducing

the holomorphic section (XA _Fa):
YR Ma——e"Fa, (BX"—8F—0)

The Kahler potential is K = —Inz (XAFy — XAF,) . The Kahler
metric is given by g,z = Jrdp A . Finally from special geometry one
finds that there exists a complex symmetric (n+1) x (n+1) matrix
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:: l where K is the Kahler potential. Symplectic invariant form of the
! Kahler potential can be found from this equation by introducing
. the holomorphic section (XA, Fp):

|

|

|

IA —_MP2xA My = e%/2F, | (0r X2 = 0cFy =0) .

. The Kahler potential is A = —1In: (XAF)y — XAFy) . The Kahler
| metric is given by g,z = Ordp K. Finally from special geometry one
finds that there exists a complex symmetric (n+1) x (n+1) matrix
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\Ax such that
- —
ImN\Nys AL = ,

1[_1 — _\F),LEL‘ :
One can introduce a svmplectic vector charge which in the future
will be either an electric-magnetic charge of a 4d black hole or a

2 €
svmplectic flux in a compactified Calabi-Yau manifold

}}_1 b J‘ jt_’i
qgrn)  \ [ Ga

-

In the generic point of the moduli space there are two symplec-

1wa

tic invariants homogeneous of degree 2 in electric and magnetic
V)P .

L =5L{p.qg .z )
1
Pf\/l{}_)P

a

charges:

ey — [;-(p q.:

a
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One can introduce a symplectic vector charge which in the future
=| will be either an electric-magnetic charge of a 4d black hole or a
symplectic flux in a compactified Calabi-Yau manifold.

In the generic point of the moduli space there are two symplec-

tic invariants homogeneous of degree 2 in electric and magnetic

|
i charges:
1 e
| [1:[1(1?).@.:.5'}:—;Pt_\/[{_\ M
i i
e | 1
| B—Lipgz=)— —;Pf_\/l{}_)P .
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'~ One can introduce a symplectic vector charge which in the future
will be either an electric-magnetic charge of a 4d black hole or a
svmplectic flux in a compactified Calabi-Yau manifold.

| () = (55.)

In the generic point of the moduli space there are two symplec-
tic invariants homogeneous of degree 2 in electric and magnetic

. charges:
: 1 e
._ ! Ilzfl(p.q..:.f}:—SPt_V[{-\ )P .

1

) = —=PM(F)P .

—

O

j | I> = I>(p.q. =.
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|  Here P = (p.q) and M(N) is the real symplectic (2n+2) x (2n+2)
£l matrix

| AB
| C'D

where

A =ImN + ReNImN 'ReN . B = —ReN ImN !

C = —ImN 'ReN . D—=TImN !,

Note that one can rewrite these two Invariants as follows

I =|Z?+ |D; Z)? .

Page 105/144
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Here we have defined a covariantly holomorphic central change

Z(z.z,q,p) = (L gy — Mxp™) .

where D;/Z = (0; — %Kg)Z —0 and D;Z = (9; — %I{i \Z — O
One could also use a holomorphic central charge defined as

z q.p) =(X"qa — Fap) ,

W-—e "ea27¢,

and the anti-holomorphic one.
—(X"gs Fo). o.W =0.

Page 106/144

This holomorphic charge " mav be associated with the superpo-

| =y |

tential in N=1 supersymmetric theory. however. here it is used in
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Z(z.z,q,p) = (L%qx — Mxp™) .

where D;/Z = (0; — %[{;)Z — 0 and D;Z = (0; — %K,;)Z_ —

One could also use a holomorphic central charge defined as

i W= K=3/27(, = g,p) = (X2ga — Fap™) , W =0.

and the anti-holomorphic one,

W — E—K[:.:‘]_,.-—“'E

(X2qgn — Fap®) , o;W =0 .

Z(z,Zz,.q,p)

This holomorphic charge " mav be associated with the superpo-
tential in N=1 supersvmmetric theoryv. however. here it is used in
the context of symplectic structure of special geometry which is a

= — Typeset by Foil TEX —
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property of N=2 theories. It is not present in a generic N=1 theory.
only in the ones which originates from N=2.

A minimization condition for both symplectic invariants which
specifies the values of moduli in terms of charges is given by

D.Z(z_z q.p)

: | s
(0); + 7[13)2 =1

D:Z = [(j;—%%ffﬂf(:.f. qg.p) =0 .

