Title: Black Box Date: Apr 01, 2005 12:15 PM URL: http://pirsa.org/05040038 Abstract: Pirsa: 05040038 Prog. 95/49788 # Inflation Requires 2 basiz ingredients - 1. Sufficient e-foldings of inflation - 2. the universe must thermelize and reheat Old inflation, with a single turneling event, failed to do both. Here, multiple tunneling events Each responsible for a fraction of an e-fold (adds to enough). Graceful exit obtained: Phase transition completes at each truncling event. # Basic Scenario relevant to: - stringy landscape - QCD (orother) axion Multiple tunneling events Graceful exit: requires that the number of e-foldings per stage 1/3 Sufficient Inflation: total number of e-folding # Short Comings of Inflationary Models Old Inflation: Fails- No Grace Full Exit F. Adams And K. Freese, 1991 Except through a time dependent B (Double New Inflation: Fine-Tunged K. Freese, J Frieman AND A Olinto, 1990 Natural Inflation- avoids fine-tuneing with a shift symmetry Chain Inflation ### Short Comings of Inflationary Models • Old Inflation: Fails- No Grace Full Exit Except through a time dependent β (Double F. Adams And K. Freese, 1991 New Inflation: Fine-Tunged Natural Inflation- avoids fine-tun**#**ing with a shift symmetric K. Freese, J Frieman AND A Olinto, 1990 Chain Inflation Programme Company Comp ### Short Comings of Inflationary Models Inflation: Fails- No Grace ful Exit Except through a time dependent β (Double Field) dams And K. Freese, 1991 w Inflation: Fine-Tunged Natural Inflation- avoids fine-tun**#**ing with a shift symmetry reese, J Frieman AND A Olinto, 1990 on # NEW FRAMEWORK for INFLA # Over Coming Short Comings with Chain Inflating - No Fine Tunking - Large Range of Enegy Scales $10^{16} GeV$ to 10 MeV Saves Old Inflation Graceful Exit- phase transition occurs very quickly - 1. Old Inflation -Why it fails - 2. What's needed: time-dependent 17/44 - 3. Current model: Multiple tunneling events each with Ne << 1 couple to graceful exit ### Old Inflation Universe goes from false vacuum -> true vacuum Bubbles of true vacuum nucleate in sea of felse vacuum (first order phase transition) # Swiss Cheese Problem of Old Inflation Problem: Bubbles never What is needed for turneling inflation to work? Probability of a point remaining in false vacoum phase: P(+) ~ e - BH = nuclea true where B = H4 where B = H4 washing expansion rate of Universe Theories with constant & fail (e.g. old inflation) Small B: phase transition proceeds slowly, universe inflates, but phase transition never completes Large B: phose transition is fist, # Graceful Exit Achieved Guth and Weinberg, 1983 Turner, Weinberg, and Widrow, 1992 calculated that a critical value of $$\beta = \frac{\Gamma}{H^4} \ge \beta_{crit} = 9/4\pi$$ is required in order for percolation and thermalization achieved. In terms of e-foldings, this is $$\chi \leq \chi_{crit} = 1/3$$. Chain Inflation 2 requirements for inflation p(+) = exp(-41 BH+) ~ exp(-t/t) | B = P/H4 lifetime of field in metastable state: T= 3 = 3 H3 41THB 41T T Number of e-foldings from single tunneling event: KM= SHA+ ~HT ~ 3 Sufficient inflation: X# >60 Reheating (percolation + then malitation) B = Bent = 9/1- irsa: 05040038 # How to achieve both criteria: Ktot = 60 Sufficient inflation X = Kerit = 1/3 Reheat: With single tonneling event: "Double Field inflation" (Adams +) Track 1991 - time dependent nucleation rate - couple 2 scalar fields with multiple tunneling events - Chain Inflation get a fraction of an e-folding at each stage, adds to more than 60 in the end Adams+ Freese 1991 ### Time-Dependent Nucleation Rate Once 4 rolls to its minimum, Eeff 1 Tunneling rate for & increases $$V_{bt} = V_{1}(\phi) + V_{2}(\psi) + V_{int}(\psi_{i}\psi)$$ $$\mathcal{E}_{eff} = \mathcal{E}_{+}(\psi) a^{4} \qquad \frac{\partial}{\partial a} f(\psi) (\phi - a)$$ $$\mathsf{Tunneliny rate}: \qquad \mathsf{Tweeliny rate}$$ Pirsa: 0504003 Page 17/44 ### Need: To solve problems of old infletion, to need & initially small = get infletion. They, suddenly, & gets large so thet all of universe goes from false = true vacuum at once. All bubbles of same size, get percolation + thermal: gation Adams + ### Time-Dependent