Title: Cosmological Effective Actions Imply New Physics in the CMB

Date: Apr 11, 2005 12:15 PM

URL: http://pirsa.org/05040049

Abstract:

Pirsa: 05040049 Page 1/49



Expected errors in the  $C_\ell$  spectrum for the WMAP (light blue) and Planck (dark blue) satellites. (Source W. Hu, http://background.chicago.edu/)

- Multipole moments of Temperature fluctuations in the CMB
  - Input: Primordial Gaussian power spectrum
  - Inflation:
    - Gaussianity due to quantum fluctuations
    - Measured fluctuations from  $e^{50} e^{40} < t_{end}^{infl}$
- Error: STATISTICS limited (Cosmic Variance)



Error bars in the  $r=C_2^{Tensor}/C_2^{Scalar}$ , n plane for WMAP and Planck. These ellipses show the expected  $2\sigma$  errors. The lines on the plot show the predictions for various inflaton potentials. Note that these are error bars based on synthetic data: the size of the error is meaningful, but not the location on the plot. The best fit for r and n from real date is likely to be somewhere else on the plot. (Source W. Kinney, astro-ph/9806259, astro-ph/0301448)

#### Initial conditions

Primordial power spectrum is based on a homogeneous solution to the wave equation

$$P(k) = k^3 \langle \phi \phi \rangle \ , \qquad \quad (D^2 - m^2) \langle \phi^2 \rangle = 0 \label{eq:power}$$

- 2nd order PDE ⇒ needs initial conditions!
- standard choice: Bunch-Davies state.

(only truly justified by observation)

- "Transplanckian" problem
  - Dynamics effectively free (slow roll)
  - Energy content in P(k) blueshifts towards the past.
  - Energies occur for which GR is not a valid detheory scription (Long Inflation) in

String
theory
in  $\Lambda > 0$ backgrounds?

- Transplanckian window of opportunity
- $\Rightarrow$  Do present features reflect transplanckian characteristics?

#### String Theory/QG and Inflation III

- GR is an effective field theory for  $p \equiv \frac{\vec{k}}{a(t)} \le M$ 
  - Any new scale.
- Do present day cosmological features reflect transplanckian characteristics?
- "YES": Bound p(t) = M yields an earliest time

(different for each  $\vec{k}$ )

• Demand that at smallest scale  $\left(t_{\vec{k}}^{earliest}\right)$  "recover" flat space (Minkowski vacuum)

COSMOLOGICAL VACUUM AMBIGUITY

 $\Rightarrow$  NEW effects: Expansion in  $\frac{H}{M} \left( \sim \frac{10^{14}}{10^{16}} = 1\% \right)$ 

[Easther, Greene, Kinney, Shiu; Danielsson; Kempf, Niemeyer; ...]

- "NO": Effects of high energy physics encoded in <u>irrelevant</u>.
   <u>higher derivative</u> operators.
  - · Leading term:

$$S^{irr.op.} = \frac{1}{M^2} \int [D_\mu D_\nu \phi D^\mu D^\nu \phi + \ldots]$$

[Kaloper, Kleban, Lawrence, Shenker; ...]

• Leading effect of order  $\frac{k^2}{a^2M^2} \sim \frac{H^2}{M^2} (\sim 0.01\%)$ . (standard vacuum)

UNOBSERVABLE

### Relevant Operators

- Universal
- mildly dependent on  $E > M_{new}$  physics

#### Potential Irr. Op.

• slow roll inflation:  $\epsilon, \eta$  phenomenologically determined

(non-trivial BG [Shiu, Wasserman,...])

Dynamics

[KKLS,...

$$S \sim {1 \over M^2} \int D_\mu D_\nu \phi D^\mu D^\nu \phi$$
  $p \sim H \Rightarrow {
m Effect} ~ {H^2 \over M^2} \sim 0.01\%$  (unobservable)

#### Effective Action

#### Irrelevant Operators

• encode  $E > M_{new}$  physics

#### Kinetic Irr. Op.

• Clear consequence: breakdown of scalar tensor consistency relation (not unique reason)

## Initial Conditions [EGKS,D,KN,...]

- Set at time p(t) = M.
- Effect  $\frac{H}{M} \sim 1\%$ .

#### String Theory/QG and Inflation III

- GR is an effective field theory for  $p \equiv \frac{\vec{k}}{a(t)} \le M$  MISNOMER Any new scale.
- Do present day cosmological features reflect transplanckian characteristics?
- "YES": Bound p(t) = M yields an earliest time

(different for each  $\vec{k}$ )

• Demand that at smallest scale  $\left(t_{\vec{k}}^{earliest}\right)$  "recover" flat space (Minkowski vacuum)

COSMOLOGICAL VACUUM AMBIGUITY

 $\Rightarrow$  NEW effects: Expansion in  $\frac{H}{M} \left( \sim \frac{10^{14}}{10^{16}} = 1\% \right)$ 

[Easther, Greene, Kinney, Shiu; Danielsson; Kempf, Niemeyer; ...]

- "NO": Effects of high energy physics encoded in <u>irrelevant</u>, <u>higher derivative</u> operators.
  - · Leading term:

$$S^{irr.op.} = \frac{1}{M^2} \int [D_\mu D_\nu \phi D^\mu D^\nu \phi + \ldots]$$

[Kaloper, Kleban, Lawrence, Shenker; ...]

