Title: The holographic dual of the standard model on the throat

Date: Apr 01, 2005 10:35 AM

URL: http://pirsa.org/05040036

Abstract:

Holographic dual of the Standard Model on the throat.

Juan F. G. Cascales

Instituto de Física Teórica I.F.T., Madrid

Based on work in collaboration with M.P. García del Moral, F. Quevedo,
A. Uranga. hep-th/0312051 and
F. Saad, A. Uranga. hep-th/0503079

(Perimeter Institute, April 1, 2005)

Outline

- Quick introduction.
- Background material.
 - * Model building with D-branes at singularities.
 - * Review of the Klebanov-Strassler throat solution.
- Motivation and objective.
- First construction.
- Recent developments and improved model.

Pirsa: 05040036 Page 3/29

Flux compactifications

Focus on IIB in presence of $G_3 = F_3 - \phi H_3$ with $\phi = C_0 - i/g_s$. Very appealing features:

Induce superpotential and scalar potential for moduli fields.

$$W = \int_M G_3 \wedge \Omega \text{ (GVW-type)} \longrightarrow V_{sc} = e^{\mathcal{K}} \left(G^{i\bar{j}} D_i W \overline{D_j W} - 3|W|^2 \right)$$

Backreaction of the fluxes generates warped metrics → solution of hierarchy problem à la RS.

$$ds^{2} = Z^{-1/2}(y) \eta_{\mu\nu} dx^{\mu} dx^{\nu} + Z^{1/2}(y) ds^{2}_{CY}$$

 Can break SUSY in a controlled and computable manner (induce soft SUSY breaking terms).

D-branes at singularities I

 \bullet Center on D3 / $\overline{\text{D3}}$ on C^3/Z_N singularities.

M. R. Douglas and G. W. Moore, hep-th/9603167

The bottom-up approach:

- Built up local configuration of D-branes leading to SM.
- Subsequently embed it into different global compactifications.

Aldazabal, L. E. Ibanez, F. Quevedo and A. M. Uranga, hep-th/0005067

The worldvolume spectrum must be projected:

D3 on Flat C3

$$\mathcal{N} = 4$$
 SYM $U(n)$ in $d = 4$

D3 on
$$\mathrm{C}^3/\mathrm{Z}_N$$

$$\mathcal{N}=1$$
 v. multiplet in $\prod_{i=0}^{N-1}U(n_i)$ $\mathcal{N}=1$ ch. multiplets in $\sum_{a=1}^3\sum_{i=0}^{N-1}\left(\mathbf{n}_i,\overline{\mathbf{n}}_{i+l_a}\right)$ Quiver diagrams

D-branes at singularities II

• C^3/Z_3 only one leading to 3 families:

$$(z_1, z_2, z_3) \longrightarrow (\alpha^{l_1} z_1, \alpha^{l_2} z_2, \alpha^{l_3} z_3)$$
; $\alpha = e^{2\pi i/3}$; $l_1 + l_2 + l_3 = 0$

- $\begin{array}{ccc} \bullet & \mathbf{C}^3/\mathbf{Z}_3 & \longrightarrow & U(n_1) \otimes U(n_2) \otimes U(n_3) \\ & & \mathsf{3} \times [(n_0, \overline{n_1}) \oplus (n_1, \overline{n_2}) \oplus (n_2, \overline{n_3})] \end{array}$
- Local geometry

 Do not worry for untwisted tadpoles
- BUT! Twisted tadpole c.c. $\implies n_1 = n_2 = n_3 \implies U(n)^3$
- Can enrich the setup by adding D7-branes wrapping 4-cycles.

Pirsa: 05040036 D37 D7 system (NON=SUSY) D37 D7 system (SUSY) Page 6/29

A String Theory configuration that realizes both warping and moduli stabilization.

N regular + M fractional D3's on a conifold singularity

$$\mathcal{N}=1$$
, $d=4$ gauge theory:

$$SU(N) \otimes SU(N+M)$$
 $A_{1,2} = B_{1,2} = B_{1,2}$

- * Fractional branes break conformal invariance.
- * The theory suffers cascade of Seiberg dualities and strong dynamics that deform moduli space.

