Title: Cosmological Effective Actions Imply New Physics in the CMB Date: Apr 11, 2005 12:15 PM URL: http://pirsa.org/05040049 Abstract: Pirsa: 05040049 Page 1/49 Expected errors in the C_ℓ spectrum for the WMAP (light blue) and Planck (dark blue) satellites. (Source W. Hu, http://background.chicago.edu/) - Multipole moments of Temperature fluctuations in the CMB - Input: Primordial Gaussian power spectrum - Inflation: - Gaussianity due to quantum fluctuations - Measured fluctuations from $e^{50} e^{40} < t_{end}^{infl}$ - Error: STATISTICS limited (Cosmic Variance) Error bars in the $r=C_2^{Tensor}/C_2^{Scalar}$, n plane for WMAP and Planck. These ellipses show the expected 2σ errors. The lines on the plot show the predictions for various inflaton potentials. Note that these are error bars based on synthetic data: the size of the error is meaningful, but not the location on the plot. The best fit for r and n from real date is likely to be somewhere else on the plot. (Source W. Kinney, astro-ph/9806259, astro-ph/0301448) #### Initial conditions Primordial power spectrum is based on a homogeneous solution to the wave equation $$P(k) = k^3 \langle \phi \phi \rangle \ , \qquad \quad (D^2 - m^2) \langle \phi^2 \rangle = 0 \label{eq:power}$$ - 2nd order PDE ⇒ needs initial conditions! - standard choice: Bunch-Davies state. (only truly justified by observation) - "Transplanckian" problem - Dynamics effectively free (slow roll) - Energy content in P(k) blueshifts towards the past. - Energies occur for which GR is not a valid detheory scription (Long Inflation) in String theory in $\Lambda > 0$ backgrounds? - Transplanckian window of opportunity - \Rightarrow Do present features reflect transplanckian characteristics? #### String Theory/QG and Inflation III - GR is an effective field theory for $p \equiv \frac{\vec{k}}{a(t)} \le M$ - Any new scale. - Do present day cosmological features reflect transplanckian characteristics? - "YES": Bound p(t) = M yields an earliest time (different for each \vec{k}) • Demand that at smallest scale $\left(t_{\vec{k}}^{earliest}\right)$ "recover" flat space (Minkowski vacuum) COSMOLOGICAL VACUUM AMBIGUITY \Rightarrow NEW effects: Expansion in $\frac{H}{M} \left(\sim \frac{10^{14}}{10^{16}} = 1\% \right)$ [Easther, Greene, Kinney, Shiu; Danielsson; Kempf, Niemeyer; ...] - "NO": Effects of high energy physics encoded in <u>irrelevant</u>. <u>higher derivative</u> operators. - · Leading term: $$S^{irr.op.} = \frac{1}{M^2} \int [D_\mu D_\nu \phi D^\mu D^\nu \phi + \ldots]$$ [Kaloper, Kleban, Lawrence, Shenker; ...] • Leading effect of order $\frac{k^2}{a^2M^2} \sim \frac{H^2}{M^2} (\sim 0.01\%)$. (standard vacuum) UNOBSERVABLE ### Relevant Operators - Universal - mildly dependent on $E > M_{new}$ physics #### Potential Irr. Op. • slow roll inflation: ϵ, η phenomenologically determined (non-trivial BG [Shiu, Wasserman,...]) Dynamics [KKLS,... $$S \sim {1 \over M^2} \int D_\mu D_\nu \phi D^\mu D^\nu \phi$$ $p \sim H \Rightarrow { m Effect} ~ {H^2 \over M^2} \sim 0.01\%$ (unobservable) #### Effective Action #### Irrelevant Operators • encode $E > M_{new}$ physics #### Kinetic Irr. Op. • Clear consequence: breakdown of scalar tensor consistency relation (not unique reason) ## Initial Conditions [EGKS,D,KN,...] - Set at time p(t) = M. - Effect $\frac{H}{M} \sim 1\%$. #### String Theory/QG and Inflation III - GR is an effective field theory for $p \equiv \frac{\vec{k}}{a(t)} \le M$ MISNOMER Any new scale. - Do present day cosmological features reflect transplanckian characteristics? - "YES": Bound p(t) = M yields an earliest time (different for each \vec{k}) • Demand that at smallest scale $\left(t_{\vec{k}}^{earliest}\right)$ "recover" flat space (Minkowski vacuum) COSMOLOGICAL VACUUM AMBIGUITY \Rightarrow NEW effects: Expansion in $\frac{H}{M} \left(\sim \frac{10^{14}}{10^{16}} = 1\% \right)$ [Easther, Greene, Kinney, Shiu; Danielsson; Kempf, Niemeyer; ...] - "NO": Effects of high energy physics encoded in <u>irrelevant</u>, <u>higher derivative</u> operators. - · Leading term: $$S^{irr.op.