• Leading effect of order  $\frac{k^2}{a^2M^2} \sim \frac{H^2}{M^2} (\sim 0.01\%)$ . (standard vacuum)



UNOBSERVABLE

### Relevant Operators

- Universal
- mildly dependent on  $E > M_{new}$  physics

#### Potential Irr. Op.

• slow roll inflation:  $\epsilon, \eta$  phenomenologically determined

(non-trivial BG [Shiu, Wasserman,...])

Dynamics

[KKLS,...

$$S \sim rac{1}{M^2} \int D_\mu D_
u \phi D^\mu D^
u \phi$$
  $p \sim H \Rightarrow \; ext{Effect} \; rac{H^2}{M^2} \sim 0.01\%$  (unobservable)

#### Effective Action



• encode  $E > M_{new}$  physics

### Kinetic Irr. Op.

• Clear consequence: breakdown of scalar tensor consistency relation (not unique reason)

# Initial Conditions [EGKS,D,KN,...]

- Set at time p(t) = M.
- Effect  $\frac{H}{M} \sim 1\%$ .

- Do present day cosmological features reflect new physics?
  - Is the effect  $\frac{H}{M}$  or  $\frac{H^2}{M^2}$ ?
  - COSMOLOGICAL VACUUM AMBIGUITY

$$E \neq \text{global}$$
;  $E|\text{vac}\rangle = E_{min}$ ?

- Are non-standard vacua consistent?
  - PROBLEM: Non-standard vacua in cosmology are difficult to square with decoupling.
    - tend to be non-local with scale H

\_ (specific examples)

$$\langle vac|T_{\mu\nu}|vac\rangle - T_{\mu\nu}^{Mink,bare}$$

- EXPLICIT EXAMPLES:

Vilenkin Ford. Burgess, Cline, Holman; Kaloper, Kaplinghat, ---]

Banks Larsen-Einhorn: Brandenberger.

KKLS:

HOTLY DEBATED

....

EGKS.

- Language
  - Vacuum/Initial state --> Hamiltonian
  - Effective field theory, Lagrangian
     Decoupling and symmetries.
- Translation
  - Ham: vacuum \( \Delta \) Lag: boundary conditions
- Boundary conditions (Initial states) in QFT<sub>eff</sub>
  - Any\* b.c. can be incorporated in a boundary action.
  - The <u>location</u> of this boundary action is <u>arbitrary</u>.
  - Boundary actions are subject to renormalization group flow.
  - Apply to Cosmology
    - Recover known b.c.
    - Computation of corr. to CMB spectra.

- Do present day cosmological features reflect new physics?
  - Is the effect  $\frac{H}{M}$  or  $\frac{H^2}{M^2}$ ?
  - COSMOLOGICAL VACUUM AMBIGUITY

$$E \neq \text{global}$$
;  $E|\text{vac}\rangle = E_{min}$ ?

- Are non-standard vacua consistent?
  - PROBLEM: Non-standard vacua in cosmology are difficult to square with decoupling.
    - tend to be non-local with scale H (specific examples)

#### Backreaction

$$\langle vac|T_{\mu\nu}|vac\rangle - T_{\mu\nu}^{\mathit{Mink,bare}}$$

diverges.

- EXPLICIT EXAMPLES:
  - suggest they are consistent

[Vilenkin Ford, Burgess, Cline, Holman; Kaloper, Kaplinghat, ...]

> Einhorn; Brandenberger,

KKLS:

Banks:

Larsen-

HOTLY DEBATED

EGKS,

- Language

  - Effective field theory, Lagrangian
     Decoupling and symmetries.
- Translation
  - Ham: vacuum  $\Leftrightarrow$  Lag: boundary conditions
- Boundary conditions (Initial states) in QFT<sub>eff</sub>
  - Any\* b.c. can be incorporated in a boundary action.
  - The <u>location</u> of this boundary action is arbitrary.
  - Boundary actions are subject to renormalization group flow.
  - Apply to Cosmology
    - Recover known b.c.
    - Computation of corr. to CMB spectra.

- Do present day cosmological features reflect new physics?
  - Is the effect  $\frac{H}{M}$  or  $\frac{H^2}{M^2}$ ?
  - COSMOLOGICAL VACUUM AMBIGUITY

$$E \neq \text{global}$$
;  $E|\text{vac}\rangle = E_{min}$ ?

- Are non-standard vacua consistent?
  - PROBLEM: Non-standard vacua in cosmology are difficult to square with decoupling.
    - tend to be non-local with scale H (specific examples)

#### Backreaction

$$\langle vac|T_{\mu\nu}|vac\rangle - T_{\mu\nu}^{Mink,bare}$$

diverges

- EXPLICIT EXAMPLES:
  - suggest they are consistent

[Vilenkin Ford, Burgess, Cline, Holman; Kaloper, Kaplinghat, ...]

> Einhorn; Brandenberger, EGKS.

HOTLY DEBATED

...]

KKLS:

Banks:

Larsen-

- Language
  - Vacuum/Initial state --> Hamiltonian
  - Effective field theory, Lagrangian Decoupling and symmetries.
- Translation
  - Ham: vacuum \( \Delta \) Lag: boundary conditions
- Boundary conditions (Initial states) in QFT<sub>eff</sub>
  - Any\* b.c. can be incorporated in a boundary action.
  - The <u>location</u> of this boundary action is <u>arbitrary</u>.
  - Boundary actions are subject to renormalization group flow.
  - Apply to Cosmology
    - Recover known b.c.
    - Computation of corr. to CMB spectra.