It is also a requirement of an unbroken supersymmetry. In terms
of the holomorphic charge W the minimization condition is the
familiar one
DiW(z.q.p) =(0; + K;)W =0.
D:W(z.q.p) = (& +K;)W(z.q.p) =0 .
page 106/144
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tions of a holomorphic line bundle):

| XA(2) > XM(2) e TP |
- |
so that :

- () —f(z)

1) S 1% e =
= Y - i ; —
|| This occurs because LA = e%/2X? and K — K + f + f under
7| Kabhler transformations. so that

However. |Z| is both symplectic and Kahler gauge invariant. this is
why the connection drops and D;Z = 0 (D;Z = 0) entails 0;|Z

-) il .._.-
3 Thus |Z|> = eX|W|? is the object in our construction which
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1 so that
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tions of a holomorphic line bundle)

Xz) > XM (z) e TP

ek/2XA and K K + f + f under

This occurs because L
Kahler transformations. so that
F(2)—f(z)

) — Z(q.p.z) €

Z(q.p.z

/| is both symplectic and Kahler gauge invariant. this is
-1 5 - ‘-I -:IIE : I:)’

However. IS ‘
why the connection drops and D;Z = 0 (D;£ = 0) entails 0;|Z
‘W[ is the object in our construction which

™
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X2 X% e T

so that |
1) > ) =

. I i _ " i
This occurs because LA = e£/2XA and K — K + f + f under
Kahler transformations. so that

_  f(=z)—f(=)
Z(q,p.z) > £(g.p,z) e T .

.~ However. /| is both symplectic and Kahler gauge invariant. this is
' why the connection drops and D;Z = 0 (D;Z = 0) entails 9;|Z| = 0.

; | |2 H‘: ...,-} hf e ~ - B

E | Thus |Z]|¢ = e™|W|® is the object in our construction which

may be related to supersymmetric physical observables due to both

Pir|sa: 05050018 Page 111/144
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symplectic and Kahler invariance: at the attractor point it does not

depend on moduli. only on fluxes:
- 2 - |12
o;|Z|° =054 =0
For the superpotential the minimization condition means that

9; (eX|W %) = &; (e¥|W|?) =0

At the minimum both invariants [; and [, are equal to each
other. This minimization condition can be also presented in the

form of the attractor equations

p* i a1 Zh
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symplectic and Kahler invariance: at the attractor point it does not

| :
depend on moduli, only on fluxes:

aiZzr iz 1

For the superpotential the minimization condition means that

9 (eX|W)?) = 0; (X|W|?) =0

At the minimum both invariants /; and [, are equal to each
other. This minimization condition can be also presented in the

form of the attractor equations
A ZIA — ZAA

P e
A = Z M ¥ Uy VA )l_[_'i

-

This algebraic equation relates the values of charges to some func-
Many solutions of these equations are known in

3 tions of moduli.

rsa: 05050018
™~

bi
il aof 28 E [y |

| B | a4




- Fle HEdit View Document Comments Tools Advanced Window Help

> & J; = E*j*';_ ﬂSe&n:h = CresiefF - -

_]}saecr — 1%

| Comment & Markup = & Send for Review = = Secure ~

et

. S wne @t

(#)

gooy,

L F
- | = |39
=
- _— —x S—

the form where moduli are functions of fluxes.

These solutions are known as " fixed moduli”
point the square of the central charge is moduli independent

Zfiz — Zfiz(q, D)

Zfiz = Zfiz(q-P)
Also at the attractor

- S o 7 AR r12 _
A fiz — Z f;'_r(P- q) 1" = = 1! f}_-_l.(p. q)
This explains why the covariantly holomorphic central charge was

used in most applications of supersymmetric attractors.

So far we have intentionally not given any interpretation to the

svimmplectic invariants. charges etc. In this general form the attrac-
tor equations can be understood either in the context of black hole
Page 114/144
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or in the context of flux vacua.
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Black hole attractors

When we studv 4d black hole attractors in N=2 ungauged su-
pergravity we are interested in a 4d geometry with vector fields.
. The kinetic term of gauge fields is defined by the period matrix
1 N s which depends only on scalar fields of the vector multiplets =*.
The vector field action can be also rewritten as (Im N sFAF> +
Re Npys FA*FX) = FA*G,. where Gy = Re NysF= — Im N o*F=.
The svmplectic structure of equation of motion is manifest in terms
of the Sp(2n, +2) symplectic vector field strength (F*.Ga). These
vector fields in the symplectic basis decompose in the susy basis into
the vector field of the gravitational multiplet (graviphoton) and the
vector fields of the vector multiplets. The graviphoton is given by
the following symplectic invariant combination of the vector fields
in the action

rsa: 05050018 Page 115/144
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When we studyv 4d black hole attractors in N=2 ungauged su-
pergravity we are interested in a 4d geometry with vector fields
i -