} = \frac{1}{M^2} \int [D_\mu D_\nu \phi D^\mu D^\nu \phi + \ldots]$$ [Kaloper, Kleban, Lawrence, Shenker; ...] • Leading effect of order $\frac{k^2}{a^2M^2} \sim \frac{H^2}{M^2} (\sim 0.01\%)$. (standard vacuum) UNOBSERVABLE ### Relevant Operators - Universal - mildly dependent on $E > M_{new}$ physics #### Potential Irr. Op. • slow roll inflation: ϵ, η phenomenologically determined (non-trivial BG [Shiu, Wasserman,...]) Dynamics [KKLS,... $$S \sim rac{1}{M^2} \int D_\mu D_ u \phi D^\mu D^ u \phi$$ $p \sim H \Rightarrow \; ext{Effect} \; rac{H^2}{M^2} \sim 0.01\%$ (unobservable) #### Effective Action • encode $E > M_{new}$ physics ### Kinetic Irr. Op. • Clear consequence: breakdown of scalar tensor consistency relation (not unique reason) # Initial Conditions [EGKS,D,KN,...] - Set at time p(t) = M. - Effect $\frac{H}{M} \sim 1\%$. - Do present day cosmological features reflect new physics? - Is the effect $\frac{H}{M}$ or $\frac{H^2}{M^2}$? - COSMOLOGICAL VACUUM AMBIGUITY $$E \neq \text{global}$$; $E|\text{vac}\rangle = E_{min}$? - Are non-standard vacua consistent? - PROBLEM: Non-standard vacua in cosmology are difficult to square with decoupling. - tend to be non-local with scale H _ (specific examples) $$\langle vac|T_{\mu\nu}|vac\rangle - T_{\mu\nu}^{Mink,bare}$$ - EXPLICIT EXAMPLES: Vilenkin Ford. Burgess, Cline, Holman; Kaloper, Kaplinghat, ---] Banks Larsen-Einhorn: Brandenberger. KKLS: HOTLY DEBATED EGKS. - Language - Vacuum/Initial state --> Hamiltonian - Effective field theory, Lagrangian Decoupling and symmetries. - Translation - Ham: vacuum \(\Delta \) Lag: boundary conditions - Boundary conditions (Initial states) in QFT_{eff} - Any* b.c. can be incorporated in a boundary action. - The <u>location</u> of this boundary action is <u>arbitrary</u>. - Boundary actions are subject to renormalization group flow. - Apply to Cosmology - Recover known b.c. - Computation of corr. to CMB spectra. - Do present day cosmological features reflect new physics? - Is the effect $\frac{H}{M}$ or $\frac{H^2}{M^2}$? - COSMOLOGICAL VACUUM AMBIGUITY $$E \neq \text{global}$$; $E|\text{vac}\rangle = E_{min}$? - Are non-standard vacua consistent? - PROBLEM: Non-standard vacua in cosmology are difficult to square with decoupling. - tend to be non-local with scale H (specific examples) #### Backreaction $$\langle vac|T_{\mu\nu}|vac\rangle - T_{\mu\nu}^{\mathit{Mink,bare}}$$ diverges. - EXPLICIT EXAMPLES: - suggest they are consistent [Vilenkin Ford, Burgess, Cline, Holman; Kaloper, Kaplinghat, ...] > Einhorn; Brandenberger, KKLS: Banks: Larsen- HOTLY DEBATED EGKS, - Language - Effective field theory, Lagrangian Decoupling and symmetries. - Translation - Ham: vacuum \Leftrightarrow Lag: boundary conditions - Boundary conditions (Initial states) in QFT_{eff} - Any* b.c. can be incorporated in a boundary action. - The <u>location</u> of this boundary action is arbitrary. - Boundary actions are subject to renormalization group flow. - Apply to Cosmology - Recover known b.c. - Computation of corr. to CMB spectra. - Do present day cosmological features reflect new physics? - Is the effect $\frac{H}{M}$ or $\frac{H^2}{M^2}$? - COSMOLOGICAL VACUUM AMBIGUITY $$E \neq \text{global}$$; $E|\text{vac}\rangle = E_{min}$? - Are non-standard vacua consistent? - PROBLEM: Non-standard vacua in cosmology are difficult to square with decoupling. - tend to be non-local with scale H (specific examples) #### Backreaction $$\langle vac|T_{\mu\nu}|vac\rangle - T_{\mu\nu}^{Mink,bare}$$ diverges - EXPLICIT EXAMPLES: - suggest they are consistent [Vilenkin