- ANY\* b.c. can be incorporated in a boundary action
  - $\bullet$  QM transition amplitude  $\longrightarrow$  path integral.
- The LOCATION of this boundary action is arbitrary.
  - "Symmetry" location 
     ⇔ boundary couplings.
- Boundary actions are subject to <u>renormalization</u> group flow.
  - · Long known

• Irrelevant boundary operators

homogeneous &
isotropic
= no intrinsic scale

$$S_{bnd} = \oint \left[ -\frac{\beta_{\parallel}}{2M} (\partial_i \phi)^2 - \frac{\beta_{\perp}}{2M} (\partial_n \phi)^2 - \frac{\beta_c}{2M} \phi \partial_n^2 \phi \right]$$

- Application in Cosmology
  - Parameterize Cosmological Vacuum Ambiguity
  - Any<sup>\*</sup> b.c. is consistent → go beyond Hadamard.
  - Recover known b.c.
- Effects on CMB predictions
  - Power spectrum

$$P = P^{(0)} \left( 1 + \frac{f(y_0)}{H} \left[ \frac{k^2}{a_0^2 M} (\beta_{\parallel} - \beta_c) + \frac{g(y_0)}{M} (\beta_{\perp} g(y_0) - 3\beta_c H) \right] \right)$$

PHENOMENOLOGICAL backreaction constraints:

MILD.

Scalar field theory

$$S = \int -\frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4$$
$$+ \oint_{90} -\frac{\mu}{2} \phi \partial_n \phi - \frac{\kappa}{2} \phi^2 + \text{non-renorm.}$$

- · Calculus of variations
  - $(\partial^2 m^2)\phi = \frac{\lambda}{3!}\phi^3$
  - $\left(\frac{\mu+2}{2}\right)\partial_n\phi\Big|_{y=y_0} = -\kappa\phi\Big|_{y=y_0}$
  - $\bullet \ \mu\phi\partial_n\delta\phi|_{y=y_0}=0$
- Field redefinition

 $\phi \longrightarrow \phi + \alpha \theta (y - y_0) \phi$   $\kappa' \equiv \kappa + \kappa \left( \alpha + \frac{\alpha^2}{4} \right) + \delta(0) \left( \frac{\alpha^2}{2} - \frac{\mu \alpha \mu \alpha^2}{2} \right)$   $\alpha = \frac{2\mu}{2 - \mu}$ distributions

Boundary conditions (all relevant possibilities; Z<sub>2</sub> scalar QFT)

$$\partial_n \phi(y_0) = -\kappa' \phi(y_0)$$

MEANING OF "ANY"

Solutions to EOM

$$(\partial^2 - \omega^2)\phi = 0$$

- $\bullet$ two solutions  $\Phi_+;\ \Phi_-=(\Phi_+)^*$
- Boundary conditions

$$\partial_n \phi(y_0) = -\kappa \phi(y_0)$$
  
 $\Rightarrow \Phi_{sol} = \Phi_+ + b_\kappa \Phi_-$   
 $b_\kappa = -\frac{\kappa \Phi_{+,0} + \partial_n \Phi_{+,0}}{\kappa \Phi_{-,0} + \partial_n \Phi_{-,0}}$  for each frequency  $\omega$ 

- Freedom of location  $y_0$ .
  - Initial conditions for 2<sup>nd</sup> order PDE
     ⇒ b<sub>κ</sub> ⇒ determines physics.

$$\begin{array}{ll} y_0 \to y_0 + \xi \\ \kappa \to \kappa + \delta \kappa \end{array} \qquad b_{\kappa + \delta \kappa}(y_0 + \xi) = b_{\kappa}(y_0)$$

- domain

independently

⇒ ALL PHYSICS IS INVARIANT\*

#### RG-flow and boundary conditions

- RG: Anything that is not forbidden, WILL happen.
  - in a bounded space, expect to generate

$$S_{bdy}^{counter} = \oint -\frac{\mu}{2} \phi \partial_n \phi - \frac{\kappa}{2} \phi^2$$

• Example  $\kappa = 0$  (Neumann) in  $\lambda \phi^4$ 

[Symanzik; Deutsch, Candelas; Barton; ... Many recent arti-

cles

$$= \lambda \int^{\Lambda} d^4k \frac{1}{k^2 + m^2} + \frac{e^{ik_y(2y_0 - y)}}{\vec{k}^2 + k_y^2 + m^2}$$

$$= \text{bulk} + \lambda \Lambda \delta(y - y_0)$$

⇒ boundary counterterm

(Lorentz invariance broken)

Fixed points

• 
$$\beta$$
-function  $\beta_{\kappa}^{1-loop} = \lambda \Lambda$   
 $\Rightarrow$  IR: Dirichlet.

- Interpretation
  - <u>Dressing</u> of initial state  $\Rightarrow \text{Vacua} \stackrel{?}{=} \text{fixed pt.}$

- Effective field theory
  - · Integrating out high energy d.o.f.
    - ⇒ RG-flow + irrelevant operators (higher derivative corrections).
    - ⇒ Effective bdy Lagrangian
- Z<sub>2</sub> Scalar field theory

$$S_{bnd} = \oint \left[ -\frac{\beta_4}{2M} \phi^4 - \frac{\beta_\parallel}{2M} (\partial_i \phi)^2 - \frac{\beta_\perp}{2M} (\partial_n \phi)^2 - \frac{\beta_c}{2M} \phi \partial_n^2 \phi \right]$$

- Example:
  - Two scalars  $\chi$ ,  $\phi$  with  $M_{\chi}^2 \gg m_{\phi}^2$ .

$$S^{int} = -\int g\chi\phi - \oint \gamma\chi\phi$$

• Effective interaction  $|k| \ll M_{\chi}$ .