I. R. Klebanov and M. J. Strassler, hep-th/0007191

Underlying geometry is a deformed (not singular) conifold:

$$xy - uv = \epsilon$$
 in \mathbb{C}^4

- The metric has an exponential warp factor Z(r)
- The solution contains F_3 and H_3 fluxes: $\int_{S^3} F_3 = M$ and $\int_{dual} H_3 = -K$

- \star Highly warped throat \sim AdS₅
- * But! finite S^3 caps it off at finite r. Relative warp factor:

$$Z \sim e^{8\pi K/3Mg_S}$$

 $\star \epsilon$ stabilized at $\epsilon = e^{-2\pi K/Mg_8}$

How to check that IR region $(r \to 0)$ of the geometry is deformed: study (the RG flow of) the dual gauge theory.

Moduli space:

$$\det \mathcal{M} = 0$$

$$\mathcal{M} = \begin{pmatrix} A_1 B_1 & A_1 B_2 \\ A_2 B_1 & A_2 B_2 \end{pmatrix}$$

How to check that IR region $(r \to 0)$ of the geometry is deformed: study (the RG flow of) the dual gauge theory.

Moduli space:

$$\det \mathcal{M} = 0$$

$$\mathcal{M} = \begin{pmatrix} A_1 B_1 & A_1 B_2 \\ A_2 B_1 & A_2 B_2 \end{pmatrix}$$

How to check that IR region $(r \to 0)$ of the geometry is deformed: study (the RG flow of) the dual gauge theory.

Moduli space:

$$\det \mathcal{M} = 0$$

$$\mathcal{M} = \begin{pmatrix} A_1 B_1 & A_1 B_2 \\ A_2 B_1 & A_2 B_2 \end{pmatrix}$$

How to check that IR region $(r \to 0)$ of the geometry is deformed: study (the RG flow of) the dual gauge theory.

Moduli space:

$$\det \mathcal{M} = 0$$

$$\mathcal{M} = \begin{pmatrix} A_1 B_1 & A_1 B_2 \\ A_2 B_1 & A_2 B_2 \end{pmatrix}$$

Pirsa: 05040036 Page 12/29

How to check that IR region $(r \to 0)$ of the geometry is deformed: study (the RG flow of) the dual gauge theory.

$$N_c = N_f = 2M$$

Quantum deformation
of moduli space:

$$det \mathcal{M} = \Lambda^{4M}$$

$$x = A_1 B_1$$

$$u = A_1 B_2$$

$$v = A_2 B_1$$

$$y = A_2 B_2$$

$$xy - uv = \epsilon$$

Combine \begin{cases} Model building of D3's at singularities. Klebanov-Strassler like setup: moduli fixing + hierarchy.

Pirsa: 05040036 Page 14/29

Combine \begin{cases} Model building of D3's at singularities. Klebanov-Strassler like setup: moduli fixing + hierarchy.

Pirsa: 05040036 Page 15/29

Combine Model building of D3's at singularities.

Klebanov-Strassler like setup: moduli fixing + hierarchy.

Pirsa: 05040036 Page 16/29

Combine Model building of D3's at singularities.

Klebanov-Strassler like setup: moduli fixing + hierarchy.

- Most moduli stabilized
- SM degrees of freedom present in the setup
- At a point in transverse space where a "geometric" hierarchy is stabilized (à la RS)
- Potentially fix all moduli and lead to dS (à la KKLT)
- Implement Dp-\overline{\overline{D}p} inflation...

* Obtain the holographic dual gauge theory (microscopic description of the geometry).

Pirsa: 05040036 Page 17/29

How to engineer the geometry?

- Deformed conifold: $xy-zw=\epsilon$. Has no \mathbb{Z}_3 symmetry that leaves a $\mathbb{C}^3/\mathbb{Z}_3$ isolated singularity.
- Need to device an adequate geometry:

Our 6d manifold is: 2d base (complex coordinate z) 4d fiber $T^2 \otimes T^2$ (double elliptic fibr.)