Ford, Burgess, Cline, Holman; Kaloper, Kaplinghat, ...] > Einhorn; Brandenberger, EGKS. HOTLY DEBATED ...] KKLS: Banks: Larsen- - Language - Vacuum/Initial state --> Hamiltonian - Effective field theory, Lagrangian Decoupling and symmetries. - Translation - Ham: vacuum \(\Delta \) Lag: boundary conditions - Boundary conditions (Initial states) in QFT_{eff} - Any* b.c. can be incorporated in a boundary action. - The <u>location</u> of this boundary action is <u>arbitrary</u>. - Boundary actions are subject to renormalization group flow. - Apply to Cosmology - Recover known b.c. - Computation of corr. to CMB spectra. - ANY* b.c. can be incorporated in a boundary action - \bullet QM transition amplitude \longrightarrow path integral. - The LOCATION of this boundary action is arbitrary. - "Symmetry" location ⇔ boundary couplings. - Boundary actions are subject to <u>renormalization</u> group flow. - · Long known • Irrelevant boundary operators homogeneous & isotropic = no intrinsic scale $$S_{bnd} = \oint \left[-\frac{\beta_{\parallel}}{2M} (\partial_i \phi)^2 - \frac{\beta_{\perp}}{2M} (\partial_n \phi)^2 - \frac{\beta_c}{2M} \phi \partial_n^2 \phi \right]$$ - Application in Cosmology - Parameterize Cosmological Vacuum Ambiguity - Any^{*} b.c. is consistent → go beyond Hadamard. - Recover known b.c. - Effects on CMB predictions - Power spectrum $$P = P^{(0)} \left(1 + \frac{f(y_0)}{H} \left[\frac{k^2}{a_0^2 M} (\beta_{\parallel} - \beta_c) + \frac{g(y_0)}{M} (\beta_{\perp} g(y_0) - 3\beta_c H) \right] \right)$$ PHENOMENOLOGICAL backreaction constraints: MILD. Scalar field theory $$S = \int -\frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4$$ $$+ \oint_{90} -\frac{\mu}{2} \phi \partial_n \phi - \frac{\kappa}{2} \phi^2 + \text{non-renorm.}$$ - · Calculus of variations - $(\partial^2 m^2)\phi = \frac{\lambda}{3!}\phi^3$ - $\left(\frac{\mu+2}{2}\right)\partial_n\phi\Big|_{y=y_0} = -\kappa\phi\Big|_{y=y_0}$ - $\bullet \ \mu\phi\partial_n\delta\phi|_{y=y_0}=0$ - Field redefinition $\phi \longrightarrow \phi + \alpha \theta (y - y_0) \phi$ $\kappa' \equiv \kappa + \kappa \left(\alpha + \frac{\alpha^2}{4} \right) + \delta(0) \left(\frac{\alpha^2}{2} - \frac{\mu \alpha \mu \alpha^2}{2} \right)$ $\alpha = \frac{2\mu}{2 - \mu}$ distributions Boundary conditions (all relevant possibilities; Z₂ scalar QFT) $$\partial_n \phi(y_0) = -\kappa' \phi(y_0)$$ MEANING OF "ANY" Solutions to EOM $$(\partial^2 - \omega^2)\phi = 0$$ - \bullet two solutions $\Phi_+;\ \Phi_-=(\Phi_+)^*$ - Boundary conditions $$\partial_n \phi(y_0) = -\kappa \phi(y_0)$$ $\Rightarrow \Phi_{sol} = \Phi_+ + b_\kappa \Phi_-$ $b_\kappa = -\frac{\kappa \Phi_{+,0} + \partial_n \Phi_{+,0}}{\kappa \Phi_{-,0} + \partial_n \Phi_{-,0}}$ for each frequency ω - Freedom of location y_0 . - Initial conditions for 2nd order PDE ⇒ b_κ ⇒ determines physics. $$\begin{array}{ll} y_0 \to y_0 + \xi \\ \kappa \to \kappa + \delta \kappa \end{array} \qquad b_{\kappa + \delta \kappa}(y_0 + \xi) = b_{\kappa}(y_0)$$ - domain independently ⇒ ALL PHYSICS IS INVARIANT* #### RG-flow and boundary conditions - RG: Anything that is not forbidden, WILL happen. - in a bounded space, expect to generate $$S_{bdy}^{counter} = \oint -\frac{\mu}{2} \phi \partial_n \phi - \frac{\kappa}{2} \phi^2$$ • Example $\kappa = 0$ (Neumann) in $\lambda \phi^4$ [Symanzik; Deutsch, Candelas; Barton; ... Many recent arti- cles $$= \lambda \int^{\Lambda} d^4k \frac{1}{k^2 + m^2} + \frac{e^{ik_y(2y_0 - y)}}{\vec{k}^2 + k_y^2 + m^2}$$ $$= \text{bulk} + \lambda \Lambda \delta(y - y_0)$$ ⇒ boundary counterterm (Lorentz invariance broken) Fixed points • $$\beta$$ -function $\beta_{\kappa}^{1-loop} = \lambda \Lambda$ \Rightarrow IR: Dirichlet. - Interpretation - <u>Dressing</u> of initial state $\Rightarrow \text{Vacua} \stackrel{?}{=} \text{fixed pt.