1e kinetic term of gauge fields is defined by the period matrix
The kinetic t f gauge field lefined by tl | mat
-~ A v-#_

: z ‘f:l -

\Vax which depends only on scalar fields of the vector multiplets
- The vector field action can be also rewritten as (Im N v FAF= +

Re Nax FA*FE) = FA*G,. where Gy = Re NpysF= — Im Ny *F>.
The symplectic structure of equation of motion is manifest in terms |-
4 of the Sp(2n, +2) svmplectic vector field strength (F*.Gy). These
vector fields in the symplectic basis decompose in the susy basis into
the vector field of the gravitational multiplet (graviphoton) and the
rector fields of the vector multiplets. The graviphoton is given by
the following symplectic invariant combination of the vector fields

Page 1_:}6/144
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in the action
A A
T =MxF"— LG, .
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The central charge for the general N=2 theories is a charge of the

graviphoton
o K(z2) A, S ‘T A \
Lz, Z.q.p)—€ Z (X (z)ga —Falz)p ) —(L qa — Mxp)

Here the symplectic covariant charges are electric and magnetic

fsi ¥

charges of the vector fields in 4d defined as follows
A

p o
gAa f:’;i gﬁk

Page 117/144 3" (
b

tric and magnetic charges break 4d Lorentz svmmetry and therefore
black hole attractors were for a long time not clearly related to the

- - - ™ -f'-:l‘ -
where the integration is performed over some S< in 4d. These elec-

™~

13 af 28 [y |

flux vacua in string theorv where in 4d the vacua of interest for
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The black hole attractor equations here are given by

A 7T A
Tl “?gl
N QEZJIIA

"
G-

*
‘—"l:__

where Z is the graviphoton charge depending on moduli and on
conserved charges (p™.qx) and (L*.A[,) are covariantly holomor-

phic sections depending on moduli. The mass of the BPS black

hole at the arbitrary point in the moduli space is given by

R

Zp.q) =|Z]° +|DZ

-
W

2‘ i
Mo cichole

Near the horizon where the moduli are attracted to the fixed point

the graviphoton charge has to be covariantly constant

3 _ e B : c S e

zep) =G+ K)Z—0 DZLZ—(d+{ _K;])Z—0 Pf96118/144@iv
V< idaf 28 B Bl ~y L4
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The minimal value of the black hole mass as a function in the

moduli space defines the area of the horizon A and the entropy S
: of the classical black hole solution.

: . : Alp.q) i
J[ﬁlin(:ﬁr(p. q)- Zfiz(P-q): P- q): / EE:D SN, 7S(p.q).

ik

Another interpretation of these equations comes from introducing a
. concept of the double-extreme black holes which have the extremal
ADMI mass for a given set of (p.q) charges. These black holes have
the values of moduli fixed to their extremal values evervwhere. not
only at the horizon. For such black holes it is sufficient to solve
the attractor equations to find the solution everywhere since the
moduli are frozen and are defined by the values of charges.

pi

rsa: 05050018
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Flux vacua

Now we would like to reinterpret the attractor equations as defin-
1 in Calabi-Yau space

i ing the flux vacua in string theorv compactified in Calabi-Yau space
A significant part of this interpretation is well known as it was
Moore. QOoguri. Vafa. Verlinde. It was

e S B
developed by Strominger.
proposed that black hole attractors may be related to GKP-KKLT

model of vacuum stabilization

Here we would like to stress a particularly important part of the

relation between supersymmetric attractor equations. flux vacua
To use the attractor equations for the flux

and BPS black holes.
acua all we have to do is to relate the symplectic charge vector to
Page 120/144 4"

fluxes in internal space. Consider. for example a compactification of
-Yi fa E}]ﬂ.{n_g L3 l].ﬁl{jl]]{}] ljllu oNr 11]13'.9.{‘1’“1

1_fnld

f‘i"l.ﬂn‘ % ok PR AT AN A ATA (— -\'r
| B | a4

16 of 28 E

Pirsa: 05050018




. HIE Edit View Document Comments Tools
2 ™ =2 = ‘-_ &~ @ P searcn - T CrestePOF - = Comment & Marup ~ o Sa'hufnrﬁe’vewv:Semue ZS"-""'
rIsamr.' Q- L@ -0 DO vm @ne- |
E seud o e, R 35 —— oY vaTna

Formz -

Ad'vanced Wlndt}w Help

- X Vaclc: ] o
A significant part of this interpretation is well known as it was
. Vafa, Verlinde.