Nucleation Rate suple 2 scalar fields Roller cotaly 29 inflaton to tunnel (once roller Once 4 rolls to its minimum, Eet 1 Tunneling rate for & increases $$V_{tot} = V_1(\phi) + V_2(\psi) + V_{int}(\phi, \psi)$$ $$E = \mathcal{E} + \mathcal{E}(\psi) a^4 \qquad \frac{\partial^4}{\partial a} f(\psi) (\phi - a)$$ $$Tunneling rate: \qquad \mathcal{E}_{eff} = \mathcal{E}_{eff}$$ Tunneling rate: O for 4 at top of polantial Adami+ Freese 1991 ### Time-Dependent Nucleation Rate Once 4 rolls to its minimum, Eeff 1 Tunneling rate for & increases $$V_{ht} = V_{1}(\phi) + V_{2}(\psi) + V_{int}(\phi, \psi)$$ $$\mathcal{E}_{eff} = \mathcal{E}_{+}f(\psi)a^{4} \qquad \frac{\partial^{4} G^{4}}{\partial a}f(\psi)(\phi - a)$$ Tunneling rate: $$\int_{-\infty}^{\infty} e^{-SE}, SE^{-\infty} \frac{E_{eff}^{2}}{E_{eff}^{2}}$$ $$\int_{-\infty}^{\infty} e^{-SE}, SE^{-\infty} \frac{E_{eff}^{2}}{E_{eff}^{2}}$$ Adams + Freese 1991 ### Time-Dependent Nucleation Rate Once 4 rolls to its minimum, Eeff 1 Tunneling rate for & increases $$V_{ht} = V_{1}(\phi) + V_{2}(\psi) + V_{int}(\phi, \psi)$$ $$\mathcal{E}_{eff} = \mathcal{E}_{+}f(\psi)a^{4} \qquad \frac{\partial^{4} G^{4}}{\partial a}f(\psi)(\phi - a)$$ Tunneling rate: $$\int_{-\infty}^{\infty} e^{-SE}, SE^{-\infty} \frac{E_{eff}^{2}}{E_{eff}^{2}}$$ $$\int_{-\infty}^{\infty} e^{-SE}, SE^{-\infty} \frac{E_{eff}^{2}}{E_{eff}^{2}}$$ Pirsa: 05040038 Adami+ Freese 1991 ### Time-Dependent Nucleation Rate Once 4 rolls to its minimum, Eeff 1 Tunneling rate for & increases $$V_{tot} = V_{1}(\phi) + V_{2}(\psi) + V_{int}(\phi, \psi)$$ $$\mathcal{E}_{eff} = \mathcal{E} + f(\psi)a^{4} \qquad \frac{\partial}{\partial a} f(\psi)(\phi - a)$$ $$\mathsf{Tunneling rate:} \qquad \mathsf{Tweeling \qquad$$ Pirsa: 05040038 # Asymmetric Double Well Nucleation Rate 5 1 ~ Ee (Calkin, Coleman, Volichin, Okon, Obsered) SE = 17% 2 212 (thin well) M.b. as & increses so does nucleation rate # Tunneling Rates, Graceful and not How to achieve both Yot > 60 sufficient inflation X < Xerit = 1/3 percolation with single tunneling event: Double Field Inflation Frenz 31 time dependent nucleation vate couple two scalars with multiple tunneling events Chain Inflation - with QCD axion - in land scape # QCD Axion: Tilted Cosine Figure 5: The soft-breaking potential is a tilted cosine as in the potential. Here we have taken N=20 and $\eta=V_0$. ### Inflating with the QCD Axion reese, J.T. Liu And D. Spolyar, hep-th/0502177 While the axion is a priori a Goldstone boson of the ontaneously broken Peccei-Quinn symmetry $U(1)_{PQ}$, QCD tanton effects induce an axion potential with residual Z_N nmetry. The model we consider includes an additional plicit soft-breaking term, which tilts the instanton induced tential. While the complete form of the axion potential is pendent on non-perturbative effects, it is well modeled by a tential of the form $$V(a) = V_0 \left[1 - \cos \frac{Na}{v} \right] - \eta \cos \left[\frac{a}{v} + \gamma \right]. \tag{10}$$ Inflation ### Inflating with the QCD Axion k Treese J.I. Liu And D. Spolyar, hep-th/0502177 While the axion is a priori a Goldstone boson of the spontaneously broken Peccei-Quinn symmetry $U(1)_{PQ}$, QCD instanton effects induce an axion potential with residual Z_N symmetry. The model we consider includes an additional explicit soft-breaking term, which tilts the instanton induced potential. While the complete form of the axion potential is dependent on non-perturbative effects, it is well modeled by a potential of the form $$V(a) = V_0 \left[1 - \cos \frac{Na}{v} \right] - \eta \cos \left[\frac{a}{v} + \gamma \right].$$ (10) Chain Inflation # V=Vo[] ss Na] - y cos[a+8] from solt breaking of Pasyumetry linear rume Bottom # Invisible axion (OPJZ) Axion is identified as phase of a complex SVz × Vi singlet scalar T below PR symmetry breaking scale T=V/VZ Pirsa: 05040038 Page 30/44 # Same Criterion and Some More Previous Conditions percolate each stage: $\chi \leq 1/3$ Sufficient Inflation: $N_{tot} \ge 60$ • neutron Electric Dipole Moment Constrains Soft Breaking term • Don't Go Over the Top # Tilted Cosine QCD Axion:tunneling Rate In the thin wall limit, the tunneling rate is given Γ e^{-S_e} . We need to calculate $S_1=\int \sqrt{2U_+(a)}\,da$, whis integrated from one minimum to the next, where symmetric portion of the potential is $U_+(\theta)=V_0(1-\cos\theta)$ so $S_1=\sqrt{2V_0}f_a\int_0^{2\pi}\sqrt{1-\cos\theta}\,d\theta=8f_a\sqrt{V_0}$. Hence Euclidean action is $$S_E = \frac{27\pi^2 S_1^4}{2\epsilon^3} = 5 \times 10^5 \frac{V_0^2 f_a^4}{\epsilon^3}.