Conifold

$$y^{2} = x^{3} - 3(z/z_{0})^{2}x + 2(z/z_{0})^{3} - 4$$

$$y'^{2} = x'^{3} - 3(z/z'_{0})^{2}x' + 2(z/z'_{0})^{3} - 4$$

$$Z_3:(z,x,x')\longrightarrow e^{2\pi i/3}(z,x,x')$$

Final structure of the throat

We turn on $\begin{cases} M \text{ units of } F_3 \text{ along the } S^3 \\ K \text{ units of flux along the dual cycles.} \end{cases}$

Several model building possibilities:

- n D3's at the bottom of the throat (and the required D7's and extra D3's to cancel tadpoles)
- n D3's

- Problems

 SuGra side: very obscure geometry, no explicit metric.

 Holographic dual side: No idea of what the dual gauge theory is.

New approach

Recently, deeper insight on warped throats and their holographic dual gauge theories.

Warped throats appear naturally on CY singu. that admit complex \longleftrightarrow That in the worldvolume of N D3deformation (can be smoothed by a 3-cycle)

Turn on F_3 , H_3

Highly warped throat with the 3- \longleftrightarrow Mesons get a vev. Deformation cycle structure at its bottom.

Holographic dual gauge theory?

branes placed at the singu.

Cascade of dualities until a final theory with strong dynamics.

of moduli space.

Franco, He, Herzog, Walcher; hep-th/0402120

Ejaz, Herzog, Klebanov; hep-th/0412193

Franco, Hanany, Uranga; hep-th/0502113

The nice singularity

Look for $\begin{cases} \bullet \text{ Warped throat: a singularity that admits a complex def.} \\ \bullet \text{ After the deformation: a } C^3/Z_3 \text{ at its bottom.} \end{cases}$

• Using techniques of toric geometry, very easily obtainable. One is: Suspended pinch point $(uv - zw^2 = 0)/\mathbb{Z}_3$

• Interesting because one has the holographic dual description of it: the gauge theory in the worldvolume of N D3-branes at the SPP/ \mathbb{Z}_3 singularity.

Pirsa: 05040036 Page 22/29

Pirsa: 05040036 Page 23/29

The left over light degrees of freedom correspond to:

- * Standard model gauge group $SU(3) \times SU(2)_L \times U(1)_Y$ with 3 generations.
- $\star U(1)_Y$ given by the linear combination:

$$Q_Y = -\left(\frac{1}{3}Q_3 + \frac{1}{2}Q_2 + Q_1\right)$$

- \star Extra U(1)'s become massive.
- \star Extra gauge group $SU(6) \times SU(3)$ from D7's can be broken by vevs in the 77 sector.

Knowledge of the holographic dual gauge theory is remarkable:

- Provides a microscopic description of what happens at the IR end of the throat: you DO get C^3/Z_3 Obtain a realization, in String Theory, of technicolor:
- Obtain a realization, in String Theory, of technicolor:
 all SM fields are composites of a larger gauge theory at higher energies.

Multithroats

Singularities admitting several complex deformations \Longrightarrow independent cycles \Longrightarrow several warped regions with different warp factors.

Franco, Hanany, Uranga; hep-th/0502113

J.C., Fouad, Uranga; hep-th/0503079

- Have a holographic dual: several cascade-confining phases.
- Pirsa 05046086 Theory realization of RS with several positive tension brane S. Page 28/29

Conclusions

- * Have presented a concrete example where the SM is placed at the end of a highly warped throat, and provided its holographic dual gauge theory, with the SM as the final product of a cascade of dualities (technicolor in String Theory).
- * Desirable to obtain a mechanism to break supersymmetry while keeping control of the throat geometry.
- * Adapt this idea to more flexible brane configurations (intersecting or magnetized D-branes).
- * Better understanding of the backreaction of D7-branes in models that contain them.

Pirsa: 05040036 Page 29/29