#### Minkowski boundary conditions, RG-flow and irrelevant corrections

- Flat space: VACUUM is unique
  - Recall  $\kappa = -i\omega$  cancels the physical pole. Hence

$$G^{\kappa=-i\omega}(x,x') = G^{Mink}(x,x')$$

Thus all divergences are bulk

$$\kappa = -i\omega$$
 (restores Lorentz)

- Irrelevant corrections to Mink vacuum are absent!
  - Example:

$$S^{int} = -\int g\chi\phi - \oint \gamma\chi\phi$$
  
 $\Rightarrow \partial_n\chi_0 = -\kappa\chi_0 - \gamma\phi$ 

 $(\gamma \text{ breaks Lorentz})$ 

Lorentz symmetry should guarantee that high energy corrections to low-energy Minkowski boundary conditions are absent

- Cosmology preview:
  - \* EFT Rule: everything that is allowed by the symmetries ought to be considered.

#### Boundary conditions in Cosmological Lagrangians

- Preliminaries
  - FRW in conformal gauge

$$ds^2=a^2(\eta)(-d\eta^2+dx_3^2)$$

• Restrict attention to de Sitter

$$a = -\frac{1}{H\eta}$$
,  $\frac{\partial H}{\partial \eta} = 0$ 

- (easily generalized to power-law and slow-roll inflation)
- Solution to field equation Hankel function  $\Phi_{+} = (-\vec{k}\eta)^{3/2} \sqrt{\frac{\pi}{4\vec{k}}} \left(\frac{H}{\vec{k}}\right) \vec{\mathcal{H}}_{\nu}(-\vec{k}\eta)$

$$\nu = \sqrt{\frac{(d-1)^2}{4} - \frac{m^2}{H^2}}$$

• Subtlety: boundary condition

$$\partial_n \phi | = -\kappa \phi | \Rightarrow \frac{1}{a(\eta_0)} \partial_\eta \phi(\eta_0) = -\kappa \phi(\eta_0)$$

#### Harmonic oscillator and shortest length b.c.

- Covariantize Minkowski (harm. osc.) boundary conditions
  - Recall  $\kappa_M = -i\omega = -i\sqrt{\vec{k}^2 + m^2}$
  - In FRW  $\kappa_{HO} = -i\sqrt{\frac{\vec{k}^2}{a_0^2} + m^2}$

$$h^{ij}\partial_i\partial_j$$
 with  $h_{ij} = g_{\mu\nu}\partial_i x^{\mu}\partial_j x^{nu}$ 

- Shortest length boundary conditions
  - Impose  $\kappa_{HO}$  at earliest time  $\frac{|\vec{k}|}{a} = M$   $\Big)$   $a = \frac{-1}{H\eta}$   $\Rightarrow$  momentum-dependent location  $\eta_0 = -\frac{M}{H|\vec{k}|}$
  - Physically relevant parameter

$$b_{\kappa_{SL}} = \text{constant} = \frac{H}{2M} e^{2i\frac{M}{H}} + \dots$$

<u>Nicer</u> interpretation (in boundary EFT formalism)

 $b_{\kappa_{SL}}$  follows from a momentum-independent boundary location  $\eta'$  with boundary coupling

$$\kappa_{SL} = -\frac{\partial_n \Phi_+(\eta_0') + b_{SL} \partial_n \Phi_-(\eta_0')}{\Phi_+(\eta_0') + b_{SL} \Phi_-(\eta_0')}$$

- Bunch-Davies boundary conditions
  - Reproduce  $G^{Mink}(x,x')$  for  $\frac{|\vec{k}|}{a} \gg H$ .
  - In our basis:  $b_{\kappa_{BD}} = 0$ .

$$\kappa_{BD} = -\frac{\partial_n \Phi_+(\eta_0)}{\Phi_+(\eta_0)}$$

• For very high momenta  $\frac{|\vec{k}|}{a} \gg H$ .

$$\lim_{|\vec{k}|/aH \to \infty} \kappa_{BD}(\vec{k}) = \kappa_{Mink}(\vec{k})$$

- Adiabatic, transparent, thermal b.c.; fixed point of bdy RG-flow.
  - Adiabatic: Number operator changes slowest under cosmic evolution
  - Transparent: Notion of in- and out-going waves
  - Thermal: cosmic horizon
  - Fixed points of boundary RG-flow!

· Leading irrelevant operators

$$S_{bnd} = \oint \left[ -\frac{\beta_{\parallel}}{2M} (\partial_i \phi)^2 - \frac{\beta_{\perp}}{2M} (\partial_n \phi)^2 - \frac{\beta_c}{2M} \phi D_n \partial_n \phi \right]$$

Two terms with normal derivatives
 ⇒ can be removed by field redefinition

$$\kappa_{eff} = \kappa_0 + \frac{\vec{k}^2}{a_0^2 M} (\beta_{\parallel} - \beta_c) + \frac{\kappa_0^2}{M} \beta_{\perp} - \frac{3\kappa_0 H}{M} \beta_c$$

• Power spectrum of density fluctuations

≡ Spontaneous pair creation from the vacuum

$$\begin{split} P^{0 \rightarrow 2 \phi} \; &= \; \overbrace{\hspace{1cm}} \\ &= \; \mathbf{Im} \langle \phi(t) \phi(t) \rangle \\ &= \; \frac{k^3 \; |\Phi_+ + b_{\kappa_{eff}} \Phi_-|^2}{2 \pi^2 \; \; 1 - |b_{\kappa_{eff}}|^2} \end{split}$$

