Title: LHC

Date: Mar 30, 2005 05:00 PM

URL: http://pirsa.org/05030146

Abstract:

Pirsa: 05030146 Page 1/28

Discovery of superpartners at Tevatron, LHC could be especially productive

- $-L_{soft}$ is determined by W, K, f, which in turn are generated as go to 4D world
- -- so if we can measure L_{soft} maybe we can go the other way and learn about the 10D theory
- -- also need to learn about phases since most masses in L_{soft} are complex perhaps can do that from EDMs and from studying CPV at LHC and also from non-CPV at LHC and from DM detection

Further – Lagrangian masses mostly complex

- No known symmetry implies phases small if the phases are small it tells us something basic
- Phases enter 4D effective theory via compactification geometry or complex F-term vevs
- Some phases constrained by EDMs, most not
- Phases affect superpartner masses, σxBR, higgs sector, dark matter, etc
- If set phases to zero when analyzing data can be very misleading (e.g higgs mass limit from LEP) — L. Wang, GK
- Need to develop techniques to search for existence of phases by consistency checks, looking for CPV effects in hadron collider data

Note here masses, rates depend on phases

Example: consider charginos

$$\begin{split} \mathbf{M}_{\tilde{C}} &= \begin{pmatrix} M_{2}e^{i\phi_{2}} & \sqrt{2}M_{W}\sin\beta \\ \sqrt{2}M_{W}\cos\beta & \mu e^{i\phi_{\mu}} \end{pmatrix} \\ M_{\tilde{C}_{1}}^{2} &+ M_{\tilde{C}_{2}}^{2} &= TrM_{\tilde{C}}^{\dagger}M_{\tilde{C}} = M_{2}^{2} + \mu^{2} + 2M_{W}^{2} \\ M_{\tilde{C}_{1}}^{2}M_{\tilde{C}_{2}}^{2} &= DetM_{\tilde{C}}^{\dagger}M_{\tilde{C}} = \\ M_{2}^{2}\mu^{2} + 2M_{W}^{4}\sin^{2}2\beta - 2M_{W}^{2}M_{2}\mu\sin2\beta\cos(\phi_{2} + \phi_{\mu}) \end{split}$$

- Four unknowns, two observables—can't invert!
- Masses, cross sections depend on phases

Add cross sections for chargino production

parameters enter, process does not converge

- What about Higgs sector?
- V=tree level +
 m_h < m₂

- \rightarrow at least 7 parameters important, tan β , μ , $m_{H_{\nu}}^2$, $m_{H_{\nu}}^2$, A_{μ} ,
- So at least 7 observables needed to invert

Use patterns of "inclusive signatures"

	GravMSB	GravMSB	Gauge	Dilaton	
	large µ	small µ	MSB	DSB	
SS dileps	yes	yes	yes	yes	
Prompt	no	maybe	yes	no	
γ's			(but)		
Trileps	yes	no	no	yes	
B-rich					
os					
dileps					
sa. 05030146				F	Page 7/28

Pirsa.

Data-related major advantages of using inclusive signature approach

- Define: Inclusive Signature is one that is really measurable, summed over all ways
- Some systematic errors drop out (or get less) important when comparisons of rates are plotted
 - -- Don't need absolute cross section normalization, so less need for knowledge of beam luminosity!
 - -- Corrections to jet energies less important!
 - -- By comparing full rates don't reduce statistics, detailed detector simulations less

important

So see signal

- String theorists: so what, we knew that
- Just look at data and think a little?
- Not so simple!
 - Particularly at hadron collider, many obstacles
 - Usual methods unlikely to work!
 - Experiments measure masses of mass-eigenstates (usually mass differences), σ x BR, but those not in Lagrangian
 - At hadron colliders there are always more Lagrangian parameters than observables, so cannot in general solve for Lagrangian parameters such as soft-breaking masses (actually best reason to want a linear collider)
 - No general method known to measure tanβ (certain lucky situations may occur ...), test gaugino mass degeneracy, etc

What will happen at LHC?

