Title: What is String Phenomenology?

Date: Apr 11, 2005 02:45 PM

URL: http://pirsa.org/05040051

Abstract:

Pirsa: 05040051 Page 1/49

After a recent workshop here on String Phenomenology...

What is String Phenomenology?

Particle Physics and Cosmology

- Deep connection, e.g., inflation, dark matter, neutrinos...
- Both study the universe in the extreme conditions.

irea: 05040051

The Standard Model(s)

Hierarchy problem SUSY?

. . . .

Flatness, horizon, anisotropy Inflation? Dark energy?

.

The Quiver Diagram String Theory

The Quiver Diagram String Theory

Neutrinos, cosmic rays,...

Particle Physics

Cosmology

The Quiver Diagram String Theory

The Quiver Diagram String Theory

The Quiver Diagram String Theory

Particle Physics

Cosmology

The beginning of the unexpected...

Strings as a Theory of Hadrons

String theory began as a phenomenological model.

Massless spin 2 particle: graviton!

Meet the Quintuplets

Meet the Quintuplets

The Heterotic Supremacy

STOP

• Type IIA/IIB: difficult to implement non-Abelian gauge groups and chiral fermions.

In fact, a no-go theorem for the Standard Model.

Dixon, Kaplunovsky, Vafa

 Heterotic E8xE8: naturally contains GUT and hidden sector:

$$E_8 \supset E_6, SO(10), SU(5), \dots$$

• Heterotic SO(32) and Type I: two other siblings that are largely ignored....

String Phenomenology Begins

Calabi-Yau Compactification

- Low energy physics (e.g., spectrum, couplings, ...) determined by topological + geometrical data of M.
- Building realistic heterotic string models: a huge industry in mid 80s to mid 90s....

rsa: 05040051

The Good Side

- $M_s \simeq g_s M_P$
- Gauge unification
- Rank ≤ 22
- E6, SO(10), SU(5) GUTs, MSSM-like Models
- Non-trivial constraints on matter representations
- Exotic matter: Schellekens' theorem

Internal consistencies + phenomenological constraints

⇒ A very tight system!

irsa: 05040051 Page 18/4

The Dark Side

Moduli Problem

Moreover, $M_s \simeq g_s M_P \Rightarrow$ difficult to test or falsify...

irea: 05040051

The Good Side

- $M_s \simeq g_s M_P$
- Gauge unification
- Rank ≤ 22
- E6, SO(10), SU(5) GUTs, MSSM-like Models
- Non-trivial constraints on matter representations
- Exotic matter: Schellekens' theorem

Internal consistencies + phenomenological constraints

⇒ A very tight system!

irsa: 05040051 Page 20/4

The Dark Side

Moduli Problem

Moreover, $M_s \simeq g_s M_P \Rightarrow$ difficult to test or falsify...

The Moduli Problem

In 4D physics, this freedom implies moduli: scalar fields ϕ_i

$$V(\phi_i) = 0 \qquad \forall \phi_i$$

The Moduli Problem II

- Different $\langle \phi_i \rangle \Rightarrow$ inequivalent physics (e.g., Yukawa couplings, particle masses,..)
- Existence of light scalars:
 - Equivalence principle violations?
 - Time varying α?
 - Energy in φ can ruin cosmology.

Phenomenological problems

irea: 05040051

The Moduli Problem

In 4D physics, this freedom implies moduli: scalar fields ϕ_i

$$V(\phi_i) = 0 \qquad \forall \phi_i$$

The Moduli Problem II

- Different $\langle \phi_i \rangle \Rightarrow$ inequivalent physics (e.g., Yukawa couplings, particle masses,..)
- Existence of light scalars:
 - Equivalence principle violations?
 - Time varying α?
 - Energy in φ can ruin cosmology.

Phenomenological problems

SUSY Breaking

• Assumptions:

- Non-perturbative effects (e.g., gaugino and matter condensation) break SUSY.
- The same NP effects also lift all moduli.

• But ...

SUSY breaking effects on SM and moduli lifting potential not readily computable in a *controlled* way.

irea: 05040051

SUSY Breaking

• Assumptions:

- Non-perturbative effects (e.g., gaugino and matter condensation) break SUSY.
- The same NP effects also lift all moduli.