}$ - Effective field theory - · Integrating out high energy d.o.f. - ⇒ RG-flow + irrelevant operators (higher derivative corrections). - ⇒ Effective bdy Lagrangian - Z₂ Scalar field theory $$S_{bnd} = \oint \left[-\frac{\beta_4}{2M} \phi^4 - \frac{\beta_\parallel}{2M} (\partial_i \phi)^2 - \frac{\beta_\perp}{2M} (\partial_n \phi)^2 - \frac{\beta_c}{2M} \phi \partial_n^2 \phi \right]$$ - Example: - Two scalars χ , ϕ with $M_{\chi}^2 \gg m_{\phi}^2$. $$S^{int} = -\int g\chi\phi - \oint \gamma\chi\phi$$ • Effective interaction $|k| \ll M_{\chi}$. #### Minkowski boundary conditions, RG-flow and irrelevant corrections - Flat space: VACUUM is unique - Recall $\kappa = -i\omega$ cancels the physical pole. Hence $$G^{\kappa=-i\omega}(x,x') = G^{Mink}(x,x')$$ Thus all divergences are bulk $$\kappa = -i\omega$$ (restores Lorentz) - Irrelevant corrections to Mink vacuum are absent! - Example: $$S^{int} = -\int g\chi\phi - \oint \gamma\chi\phi$$ $\Rightarrow \partial_n\chi_0 = -\kappa\chi_0 - \gamma\phi$ $(\gamma \text{ breaks Lorentz})$ Lorentz symmetry should guarantee that high energy corrections to low-energy Minkowski boundary conditions are absent - Cosmology preview: - * EFT Rule: everything that is allowed by the symmetries ought to be considered. #### Boundary conditions in Cosmological Lagrangians - Preliminaries - FRW in conformal gauge $$ds^2=a^2(\eta)(-d\eta^2+dx_3^2)$$ • Restrict attention to de Sitter $$a = -\frac{1}{H\eta}$$, $\frac{\partial H}{\partial \eta} = 0$ - (easily generalized to power-law and slow-roll inflation) - Solution to field equation Hankel function $\Phi_{+} = (-\vec{k}\eta)^{3/2} \sqrt{\frac{\pi}{4\vec{k}}} \left(\frac{H}{\vec{k}}\right) \vec{\mathcal{H}}_{\nu}(-\vec{k}\eta)$ $$\nu = \sqrt{\frac{(d-1)^2}{4} - \frac{m^2}{H^2}}$$ • Subtlety: boundary condition $$\partial_n \phi | = -\kappa \phi | \Rightarrow \frac{1}{a(\eta_0)} \partial_\eta \phi(\eta_0) = -\kappa \phi(\eta_0)$$ #### Harmonic oscillator and shortest length b.c. - Covariantize Minkowski (harm. osc.) boundary conditions - Recall $\kappa_M = -i\omega = -i\sqrt{\vec{k}^2 + m^2}$ - In FRW $\kappa_{HO} = -i\sqrt{\frac{\vec{k}^2}{a_0^2} + m^2}$ $$h^{ij}\partial_i\partial_j$$ with $h_{ij} = g_{\mu\nu}\partial_i x^{\mu}\partial_j x^{nu}$ - Shortest length boundary conditions - Impose κ_{HO} at earliest time $\frac{|\vec{k}|}{a} = M$ $\Big)$ $a = \frac{-1}{H\eta}$ \Rightarrow momentum-dependent location $\eta_0 = -\frac{M}{H|\vec{k}|}$ - Physically relevant parameter $$b_{\kappa_{SL}} = \text{constant} = \frac{H}{2M} e^{2i\frac{M}{H}} + \dots$$ <u>Nicer</u> interpretation (in boundary EFT formalism) $b_{\kappa_{SL}}$ follows from a momentum-independent boundary location η' with boundary coupling $$\kappa_{SL} = -\frac{\partial_n \Phi_+(\eta_0') + b_{SL} \partial_n \Phi_-(\eta_0')}{\Phi_+(\eta_0') + b_{SL} \Phi_-(\eta_0')}$$ - Bunch-Davies boundary conditions - Reproduce $G^{Mink}(x,x')$ for $\frac{|\vec{k}|}{a} \gg H$. - In our basis: $b_{\kappa_{BD}} = 0$. $$\kappa_{BD} = -\frac{\partial_n \Phi_+(\eta_0)}{\Phi_+(\eta_0)}$$ • For very high momenta $\frac{|\vec{k}|}{a} \gg H$. $$\lim_{|\vec{k}|/aH \to \infty} \kappa_{BD}(\vec{k}) = \kappa_{Mink}(\vec{k})$$ - Adiabatic, transparent, thermal b.c.; fixed point of bdy RG-flow. - Adiabatic: Number operator changes slowest under cosmic evolution - Transparent: Notion of in- and out-going waves - Thermal: cosmic horizon - Fixed points of boundary RG-flow! · Leading irrelevant operators $$S_{bnd} = \oint \left[-\frac{\beta_{\parallel}}{2M} (\partial_i \phi)^2 - \frac{\beta_{\perp}}{2M} (\partial_n \phi)^2 - \frac{\beta_c}{2M} \phi D_n \partial_n \phi \right]$$ Two terms with normal derivatives ⇒ can be removed by field redefinition $$\kappa_{eff} = \kappa_0 + \frac{\vec{k}^2}{a_0^2 M} (\beta_{\parallel} - \beta_c) + \frac{\kappa_0^2}{M} \beta_{\perp} - \frac{3\kappa_0 H}{M} \beta_c$$ • Power