Perturbation theory around Bunch-Davies



phenomenological input

Feynman diagrams

$$\delta P = \text{Im}$$

 $\bullet$  Corrections to Power spectrum

Corrections to Power spectrum 
$$\left( y_0 = \frac{k}{a_0 H} \right)$$

$$P = P_{BD} \left( 1 - \frac{\pi}{4H} \left[ \frac{\mathcal{H}_{\nu}(y_0)}{i} (\kappa_{eff} - \kappa_{BD}) + \text{c.c.} \right] \right)$$

$$\kappa_{eff} = \kappa_{BD} + \frac{\vec{k}^2}{a_0^2 M} (\beta_{\parallel} - \beta_c) + \frac{\kappa_{BD}^2}{M} \beta_{\perp} - \frac{3\kappa_{BD} H}{M} \beta_c$$

· Corrections suppressed by single power of the new scale M.

$$\delta P \sim \frac{H}{M} \sim 0.01 P$$

- · Boundary conditions parameterize vacuum ambiguity
  - · Harmonic oscillator b.c.

$$\kappa_{HO} = -i \sqrt{\frac{\kappa^2}{a_0^2} + m^2}$$

· Shortest length b.c.

$$b_{SL} = \text{constant} \sim \frac{H}{2M}$$

· Bunch-Davies b.c.

$$\kappa_{BD} = -\frac{\partial_n \Phi_+(\eta_0)}{\Phi_+(\eta_0)}$$

- · Adiabatic, thermal, transparent; fixed pts. ...
- Corrections to CMB spectra

$$P = P_{BD} \left( 1 - \frac{\pi}{4H} \left[ \frac{\mathcal{H}_{\nu}(y_0)}{i} (\kappa_{eff} - \kappa_{BD}) + \text{c.c.} \right] \right)$$

$$\simeq P_{BD} \left( 1 + \frac{\beta k}{a_0 M} \sin(2\frac{k}{a_0 H}) \right)$$

CORRECTIONS OF ORDER  $H/M \sim 1\%$  FROM UNKNOWN UV PHYSICS

- · Boundary conditions parameterize vacuum ambiguity
  - · Harmonic oscillator b.c.

$$\kappa_{HO} = -i \sqrt{\frac{\kappa^2}{a_0^2} + m^2}$$

Shortest length b.c.

$$b_{SL} = \text{constant} \sim \frac{H}{2M}$$

· Bunch-Davies b.c.

$$\kappa_{BD} = -\frac{\partial_n \Phi_+(\eta_0)}{\Phi_+(\eta_0)}$$

- Adiabatic, thermal, transparent; fixed pts, ...
- Corrections to CMB spectra

$$P = P_{BD} \left( 1 - \frac{\pi}{4H} \left[ \frac{\mathcal{H}_{\nu}(y_0)}{i} (\kappa_{eff} - \kappa_{BD}) + \text{c.c.} \right] \right)$$
$$\simeq P_{BD} \left( 1 + \frac{\beta k}{a_0 M} \sin(2\frac{k}{a_0 H}) \right)$$

CORRECTIONS OF ORDER  $H/M \sim 1\%$ FROM UNKNOWN <u>UV</u> PHYSICS

- Conventional wisdom:
  - In a gravitational background, zero-point energy has to be renormalized away:

$$\langle T^{ren}_{\mu\nu} \rangle \; = \; \langle T^{bare}_{\mu\nu} \rangle - T^{counter}_{\mu\nu}$$

 $\bullet$  In flat space  $|\vec{k}|\gg H)$  , we know the counterterm:

$$T_{\mu\nu}^{counter} = T_{\mu\nu}^{Mink}$$

⇒ Only those vacua for which

$$\langle T_{\mu\nu}^{bare} \rangle - T_{\mu\nu}^{Mink} = \boxed{\text{finite}}$$

are consistent.

Hadamard condition

- QFT with Initial states
  - New divergences, <u>but</u> all are located on the boundary.
    - ⇒ dress the initial state.
  - For  $\vec{k}/a \gg H$ ,

$$\Phi_{\pm,dS} \longrightarrow \Phi_{\pm,Mink}$$

then

$$\lim_{\vec{k}/aH\to\infty} b_{\kappa} = -\frac{a_0\kappa + i\vec{k} + a_0H}{a_0\kappa - i\vec{k} + a_0H}e^{2i\vec{k}\eta_0}$$

 $\Rightarrow$  should subtract Mink divergences with  $\kappa$  the same.

#### Backreaction: Phenomenological constraints in cosmology

- No backreaction problems for  $\kappa_{BD}$  (Bunch-Davies)
  - Hadamard --- by definition

[...; Birrell, Davies;

...]

- Ought to be no problem for  $\kappa_{BD} + \Delta \kappa_{relevant}$ 
  - New divergences viz.  $\kappa_{BD}$
  - $\bullet$  New boundary couplings  $\kappa$  can absord divergences
  - · Finite ambiguity fixed by ren. prescription



Observation!

 $\bullet$  Here we wish to know  $\kappa_{BD} + \Delta \kappa_{irrelevant}.$ 

$$\Delta \kappa_{irr} = \frac{\beta k^2}{a_0^2 M}$$

- irrelevant → non-renormalizable!
- not subject to ambiguities
- ⇒ PHENOMENOLOGICAL CONSTRAINTS

#### Backreaction: Phenomenological constraints in cosmology

- No backreaction problems for  $\kappa_{BD}$  (Bunch-Davies)
  - Hadamard ---- by definition

[...; Birrell, Davies;

...]