• But ...

SUSY breaking effects on SM and moduli lifting potential not readily computable in a *controlled* way.

irsa: 05040051 Page 27/49

Return of the Lost Family

SUSY Breaking

• Assumptions:

- Non-perturbative effects (e.g., gaugino and matter condensation) break SUSY.
- The same NP effects also lift all moduli.

• But ...

SUSY breaking effects on SM and moduli lifting potential not readily computable in a *controlled* way.

irea: 05040051

Return of the Lost Family

Including Gravity

Dienes, Phys. Report

D-brane

Bulk closed string

Dp-brane

Brane World

Page 33/49

When all ends meet

Witten

Flux Compactification

• Just like particle couples to gauge field via

$$\int_{\text{worldline}} A$$

Dp branes couple to p+1-index gauge fields:

$$\int_{\text{worldvolume}} A_{p+1}$$

• Thus (p+2)-form field strengths:

$$F_{p+2} = dA_{p+1}$$

Flux Compactification II

Various p-cycles of M

• For each p-cycle in M, we can turn on

$$\int_{\Sigma_p} F_p \in \mathbf{Z}$$

Dirac quantization

Analogous to turning on a B-field

$$E \sim \frac{1}{8\pi} \int \left(E^2 + B^2 \right)$$

Cost energy to turn on fluxes!

Moduli Stabilization

 The energy cost of a given flux depends on detailed geometry of M:

$$V_{n_1,n_2,...,n_k}(\phi_i)$$
 Flux induced potential where $n_j=\int_{\Sigma_j}F$, $j=1,\ldots,k$.

• Lift the moduli ϕ_i !

Flux Induced SUSY Breaking

Number of vacua

Gauss's Law:

$$\sum_{j=1}^{k} n_j^2 \le N^2$$

 N^2 and k depend on the topology of \mathcal{M} , roughly $\mathcal{O}(100)$.

Assuming $V_{n_1,...,n_k}(\phi)$ has a critical point for each $\{n_1,...,n_k\}$

vacua
$$\sim N^k$$

naively can exceed 10^{100}

The Landscape

irsa: 05040051

The Landscape II

- By far the only convincing example where *all* moduli are stabilized is a simple AdS vacuum (with no matter fields!) constructed by Denef et al.
- The naive counting suppresses the D-brane sector which is the phenomenological relevant part:

$$N_{D3} + \sum_{j=1}^{k} n_j^2 = N^2$$

plus additional constraints on 7-branes.

Realistic Models are Rare ...

Phenomenological constraints + internal consistencies impose strong cuts on the landscape.

Heterotic String (e.g., Ovrut et al, ...)

Constructing stable equivariant bundles & computing their cohomology on non-simply connected Calabi-Yau...

Type IIB Flux Vacua (e.g., Marchesano & Shiu, ...)

Constructing magnetized D-branes with torsion K-theory charges in Calabi-Yau orientifolds...

Intersecting D-brane Models (including Gepner orientifolds)

See review by Bluemenhagen et al.

Landscape: what is it good for?

Ashok & Douglas Kachru et al Conlon & Quevedo

Blumenhagen et al

- Terrain by terrain instead of model by model.
- To guide us where to look and where to avoid.

irsa: 05040051

Brane Inflation & Cosmic Strings

Our Brane

Extra
Brane Dvali & Tye KKLMMT

Brane Inflation & Cosmic Strings

Stringy signatures, e.g., gravitational waves, ...

radiation + D strings + F strings

Tye et al Copeland, Myers, Polchinski

irsa: 05040051

Summary

- String Phenomenology ~ 30 year old baby -- too young to be accomplished, too old to be naive.
- Too early for string phenomenology? An inspiring analogy: SM was developed before gauge theories were known to be renormalizable.
- **Spin-off results** (e.g, Calabi-Yau, G2, mirror symmetry, duality, topology change, ...).

Summary II

 Fountain of new ideas/scenarios for particle physics/cosmology:

SUSY: low/high scale, split,

Extra Dimensions: large/small, warp/unwarped,

universal/brane world.

Technicolor: the tip of a KS throat.

and provide a consistent UV completion.