Now we would like to reinterpret the attractor equations as defin-

ing the flux vacua in string theorv compactified in Calabi-Yau space
It was

developed by Strominger. Moore. Qogurs.
proposed that black hole attractors mayv be related to GKP-KKLT

model of vacuum stabilization

Here we would like to stress a particularly important part of the

relation between supersvmmetric attractor equations. flux vacua
To use the attractor equations for the flux

and BPS black holes.
acua all we have to do is to relate the symplectic charge vector to
fluxes in internal space. Consider. for example a compactification of

Page 121/144

M theory on some CY 4-fold. We choose a holomorphic svmplectic
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basis such that

X‘“{.:}:/ () F_xi'.:}:/ ()
= | J AA J By

Here () is a holomorphic 4-form on a Calabi-Yau space and

The 4-form flux has a (0.4) and a (4.0) components. This also
means that the symplectic flux vector is related to 4-form fluxes in

an internal space as follows

*fh:/ F fi*i:/ g
JAp J BA

= |  Therefore. as different from the 4d black holes where electric and
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in 4d space). here fluxes have only non-vanishing components in
the compact space. and therefore the minimization of svmplectic
invariants leads to flux vacua which are Lorentz covariant in 4d.
The formal structure of the attractor equations when we use the
: symplectic charge vector (qa.p™) is the same in both cases.

Indeed. let us introduce the relevant holomorphic central charge

W as follows
W — / | 79,8 = X‘kq_\ — p“‘F A

and also a corresponding covariantly holomorphic central charge

o — L“LQA = p‘tjfl — FK"EEH*

pi

Now again we can construct 2 svmplectic invariants. I; and [ which
rsa; 05050018 7 Page 123/144
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svmplectic invariants is

DiW(z.q.p) = (0; + K;)( /F4 ASD)—@

This condition is often imposed to define a supersymmetric flux
vacua and it is equivalent to the requirement that the covariantly

holomorphic central charge is covariantly constant. 1. e
20 ) =0

D;iZ(z.%:q.p) = (0; + 5 k) /FJ_-‘_EE*‘

Since we have now established one-to-one correspondence with the

supersvmmetric attractor equations for black holes. it follows that

the attractor equations derived there are valid for flux vacua. The

svmplectic charge vector (p.q) is defined as an integral of the sym-

3 i Page 124/144
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Here we have presented the attractor equations via the superpo-

| tential W and Kihler potential A as well as holomorphic section
| (X.F). However. thev are equivalent to the one expressed via the

central charge Z and covariantly holomorphic section (L. ). At
the attractor point the Kahler potential and the superpotential de-

= | pend only on fluxes.
(1Z1?) fiz(p- @) = (€* W) fiz(p- @)

|
2
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Explicitly attractive K3 surfaces

*
-
S =y

LY

-'_’Ib-saecr

|

Attractive K3 surfaces are alwavs rigid - anv infinitesimal de-
formation of complex structure would alwavs decrease the rank
of the Picard lattice on K3. which is equal to 20. Torelli’'s the-

i orem defines the complex structure of the attractive K3 surface via
D20 — g 1.

tor equations and give the explicit answer for all moduli in terms of
SU(1,1)
U(1) SO(2)xS50(n)

However. we may use the solutions of the complete set of attrac-
SO(2.n)

fluxes. Thus we want to find the moduli on

Page 126/144
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Part of these attractor equations were already used in the def-

inition of the attractive K3 surface bv Moore. Moreover

proposed the interpretation of the attractor value of the
A

_I Zfz.r B p {f o {p
as an area of the unit cell in the transcendental lattice Ts of the
K3 surface. He also gives the fixed value of the modulus on b%_%‘.ll L
2 <) \ 52 /9
(p°q> — (p-q)*)"?

p-q
S i _
p?