spectrum of density fluctuations ≡ Spontaneous pair creation from the vacuum $$\begin{split} P^{0 \rightarrow 2 \phi} \; &= \; \overbrace{\hspace{1cm}} \\ &= \; \mathbf{Im} \langle \phi(t) \phi(t) \rangle \\ &= \; \frac{k^3 \; |\Phi_+ + b_{\kappa_{eff}} \Phi_-|^2}{2 \pi^2 \; \; 1 - |b_{\kappa_{eff}}|^2} \end{split}$$ Perturbation theory around Bunch-Davies phenomenological input Feynman diagrams $$\delta P = \text{Im}$$ \bullet Corrections to Power spectrum Corrections to Power spectrum $$\left(y_0 = \frac{k}{a_0 H} \right)$$ $$P = P_{BD} \left(1 - \frac{\pi}{4H} \left[\frac{\mathcal{H}_{\nu}(y_0)}{i} (\kappa_{eff} - \kappa_{BD}) + \text{c.c.} \right] \right)$$ $$\kappa_{eff} = \kappa_{BD} + \frac{\vec{k}^2}{a_0^2 M} (\beta_{\parallel} - \beta_c) + \frac{\kappa_{BD}^2}{M} \beta_{\perp} - \frac{3\kappa_{BD} H}{M} \beta_c$$ · Corrections suppressed by single power of the new scale M. $$\delta P \sim \frac{H}{M} \sim 0.01 P$$ - · Boundary conditions parameterize vacuum ambiguity - · Harmonic oscillator b.c. $$\kappa_{HO} = -i \sqrt{\frac{\kappa^2}{a_0^2} + m^2}$$ · Shortest length b.c. $$b_{SL} = \text{constant} \sim \frac{H}{2M}$$ · Bunch-Davies b.c. $$\kappa_{BD} = -\frac{\partial_n \Phi_+(\eta_0)}{\Phi_+(\eta_0)}$$ - · Adiabatic, thermal, transparent; fixed pts. ... - Corrections to CMB spectra $$P = P_{BD} \left(1 - \frac{\pi}{4H} \left[\frac{\mathcal{H}_{\nu}(y_0)}{i} (\kappa_{eff} - \kappa_{BD}) + \text{c.c.} \right] \right)$$ $$\simeq P_{BD} \left(1 + \frac{\beta k}{a_0 M} \sin(2\frac{k}{a_0 H}) \right)$$ CORRECTIONS OF ORDER $H/M \sim 1\%$ FROM UNKNOWN UV PHYSICS - · Boundary conditions parameterize vacuum ambiguity - · Harmonic oscillator b.c. $$\kappa_{HO} = -i \sqrt{\frac{\kappa^2}{a_0^2} + m^2}$$ Shortest length b.c. $$b_{SL} = \text{constant} \sim \frac{H}{2M}$$ · Bunch-Davies b.c. $$\kappa_{BD} = -\frac{\partial_n \Phi_+(\eta_0)}{\Phi_+(\eta_0)}$$ - Adiabatic, thermal, transparent; fixed pts, ... - Corrections to CMB spectra $$P = P_{BD} \left(1 - \frac{\pi}{4H} \left[\frac{\mathcal{H}_{\nu}(y_0)}{i} (\kappa_{eff} - \kappa_{BD}) + \text{c.c.} \right] \right)$$ $$\simeq P_{BD} \left(1 + \frac{\beta k}{a_0 M} \sin(2\frac{k}{a_0 H}) \right)$$ CORRECTIONS OF ORDER $H/M \sim 1\%$ FROM UNKNOWN <u>UV</u> PHYSICS - Conventional wisdom: - In a gravitational background, zero-point energy has to be renormalized away: $$\langle T^{ren}_{\mu\nu} \rangle \; = \; \langle T^{bare}_{\mu\nu} \rangle - T^{counter}_{\mu\nu}$$ \bullet In flat space $|\vec{k}|\gg H)$, we know the counterterm: $$T_{\mu\nu}^{counter} = T_{\mu\nu}^{Mink}$$ ⇒ Only those vacua for which $$\langle T_{\mu\nu}^{bare} \rangle - T_{\mu\nu}^{Mink} = \boxed{\text{finite}}$$ are consistent. Hadamard condition - QFT with Initial states - New divergences, <u>but</u> all are located on the boundary. - ⇒ dress the initial state. - For $\vec{k}/a \gg H$, $$\Phi_{\pm,dS} \longrightarrow \Phi_{\pm,Mink}$$ then $$\lim_{\vec{k}/aH\to\infty} b_{\kappa} = -\frac{a_0\kappa + i\vec{k} + a_0H}{a_0\kappa - i\vec{k} + a_0H}e^{2i\vec{k}\eta_0}$$ \Rightarrow should subtract Mink divergences with κ the same. #### Backreaction: Phenomenological constraints in cosmology - No backreaction problems for κ_{BD} (Bunch-Davies) - Hadamard --- by definition [...; Birrell, Davies; ...] - Ought to be no problem for $\kappa_{BD} + \Delta \kappa_{relevant}$ - New divergences viz. κ_{BD} - \bullet New boundary couplings κ can absord divergences - · Finite ambiguity fixed by ren. prescription Observation! \bullet Here we wish to know $\kappa_{BD} + \Delta \kappa_{irrelevant}.