- $\bullet$  Ought to be no problem for  $\kappa_{BD} + \Delta \kappa_{relevant}$ 
  - New divergences viz.  $\kappa_{BD}$
  - $\bullet$  New boundary couplings  $\kappa$  can absord divergences
  - · Finite ambiguity fixed by ren. prescription



Observation!

 $\bullet$  Here we wish to know  $\kappa_{BD} + \Delta \kappa_{irrelevant}.$ 

$$\Delta \kappa_{irr} = \frac{\beta k^2}{a_0^2 M}$$

- irrelevant → non-renormalizable!
- not subject to ambiguities
- ⇒ PHENOMENOLOGICAL CONSTRAINTS

• 1-loop stress tensor

$$\Delta T_{bulk} \; \sim \; \int dk \; k \; \delta P(k)$$

 $\Delta T_{boundary} \sim \text{UNMEASURABLE}$ 

• First-order correction (in  $\delta \kappa$ )

$$\Delta T_{bulk} \sim \frac{\beta}{M a_0 a^4} \int dk k^4 \sin(2k(\eta - \eta_0)) e^{-\frac{k^2}{2M^2}}$$
  
 $\sim M^4 e^{-2M^2(\eta - \eta_0)^2}$ 

- FINITE: as  $M \to \infty$ , except when  $\eta = \eta_0$
- LOCALIZED: on  $\eta = \eta_0$  within the cut-off scale M.
- MIXES: with unobservable  $\Delta T_{boundary}$ -

• 1-loop second-order (in  $\delta \kappa$  ) backreaction

$$\Delta T_{bulk}^{(2)} = \frac{1}{3(4\pi)^2} \beta^2 M^4 e^{-4H(\eta - \eta_0)} + \dots$$
Hubble Scale

- survives to affect bulk physics
   ⇒ MEASURABLE
- · Energy content of the initial state
  - characteristic scaling of E (redshift)
  - initial state is non-adiabatic
- PHENOMENOLOGICAL constraints on β.
  - Energy density

$$\Delta T \leq 3H^2M_p^2 \quad \Leftrightarrow \ \beta^2 \leq (12\pi)^2 \frac{M_p^2H^2}{M^4}$$

· Inflationary phase preserved

$$\epsilon = \frac{-\dot{T}_{00}}{HT_{00}} \le 1 \quad \Leftrightarrow \quad \beta^2 \le 2(6\pi)^2 \frac{M_p^2 H^2}{M^4}$$

Nearly scale invariant perturbations

$$2\epsilon \eta_2 + \epsilon^2 \equiv \frac{\ddot{T}_{00}}{H^2 T} \ll 2 \iff \beta^2 \le (6\pi)^2 \frac{M_p^2 H^2}{M^4}$$

## COSMO - CALISTHENICS

caloisothenoics: noun

rythmic exercises without

apparatus

- Characteristic signature initial state effects
  - · Mode "mixing"

$$\phi(k) = \Phi_+(k) + b(k)\Phi_-(k)$$

· results in oscillations

$$\delta P = P_{BD} (b(k) + b^*(k))$$
  
=  $P_{BD}|b(k) \cos \alpha(k)$ 

- Boundary EFT
  - · Symmetries: homogeneity and isotropy

$$b(k) \; = \; \left[ia_0^3\Phi_{+,0}^2\right] \left(\frac{\beta k^2}{a_0^2M}\right)$$

- Shortest length b.c. (NPH)
  - Symmetries: homogeneity, isotropy <u>and</u> "scale" invariance

$$b(k) = -i\frac{\tilde{\beta}H(k)}{2M}e^{-2i\frac{M}{H(k)}}$$



- A. Generic change in the power spectrum from initial state effects as deduced with boundary EFT.
- B. A refined estimate of the sensitivity of the CMB to new physics.



- A. Generic change in the power spectrum from initial state effects as deduced with boundary EFT.
- B. A refined estimate of the sensitivity of the CMB to new physics.

|                 | BEFT                                                                                        | SL-NPH II                                                                                     |
|-----------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Power Spectrum  | $\delta P = P_{BD} \left( \mathcal{A}k \sin\left(\frac{2\pi k}{\mathcal{C}}\right) \right)$ | $\delta P = P_{BD} \left( A \sin \left( \frac{2\pi}{C} \ln \frac{k}{k_{ptv}} \right) \right)$ |
| Amplitude       | $A = \frac{\beta}{a_0 M}$                                                                   | $A = \tilde{\beta} \frac{H}{M}$                                                               |
| Period          | $\Delta k = \mathcal{C} = \pi a_0 H$                                                        | $\Delta \ln \frac{k}{k_{piv}} = C = \frac{\pi H}{M \epsilon_H}$                               |
| # of Osc.       | $\mathcal{N} \leq \frac{M}{\pi H}$                                                          | $N \simeq \epsilon_H \frac{M}{\pi H} \ln \frac{k_{max}}{k_{min}}$                             |
| Ratio of scales | $\mathcal{A} \cdot \Delta k = \frac{\beta}{H} M$                                            | $A = \tilde{\beta} \frac{H}{M} ,  \frac{\epsilon_H C}{\pi} = \frac{H}{M}$                     |

- BEFT bound  $k_{max} < a_0 M$  $\Rightarrow k_{max} < \pi M C / H$
- Qualitative difference = Symmetries
  - Linear BEFT vs. Log SL-NPH periodicity
- Preliminary studies (SL-NPH)
  - Observable if  $\frac{\beta H}{M} \sim 1\%$ .