- First, a susy signal of some sort
- Then, like LEP without big role of theory no clue to implications

Pirsa: 05030146 Page 10/28

Existing LHC studies to interpret data cover little, less than meets the eye

• Almost all use "mSUGRA", with 4 real parameters $M_0, M_{1/2}, \mu, A$

- Poorly motivated
- Doesn't emerge normally from high scale theory

What kind of information will experimenters report? How can we learn to interpret it?

Show "inclusive signature" plots

Pierre Binetruy, GK, Brent Nelson, LianTao Wang, hepph/0312248

- Their pattern contains much information that usual approaches do not
- Collaborators also Jake Bourjaily, Piyush Kumar, Ting Wang
- All signatures have missing transverse energy > 100 GeV, so assume this removes all SM "background"

- High scale theory
- RGEs to get low scale, calculate spectrum, e.g. SUSPECT2 (Djouadi, Kneur, Moultaka)
- PYTHIA to produce events, impose cuts, etc

 Important for theorists to work on reducing obstacles to connecting low scale and high scale information

Pirsa: 05030146 Page 14/28

LHC STRETCHING EXERCISE

LHC HAS RUN FOR A WHILE, NEXT
WE SUMMARIZE THE INITIAL
RESULTS FOR OBSERVED SIGNALS
BEYOND THE STANDARD MODEL

Inclusive Signatures: Opposite Sign Dilepton with >=2 Jets vs. Single Lepton with >=2 Jets

- High scale theory
- RGEs to get low scale, calculate spectrum, e.g. SUSPECT2 (Djouadi, Kneur, Moultaka)
- PYTHIA to produce events, impose cuts, etc

 Important for theorists to work on reducing obstacles to connecting low scale and high scale information

Pirsa: 05030146 Page 20/28

Inclusive signatures

 $(10 \text{ fb} = 1 \text{yr}, 10^{33} \text{ cm}^{-2} \text{sec}^{-1})$

	-	-	
CROSS SECTION	2 jets	3 jets	>3 jets
fb			
0 leptons	33036	5874	373
1 lepton	2292	393	20
OS dileptons	89	16	0
SS dileptons	4	8	0
Pirsa: 05030146 trileptons	0	4	O Page 23/28

 For opposite sign dilepton channels, the dilepton invariant mass distribution has its end point at 20 GeV

 For channels without leptons, the sum of missing E_T and P_T of all jets has its peak at 715 GeV

CUTS

- η<3 for jets
- R>0.7
- Jets have E_T>100 GeV
- Leptons =e,µ with η<5 and p_T>20 GeV
- Lepton isolation, E_T within a cone of R=0.3<5 GeV
- Missing E_T>100 GeV
- Transverse plane angle between missing E_T and closest jet > 15°

Pirsa: 05030146 Page 25/28

Can get more systematic, study underlying theories (letters are string constructions)

Inclusive signatures

 $(10 \text{ fb} = 1 \text{yr}, 10^{33} \text{ cm}^{-2} \text{sec}^{-1})$

CROSS SECTION	2 jets	3 jets	>3 jets
fb			
0 leptons	33036	5874	373
1 lepton	2292	393	20
OS dileptons	89	16	0
SS dileptons	4	8	0
trileptons	0	4	O Page 27/28

Inclusive signatures

 $(10 \text{ fb} = 1 \text{yr}, 10^{33} \text{ cm}^{-2} \text{sec}^{-1})$

CROSS SECTION	2 jets	3 jets	>3 jets
fb			
0 leptons	33036	5874	373
	Overall Low Battery Alarm There is an estimated 10% of battery capac	city	
1 lepton	Ø □ OK	393	20
OS dileptons	89	16	0
SS dileptons	4	8	0
Pirsa: 05030146 trileptons	0	4	O Page 28/28