$ $$\Delta \kappa_{irr} = \frac{\beta k^2}{a_0^2 M}$$ - irrelevant → non-renormalizable! - not subject to ambiguities - ⇒ PHENOMENOLOGICAL CONSTRAINTS #### Backreaction: Phenomenological constraints in cosmology - No backreaction problems for κ_{BD} (Bunch-Davies) - Hadamard ---- by definition [...; Birrell, Davies; ...] - \bullet Ought to be no problem for $\kappa_{BD} + \Delta \kappa_{relevant}$ - New divergences viz. κ_{BD} - \bullet New boundary couplings κ can absord divergences - · Finite ambiguity fixed by ren. prescription Observation! \bullet Here we wish to know $\kappa_{BD} + \Delta \kappa_{irrelevant}.$ $$\Delta \kappa_{irr} = \frac{\beta k^2}{a_0^2 M}$$ - irrelevant → non-renormalizable! - not subject to ambiguities - ⇒ PHENOMENOLOGICAL CONSTRAINTS • 1-loop stress tensor $$\Delta T_{bulk} \; \sim \; \int dk \; k \; \delta P(k)$$ $\Delta T_{boundary} \sim \text{UNMEASURABLE}$ • First-order correction (in $\delta \kappa$) $$\Delta T_{bulk} \sim \frac{\beta}{M a_0 a^4} \int dk k^4 \sin(2k(\eta - \eta_0)) e^{-\frac{k^2}{2M^2}}$$ $\sim M^4 e^{-2M^2(\eta - \eta_0)^2}$ - FINITE: as $M \to \infty$, except when $\eta = \eta_0$ - LOCALIZED: on $\eta = \eta_0$ within the cut-off scale M. - MIXES: with unobservable $\Delta T_{boundary}$ - • 1-loop second-order (in $\delta \kappa$) backreaction $$\Delta T_{bulk}^{(2)} = \frac{1}{3(4\pi)^2} \beta^2 M^4 e^{-4H(\eta - \eta_0)} + \dots$$ Hubble Scale - survives to affect bulk physics ⇒ MEASURABLE - · Energy content of the initial state - characteristic scaling of E (redshift) - initial state is non-adiabatic - PHENOMENOLOGICAL constraints on β. - Energy density $$\Delta T \leq 3H^2M_p^2 \quad \Leftrightarrow \ \beta^2 \leq (12\pi)^2 \frac{M_p^2H^2}{M^4}$$ · Inflationary phase preserved $$\epsilon = \frac{-\dot{T}_{00}}{HT_{00}} \le 1 \quad \Leftrightarrow \quad \beta^2 \le 2(6\pi)^2 \frac{M_p^2 H^2}{M^4}$$ Nearly scale invariant perturbations $$2\epsilon \eta_2 + \epsilon^2 \equiv \frac{\ddot{T}_{00}}{H^2 T} \ll 2 \iff \beta^2 \le (6\pi)^2 \frac{M_p^2 H^2}{M^4}$$ ## COSMO - CALISTHENICS caloisothenoics: noun rythmic exercises without apparatus - Characteristic signature initial state effects - · Mode "mixing" $$\phi(k) = \Phi_+(k) + b(k)\Phi_-(k)$$ · results in oscillations $$\delta P = P_{BD} (b(k) + b^*(k))$$ = $P_{BD}|b(k) \cos \alpha(k)$ - Boundary EFT - · Symmetries: homogeneity and isotropy $$b(k) \; = \; \left[ia_0^3\Phi_{+,0}^2\right] \left(\frac{\beta k^2}{a_0^2M}\right)$$ - Shortest length b.c. (NPH) - Symmetries: homogeneity, isotropy <u>and</u> "scale" invariance $$b(k) = -i\frac{\tilde{\beta}H(k)}{2M}e^{-2i\frac{M}{H(k)}}$$ - A. Generic change in the power spectrum from initial state effects as deduced with boundary EFT. - B. A refined estimate of the sensitivity of the CMB to new physics. - A. Generic change in the power spectrum from initial state effects as deduced with boundary EFT. - B. A refined estimate of the sensitivity of the CMB to new physics. | | BEFT | SL-NPH II | |-----------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------| | Power Spectrum | $\delta P = P_{BD} \left(\mathcal{A}k \sin\left(\frac{2\pi k}{\mathcal{C}}\right) \right)$ | $\delta P = P_{BD} \left(A \sin \left(\frac{2\pi}{C} \ln \frac{k}{k_{ptv}} \right) \right)$ | | Amplitude | $A = \frac{\beta}{a_0 M}$ | $A = \tilde{\beta} \frac{H}{M}$ | | Period | $\Delta k = \mathcal{C} = \pi a_0 H$ | $\Delta \ln \frac{k}{k_{piv}} = C = \frac{\pi H}{M \epsilon_H}$ | | # of Osc. | $\mathcal{N} \leq \frac{M}{\pi H}$ | $N \simeq \epsilon_H \frac{M}{\pi H} \ln \frac{k_{max}}{k_{min}}$ | | Ratio of scales | $\mathcal{A} \cdot \Delta k = \frac{\beta}{H} M$ | $A = \tilde{\beta} \frac{H}{M} , \frac{\epsilon_H C}{\pi} = \frac{H}{M}$ | - BEFT bound $k_{max} < a_0 M$ $\Rightarrow k_{max} < \pi M C / H$ - Qualitative difference = Symmetries - Linear BEFT vs. Log SL-NPH periodicity - Preliminary studies (SL-NPH) - Observable if $\frac{\beta H}{M} \sim 1\%$. [Bergstrom, Danielsson; Elgaroy, Hannestad; Okamoto, Lim; Martin, Ringeval; Sriramkuma Padmanabda Easther, Kinney, Peiris] A. The modified perturbation spectrum $P(\vec{k})$ (for a power-law inflationary model) as a function of the momentum for a nearly "scale invariant" change in the initial conditions compared to Bunch-Davies. B. The percentage change in the observed spherical harmonic coefficients C_{ℓ} , $P(|\vec{k}|, \theta, \phi) = \sum_{\ell, m} C_{\ell}(|\vec{k}|) Y_{m}^{\ell}(\theta, \phi)$ for a canonical cosmological constant cold dark matter model. (Source Easther et.al. hep-th/0110226) A. The modified perturbation spectrum $P(\vec{k})$ (for a power-law inflationary model) as a function of the momentum for a nearly "scale invariant" change in the initial conditions compared to Bunch-Davies. B. The percentage change in the observed spherical harmonic coefficients C_{ℓ} , $P(|\vec{k}|, \theta, \phi) = \sum_{\ell, m} C_{\ell}(|\vec{k}|) Y_{m}^{\ell}(\theta, \phi)$ for a canonical cosmological constant cold dark matter model. (Source Easther et.al. hep-th/0110226) ## Initial states on Effective Field Theory - Theoretically <u>controlled</u> boundary action formalism: location of boundary arbitrary. - Scaling behaviour: boundary RG-flow - dressing of initial state: - preferred b.c. are RG-fixed points. ## Application to Cosmology - Parametrize the cosmological vacuum ambiguity - Preference? Bunch-Davies, transparent, adiabatic, thermal, etc. - Generically receive H/M corrections! - Parameters encoding initial data are <u>phenomenologically</u> constrained. - Connections with holography? de Sitter is conjectured to have a <u>dual</u> boundary theory - <u>Earliest time</u> in cosmology - ⇒ "guarantee" irrelevant boundary corrections. - Are leading bdy. irr. op. contributions decipherable in CMB data? If $H/M \simeq 1\% \Leftrightarrow$ primordial gravity waves observed, then initial state effects in the CMB due to \underline{UV} physics are (potentially) observable - A. Generic change in the power spectrum from initial state effects as deduced with boundary EFT. - B. A refined estimate of the sensitivity of the CMB to new physics. - Characteristic signature initial state effects - · Mode "mixing" $$\phi(k) = \Phi_+(k) + b(k)\Phi_-(k)$$ · results in oscillations $$\delta P = P_{BD}(b(k) + b^*(k))$$ = $P_{BD}|b(k)\cos\alpha(k)$ - Boundary EFT - Symmetries: homogeneity and isotropy $$b(k) = \left[ia_0^3 \Phi_{+,0}^2\right] \left(\frac{\beta k^2}{a_0^2 M}\right)$$ - Shortest length b.c. (NPH) - Symmetries: homogeneity, isotropy <u>and</u> "scale" invariance $$b(k) \; = \; -i \frac{\tilde{\beta} H(k)}{2M} e^{-2i \frac{M}{H(k)}} \label{eq:bk}$$ | | BEFT | SL-NPH | |-----------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------| | Power Spectrum | $\delta P = P_{BD} \left(\mathcal{A}k \sin \left(\frac{2\pi k}{\mathcal{C}} \right) \right)$ | $\delta P = P_{BD} \left(A \sin \left(\frac{2\pi}{C} \ln \frac{k}{k_{ptv}} \right) \right)$ | | Amplitude | $A = \frac{\beta}{a_0 M}$ | $A = \tilde{\beta} \frac{H}{M}$ | | Period | $\Delta k = C = \pi a_0 H$ | $\Delta \ln \frac{k}{k_{ptv}} = C = \frac{\pi H}{M \epsilon_H}$ | | # of Osc. | $\mathcal{N} \leq rac{M}{\pi H}$ | $N \simeq \epsilon_H rac{M}{\pi H} \ln rac{k_{max}}{k_{min}}$ | | Ratio of scales | $\mathcal{A} \cdot \Delta k = \frac{\beta}{H} M$ | $A = \tilde{\beta} \frac{H}{M} , \frac{\epsilon_H C}{\pi} = \frac{H}{M}$ | - BEFT bound $k_{max} < a_0 M$ $\Rightarrow k_{max} < \pi M C / H$ - Qualitative difference Symmetries - \bullet Linear_{BEFT} vs. Log_{SL-NPH} periodicity - Preliminary studies (SL-NPH) - Observable if $\frac{\beta H}{M} \sim 1\%$. [Bergstrom, Danielsson; Elgaroy, Hannestad; Okamoto, Lim; Martin, Ringeval; Sriramkuma Padmanabda Easther, Kinney, Peiris] A. The modified perturbation spectrum $P(\vec{k})$ (for a power-law inflationary model) as a function of the momentum for a nearly "scale invariant" change in the initial conditions compared to Bunch-Davies. B. The