[Bergstrom,
Danielsson;
Elgaroy,
Hannestad;
Okamoto,
Lim;
Martin,
Ringeval;
Sriramkuma
Padmanabda
Easther,
Kinney,
Peiris]



A. The modified perturbation spectrum  $P(\vec{k})$  (for a power-law inflationary model) as a function of the momentum for a nearly "scale invariant" change in the initial conditions compared to Bunch-Davies.

B. The percentage change in the observed spherical harmonic coefficients  $C_{\ell}$ ,  $P(|\vec{k}|, \theta, \phi) = \sum_{\ell, m} C_{\ell}(|\vec{k}|) Y_{m}^{\ell}(\theta, \phi)$  for a canonical cosmological constant cold dark matter model. (Source Easther et.al. hep-th/0110226)



A. The modified perturbation spectrum  $P(\vec{k})$  (for a power-law inflationary model) as a function of the momentum for a nearly "scale invariant" change in the initial conditions compared to Bunch-Davies.

B. The percentage change in the observed spherical harmonic coefficients  $C_{\ell}$ ,  $P(|\vec{k}|, \theta, \phi) = \sum_{\ell, m} C_{\ell}(|\vec{k}|) Y_{m}^{\ell}(\theta, \phi)$  for a canonical cosmological constant cold dark matter model. (Source Easther et.al. hep-th/0110226)

## Initial states on Effective Field Theory

- Theoretically <u>controlled</u> boundary action formalism: location of boundary arbitrary.
- Scaling behaviour: boundary RG-flow
  - dressing of initial state:
  - preferred b.c. are RG-fixed points.

## Application to Cosmology

- Parametrize the cosmological vacuum ambiguity
  - Preference?
    Bunch-Davies, transparent, adiabatic, thermal, etc.
  - Generically receive H/M corrections!
- Parameters encoding initial data are <u>phenomenologically</u> constrained.
- Connections with holography?
   de Sitter is conjectured to have a <u>dual</u> boundary theory
- <u>Earliest time</u> in cosmology
  - ⇒ "guarantee" irrelevant boundary corrections.
- Are leading bdy. irr. op. contributions decipherable in CMB data?

If  $H/M \simeq 1\% \Leftrightarrow$  primordial gravity waves observed, then initial state effects in the CMB due to  $\underline{UV}$  physics are (potentially) observable



- A. Generic change in the power spectrum from initial state effects as deduced with boundary EFT.
- B. A refined estimate of the sensitivity of the CMB to new physics.

- Characteristic signature initial state effects
  - · Mode "mixing"

$$\phi(k) = \Phi_+(k) + b(k)\Phi_-(k)$$

· results in oscillations

$$\delta P = P_{BD}(b(k) + b^*(k))$$
  
=  $P_{BD}|b(k)\cos\alpha(k)$ 

- Boundary EFT
  - Symmetries: homogeneity and isotropy

$$b(k) = \left[ia_0^3 \Phi_{+,0}^2\right] \left(\frac{\beta k^2}{a_0^2 M}\right)$$

- Shortest length b.c. (NPH)
  - Symmetries: homogeneity, isotropy <u>and</u> "scale" invariance

$$b(k) \; = \; -i \frac{\tilde{\beta} H(k)}{2M} e^{-2i \frac{M}{H(k)}} \label{eq:bk}$$

|                 | BEFT                                                                                           | SL-NPH                                                                                        |
|-----------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Power Spectrum  | $\delta P = P_{BD} \left( \mathcal{A}k \sin \left( \frac{2\pi k}{\mathcal{C}} \right) \right)$ | $\delta P = P_{BD} \left( A \sin \left( \frac{2\pi}{C} \ln \frac{k}{k_{ptv}} \right) \right)$ |
| Amplitude       | $A = \frac{\beta}{a_0 M}$                                                                      | $A = \tilde{\beta} \frac{H}{M}$                                                               |
| Period          | $\Delta k = C = \pi a_0 H$                                                                     | $\Delta \ln \frac{k}{k_{ptv}} = C = \frac{\pi H}{M \epsilon_H}$                               |
| # of Osc.       | $\mathcal{N} \leq rac{M}{\pi H}$                                                              | $N \simeq \epsilon_H rac{M}{\pi H} \ln rac{k_{max}}{k_{min}}$                               |
| Ratio of scales | $\mathcal{A} \cdot \Delta k = \frac{\beta}{H} M$                                               | $A = \tilde{\beta} \frac{H}{M} ,  \frac{\epsilon_H C}{\pi} = \frac{H}{M}$                     |

- BEFT bound  $k_{max} < a_0 M$  $\Rightarrow k_{max} < \pi M C / H$
- Qualitative difference 

  Symmetries
  - $\bullet$  Linear<sub>BEFT</sub> vs. Log<sub>SL-NPH</sub> periodicity
- Preliminary studies (SL-NPH)
  - Observable if  $\frac{\beta H}{M} \sim 1\%$ .

[Bergstrom, Danielsson; Elgaroy, Hannestad; Okamoto, Lim; Martin, Ringeval; Sriramkuma Padmanabda Easther, Kinney, Peiris]



A. The modified perturbation spectrum  $P(\vec{k})$  (for a power-law inflationary model) as a function of the momentum for a nearly "scale invariant" change in the initial conditions compared to Bunch-Davies.