Page 127/144

the axion-dilaton as well as 20 complex structure moduli are given

We will find an explicit definition of the attractive K3 surface. where

2 af 28

at the fixed points as functions of all fluxes
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Fixing moduli on ST|2,n] manifold
SU(1.1) SO(2.n)
X S0(2)xS0(n)

onsider an ST[2.n] manifold which i1s an ==
C | ST|2 fold whicl o)
A stabilization of moduli on this mamiold

svmmetric manifold. _
as established by solving explicitly the supersymmetric attractor

equations in this theory
R v A Fa
e ¢ Il
p VALY A

p*

GgA

where Z is the central charge depending on moduli and on con-
served chareges |( p‘"‘ ga) and (LA, My) are covariantly holomorphic

- - ""D . ._‘ = -' J
sections depending on moduli. Here we would like to use this known
Page 128/144

solution of the attractor equations to show how fluxes stabilize all
~y
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Our starting point is

oy XA B T
o == = +
Fa > Nal X" Xp=X-X=0, A=01....n+1

|
|
i
|
|
|  The metric nps = diag(+.+. —..... —) 1s used for changing the
| e : : & = i r g

.~ position of the indices: Xy = ngax X~. Note that X A are not inde-
pendent and satisfv the constraint X - X = 0.

— -

Using

F A = T‘Y),L

in the stabilization and we can bring them to the following form

T = Jr - : L —A fo—  Ji i ) o
p* —iZe"2XD _iZeBIEX _qy —iZe™I X, —iZe® /5 X, .

=|  These equations can be massaged further by contracting them with
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The metric nyy = diag(+.+.—..... —) is used for changing the
—ile - - - % - - -
position of the indices: Xy = nax X~. Note that X A are not inde-

pendent and satisfv the constraint X - X = 0.

Using
Fﬁ\ — T .Y;i

in the stabilization and we can bring them to the following form

= K/ , - ror—A S S G imi
p“‘ — aZe I2X2 4" I%X W — EZEB"'ET‘X)L — 1 ZeK/ % Xy

These equations can be massaged further by contracting them with
2| X using the constraint X - X = 0. After quite a bit of algebra one

ST |

- — Typeset by FoilTEX - 24
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' From the above two equations we can obtain the fixed value of the
ot || h ; : x t SU(1.1)
axion-dilaton. which is the moduli on {-{f.l} :
_ ¢ 33 \2\1/2
P-q P9 (P-9))
— £ 9 =

p?

The fixed value of the central charge Z| follows
2\1/2
B

Z%. =0’ —(p-q
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Translating black hole attractor solutions into K3 3
At this point he

So far these attractor equations were already used in the def-

inition of the attractive K3 surface by Moore.
suggested to relv on Torelli's theorem which defines the complex

structure of the attractive K3 surface via Q29 = g — 7p. Alter-
natively. we may use the solutions of the complete set of attractor

equations and give the answer for all moduli in terms of fluxes.
SO(2, .
=) __ manifold. For

(2) xSO(n)

Thus we want to find the moduli on g5
this purpose use the attractor egs. and find that

7t — ¢ = iZe?(F— 1) XA,

Page 132/144 'l'?
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which leads to a beautiful equation:
i XA FpA A
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Translatmg black hole attractor solutions into K3
ady used 1 _

So far these attractor equations were already used in the def-
Alter-

inition of the attractive K3 surface by Moore
suggested to relv on Torelli's theorem which defines the complex
- " 3t ~ ()
structure of the attractive K3 surface via Q2% = ¢ — mp

‘e may us _
equations and give the answer for all moduli in terms of fluxes.
SO(2.n) e
SO manifold

natively. we may use the solutions of the complete set of attractor
502 . For

Thus we want to find the moduli on
this purpose use the attractor egs. and find that
= )X

A
5 (i ‘-’I
which leads to a beautiful equation:
X" a3 =
il Xz TpE—qg=
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Note that the ratio £+ does not give us yet the moduli since
X - X = 0. This constraint can be solved. in particular using a

generalized Calabi-Vesentini coordinates:

.-f ) 1 =
T _\O:—H{l—}'h_jffﬁ).
= xy 2 n+1.

X — 1 i t't7) .

P |

The solution for moduli is

~i—1 i
. . & - ptT T —q
i
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the following properties. The n+1 complex vector multiplet moduli
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are functions of charges:
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On the other hand the solutions of the same attractor equations
gives an explicit definition of the attractive K3 surface. where the
axion-dilaton and all 20 complex structure moduli are given at the
fixed points as functions of all fluxes. All we have to do to specify
the case of explicitly attractive K3 surface is to take n = 20 case of
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the general solution of the attractor equation.
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the following properties. The n+1 complex vector multiplet moduli
are functions of charges:
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On the other hand the solutions of the same attractor equations
gives an explicit definition of the attractive K3 surface. where the
axion-dilaton and all 20 complex structure moduli are given at the
fixed points as functions of all fluxes. All we have to do to specify
the case of explicitly attractive K3 surface is to take n = 20 case of
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