percentage change in the observed spherical harmonic coefficients C_{ℓ} , $P(|\vec{k}|, \theta, \phi) = \sum_{\ell, m} C_{\ell}(|\vec{k}|) Y_{m}^{\ell}(\theta, \phi)$ for a canonical cosmological constant cold dark matter model. (Source Easther et.al. hep-th/0110226) - Characteristic signature initial state effects - · Mode "mixing" $$\phi(k) = \Phi_+(k) + b(k)\Phi_-(k)$$ · results in oscillations $$\delta P = P_{BD} (b(k) + b^*(k))$$ = $P_{BD}|b(k) \cos \alpha(k)$ - Boundary EFT - Symmetries: homogeneity and isotropy $$b(k) = \left[ia_0^3 \Phi_{+,0}^2\right] \left(\frac{\beta k^2}{a_0^2 M}\right)$$ - Shortest length b.c. (NPH) - Symmetries: homogeneity, isotropy <u>and</u> "scale" invariance $$b(k) = -i\frac{\tilde{\beta}H(k)}{2M}e^{-2i\frac{M}{H(k)}}$$ • 1-loop second-order (in $\delta \kappa$) backreaction $$\Delta T_{bulk}^{(2)} = \frac{1}{3(4\pi)^2} \beta^2 M^4 e^{-4H(\eta - \eta_0)} + \dots$$ Hubble Scale - survives to affect bulk physics ⇒ MEASURABLE - · Energy content of the initial state - characteristic scaling of E (redshift) - initial state is non-adiabatic - PHENOMENOLOGICAL constraints on β. - Energy density $$\Delta T \leq 3H^2M_p^2 \quad \Leftrightarrow \ \beta^2 \leq (12\pi)^2 \frac{M_p^2H^2}{M^4}$$ · Inflationary phase preserved $$\epsilon = \frac{-\dot{T}_{00}}{HT_{00}} \le 1 \quad \Leftrightarrow \quad \beta^2 \le 2(6\pi)^2 \frac{M_p^2 H^2}{M^4}$$ Nearly scale invariant perturbations $$2\epsilon \eta_2 + \epsilon^2 \equiv \frac{\ddot{T}_{00}}{H^2 T} \ll 2 \iff \beta^2 \le (6\pi)^2 \frac{M_p^2 H^2}{M^4}$$ - Conventional wisdom: - In a gravitational background, zero-point energy has to be renormalized away: $$\langle T^{ren}_{\mu\nu} \rangle \; = \; \langle T^{bare}_{\mu\nu} \rangle - T^{counter}_{\mu\nu}$$ \bullet In flat space $|\vec{k}|\gg H)$, we know the counterterm: $$T_{\mu\nu}^{counter} = T_{\mu\nu}^{Mink}$$ ⇒ Only those vacua for which $$\langle T_{\mu\nu}^{bare} \rangle - T_{\mu\nu}^{Mink} = \boxed{\text{finite}}$$ are consistent. Hadamard condition - QFT with Initial states - <u>New</u> divergences, <u>but</u> all are located on the boundary. - ⇒ dress the initial state. - For $\vec{k}/a \gg H$, $$\Phi_{\pm,dS} \longrightarrow \Phi_{\pm,Mink}$$ then $$\lim_{\vec{k}/aH\to\infty} b_{\kappa} = -\frac{a_0\kappa + i\vec{k} + a_0H}{a_0\kappa - i\vec{k} + a_0H}e^{2i\vec{k}\eta_0}$$ \Rightarrow should subtract Mink divergences with κ the same. • Leading irrelevant operators $$S_{bnd} = \oint \left[-\frac{\beta_{\parallel}}{2M} (\partial_i \phi)^2 - \frac{\beta_{\perp}}{2M} (\partial_n \phi)^2 - \frac{\beta_c}{2M} \phi D_n \partial_n \phi \right]$$ Two terms with normal derivatives ⇒ can be removed by field redefinition $$\kappa_{eff} = \kappa_0 + \frac{\vec{k}^2}{a_0^2 M} (\beta_{\parallel} - \beta_c) + \frac{\kappa_0^2}{M} \beta_{\perp} - \frac{3\kappa_0 H}{M} \beta_c$$ • Power spectrum of density fluctuations ≡ Spontaneous pair creation from the vacuum $$\begin{split} P^{0\rightarrow2\phi} &= & & \\ &= & & \\ &= & & \\ &= & \\ \frac{k^3}{2\pi^2} \frac{|\Phi_+ + b_{\kappa_{eff}}\Phi_-|^2}{1 - |b_{\kappa_{eff}}|^2} \end{split}$$ · Leading irrelevant operators $$S_{bnd} = \oint \left[-\frac{\beta_{\parallel}}{2M} (\partial_i \phi)^2 - \frac{\beta_{\perp}}{2M} (\partial_n \phi)^2 - \frac{\beta_c}{2M} \phi D_n \partial_n \phi \right]$$ Two terms with normal derivatives ⇒ can be removed by field redefinition $$\kappa_{eff} = \kappa_0 + \frac{\vec{k}^2}{a_0^2 M} (\beta_{\parallel} - \beta_c) + \frac{\kappa_0^2}{M} \beta_{\perp} - \frac{3\kappa_0 H}{M} \beta_c$$ ullet Power spectrum of density fluctuations \equiv Spontaneous pair creation from the vacuum $$\begin{split} P^{0\rightarrow2\phi} &= & & \\ &= & \mathbf{Im}\langle\phi(t)\phi(t)\rangle \\ &= & \frac{k^3}{2\pi^2}\frac{|\Phi_+ + b_{\kappa_{eff}}\Phi_-|^2}{1 - |b_{\kappa_{eff}}|^2} \end{split}$$