B. The percentage change in the observed spherical harmonic coefficients  $C_{\ell}$ ,  $P(|\vec{k}|, \theta, \phi) = \sum_{\ell, m} C_{\ell}(|\vec{k}|) Y_{m}^{\ell}(\theta, \phi)$  for a canonical cosmological constant cold dark matter model. (Source Easther et.al. hep-th/0110226)

- Characteristic signature initial state effects
  - · Mode "mixing"

$$\phi(k) = \Phi_+(k) + b(k)\Phi_-(k)$$

· results in oscillations

$$\delta P = P_{BD} (b(k) + b^*(k))$$
  
=  $P_{BD}|b(k) \cos \alpha(k)$ 

- Boundary EFT
  - Symmetries: homogeneity and isotropy

$$b(k) = \left[ia_0^3 \Phi_{+,0}^2\right] \left(\frac{\beta k^2}{a_0^2 M}\right)$$

- Shortest length b.c. (NPH)
  - Symmetries: homogeneity, isotropy <u>and</u> "scale" invariance

$$b(k) = -i\frac{\tilde{\beta}H(k)}{2M}e^{-2i\frac{M}{H(k)}}$$

• 1-loop second-order (in  $\delta \kappa$  ) backreaction

$$\Delta T_{bulk}^{(2)} = \frac{1}{3(4\pi)^2} \beta^2 M^4 e^{-4H(\eta - \eta_0)} + \dots$$
Hubble Scale

- survives to affect bulk physics
   ⇒ MEASURABLE
- · Energy content of the initial state
  - characteristic scaling of E (redshift)
  - initial state is non-adiabatic
- PHENOMENOLOGICAL constraints on β.
  - Energy density

$$\Delta T \leq 3H^2M_p^2 \quad \Leftrightarrow \ \beta^2 \leq (12\pi)^2 \frac{M_p^2H^2}{M^4}$$

· Inflationary phase preserved

$$\epsilon = \frac{-\dot{T}_{00}}{HT_{00}} \le 1 \quad \Leftrightarrow \quad \beta^2 \le 2(6\pi)^2 \frac{M_p^2 H^2}{M^4}$$

Nearly scale invariant perturbations

$$2\epsilon \eta_2 + \epsilon^2 \equiv \frac{\ddot{T}_{00}}{H^2 T} \ll 2 \iff \beta^2 \le (6\pi)^2 \frac{M_p^2 H^2}{M^4}$$

- Conventional wisdom:
  - In a gravitational background, zero-point energy has to be renormalized away:

$$\langle T^{ren}_{\mu\nu} \rangle \; = \; \langle T^{bare}_{\mu\nu} \rangle - T^{counter}_{\mu\nu}$$

 $\bullet$  In flat space  $|\vec{k}|\gg H)$  , we know the counterterm:

$$T_{\mu\nu}^{counter} = T_{\mu\nu}^{Mink}$$

⇒ Only those vacua for which

$$\langle T_{\mu\nu}^{bare} \rangle - T_{\mu\nu}^{Mink} = \boxed{\text{finite}}$$

are consistent.

Hadamard condition

- QFT with Initial states
  - <u>New</u> divergences, <u>but</u> all are located on the boundary.
    - ⇒ dress the initial state.
  - For  $\vec{k}/a \gg H$ ,

$$\Phi_{\pm,dS} \longrightarrow \Phi_{\pm,Mink}$$

then

$$\lim_{\vec{k}/aH\to\infty} b_{\kappa} = -\frac{a_0\kappa + i\vec{k} + a_0H}{a_0\kappa - i\vec{k} + a_0H}e^{2i\vec{k}\eta_0}$$

 $\Rightarrow$  should subtract Mink divergences with  $\kappa$  the same.

• Leading irrelevant operators

$$S_{bnd} = \oint \left[ -\frac{\beta_{\parallel}}{2M} (\partial_i \phi)^2 - \frac{\beta_{\perp}}{2M} (\partial_n \phi)^2 - \frac{\beta_c}{2M} \phi D_n \partial_n \phi \right]$$

Two terms with normal derivatives
 ⇒ can be removed by field redefinition

$$\kappa_{eff} = \kappa_0 + \frac{\vec{k}^2}{a_0^2 M} (\beta_{\parallel} - \beta_c) + \frac{\kappa_0^2}{M} \beta_{\perp} - \frac{3\kappa_0 H}{M} \beta_c$$

• Power spectrum of density fluctuations

≡ Spontaneous pair creation from the vacuum

$$\begin{split} P^{0\rightarrow2\phi} &= & & \\ &= & & \\ &= & & \\ &= & \\ \frac{k^3}{2\pi^2} \frac{|\Phi_+ + b_{\kappa_{eff}}\Phi_-|^2}{1 - |b_{\kappa_{eff}}|^2} \end{split}$$

· Leading irrelevant operators

$$S_{bnd} = \oint \left[ -\frac{\beta_{\parallel}}{2M} (\partial_i \phi)^2 - \frac{\beta_{\perp}}{2M} (\partial_n \phi)^2 - \frac{\beta_c}{2M} \phi D_n \partial_n \phi \right]$$

Two terms with normal derivatives
 ⇒ can be removed by field redefinition

$$\kappa_{eff} = \kappa_0 + \frac{\vec{k}^2}{a_0^2 M} (\beta_{\parallel} - \beta_c) + \frac{\kappa_0^2}{M} \beta_{\perp} - \frac{3\kappa_0 H}{M} \beta_c$$

ullet Power spectrum of density fluctuations  $\equiv$  Spontaneous pair creation from the vacuum

$$\begin{split} P^{0\rightarrow2\phi} &= & & \\ &= & \mathbf{Im}\langle\phi(t)\phi(t)\rangle \\ &= & \frac{k^3}{2\pi^2}\frac{|\Phi_+ + b_{\kappa_{eff}}\Phi_-|^2}{1 - |b_{\kappa_{eff}}|^2} \end{split}$$