$$ Coleman, 1977 Voloshin, Kobzarev AND Okun, 1975 Callan AND Coleman, 1977 Chain Inflation # The Neutron Electric Dipole Moment Limit We must ensure that the soft-breaking term in the potential pes not destroy the strong CP solution, i.e., that the minimum the potential is not shifted away from zero by more than is lowed by the electric dipole moment (EDM) of the neutron $$\Delta \bar{\theta}\big|_{\text{EDM}} < 6 \times 10^{-10}. \tag{12}$$ G. harris, 1999 in Inflation # Implied constraints For large N, we find that the shift from $\bar{\theta}=0$ is given by $$\Delta \bar{\theta}|_{\rm EDM} = \left| \frac{\eta}{V_0 N} \sin \gamma \right| \sim \left| \frac{\eta}{V_0 N} \gamma \right| \sim \frac{\eta \pi}{2V_0 N^2}.$$ (1) - determined by finding the relative shift of vacua near t - In the last equality, we have used the fact that $|\gamma| < \pi/N$ estimate that a typical arbitrary value of $\gamma \sim \pi/(2N)$. ain Inflation # Bottom Regime At the bottom of the potential, $\epsilon(n=0) \sim 2\pi^2 \eta/N^2$, using Eq. (13), $$\epsilon_{\rm bottom} \sim 4\pi V_0 \Delta \bar{\theta} \big|_{\rm EDM}.$$ (1) Combining this with the bound on the neutron EDM, we fi $$\epsilon_{\text{bottom}}^{1/4} \le 2\text{MeV}.$$ (1) hain Inflation # Inflating With the QCD Axion - Necessary conditions for Chain inflation are met in the linregime. - Seem to get stuck at the bottom Too Soon to tell Some of the "fixes" just need to be looked at more carefully ### More Generally In this paper we have restricted discussion to axions which an solve the strong CP problem. Obviously, if we forego any ontact with real QCD, then the allowed ranges for parameters ecomes much larger. For example, the constraint from the neutron EDM vanishes. Then the ranges of potential width, barrier height, and energy difference between vacua are ompletely opened up. A tilted cosine may arise due to (non-DCD) "axions" in many other contexts, such as string theory and would easily provide an inflaton candidate. Such a general ase will be investigated in a future paper. main Inflation ### Landscape - Similarly in the landscape: a small causually connected patch (Our Universe) begins at some false vacuum state. - this vacuum state couples to many other vacua could tunnel to a large number of other vacuum states - Ultimately there is only one single path through the various vacuum state in the landscape # The Landscape One More Time - Toy model: a series of coupled asymmetric double wells. each field provides a fraction of an e-fold percolate and reheat every stage provided if: - 1. $\chi \le 1/3$ - 2. $\chi_{tot} \geq 60$ - 3. need 200 vacua. Landscape has 10^{200} vacuum states. Jabon . - Don't get stuck many different vacua the universe could tunnel to avoid slow tunnelers - Can't go too fast for this patch will not inflate enough - There is ultimately only one path the slowest fast route Chain Inflation Pints (5040) 3 # Coupled Double Wells Considering a series of coupled double wells. The total otential for the system is $$V_{tot}(\phi_1, \phi_2, ..., \phi_q) = \sum_i V_{tot,i} = \sum_i [V_i(\phi_i) + V_{i,i-1}]$$ (23) there $0 < i \le q$. We take asymmetric double-well potentials $$V_i(\phi_i) = \frac{1}{4} \lambda_i (\phi_i^2 - a_i^2)^2 - \frac{\epsilon_i}{2a_i} (\phi_i - a_i)$$ (24) ation 45 ### Conclusion Chain inflation imposes some light conditions upon a workable model $$\chi \le 1/3$$ $$\chi_{tot} \ge 60$$ two workable models Stringy Landscape QCD Axion ain Inflation ### Conclusion - many more workable models along the lines of the Axion can be found - Chain Inflation is a useful mechanism which can pronecessary inflation to solve the standard cosmology - It offers an attractive alternative to other inflationar Wide Range of Scales No Fine-Tunning Graceful Exit Chain Inflation Page 13/11