Title: The Wavefunction of the Universe

Date: Mar 29, 2005 12:15 PM

URL: http://pirsa.org/05030138

Abstract:

Pirsa: 05030138 Page 1/30

The Wavefunction of the Universe

Sash Sarangi Cornell University

- with Hassan Firouzjahi and Henry Tye,
 hep-th/0406107
- soon to appear, hep-th/0504... Sash Sarangi and Henry Tye

The Wavefunction of the Universe

Sash Sarangi Cornell University

- with Hassan Firouzjahi and Henry Tye,
 hep-th/0406107
- soon to appear, hep-th/0504... Sash Sarangi and Henry Tye

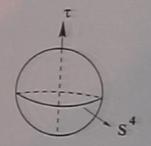
Key Questions for String Theorists

- Let us assume that string theory gives a landscape of supersymmetric and nonsupersymmetric vacua.
- Of all string theory vacua, why does the universe end up in a particular vacuum?
- Why only 3 large space dimensions? Why not a 10-D supersymmetric vacuum?
- Do we need some version of the Anthropic Principle?
- A framework to answer some of these questions
 - : Spontaneous Creation of the Universe
 - : Creation of a deSitter spacetime from nothing (no classical spacetime).

Key Questions for String Theorists

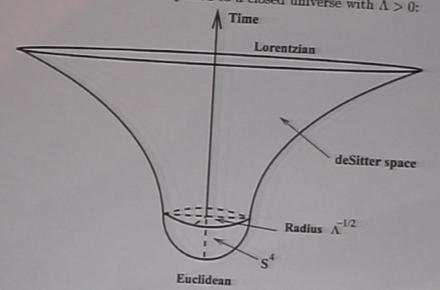
- Let us assume that string theory gives a landscape of supersymmetric and nonsupersymmetric vacua.
- Of all string theory vacua, why does the universe end up in a particular vacuum?
- Why only 3 large space dimensions? Why not a 10-D supersymmetric vacuum?
- Do we need some version of the Anthropic Principle?
- A framework to answer some of these questions
 - : Spontaneous Creation of the Universe
 - : Creation of a deSitter spacetime from nothing (no classical spacetime).

The S^4 Instanton



The S^4 Instanton.

The S^4 can be cut and joined to a closed universe with $\Lambda>0$:



The S^4 can be analytically continued to deSitter in the Lorentzian plane

Hartle-Hawking Wavefunction

•
$$\Psi_{HH} = \int_{\phi}^{h_{ij}} D[g]e^{-S_E[g]}$$
 ; $P = |\Psi_{HH}|^2$

• The 4 - D Euclidean Action:

$$S_E = -\frac{1}{16\pi G} \int d^4x \sqrt{|g|} \left(R - 2\Lambda\right)$$

• Metric ansatz (minisuperspace):

$$ds^2 = \left(d\tau^2 + a^2(\tau)d\Omega_3^2\right)$$

Euclidean Einstein's Equations (closed universe):

$$-2\frac{\ddot{a}}{a} - \frac{\dot{a}^2}{a^2} + \frac{1}{a^2} = 3\Lambda$$

which gives the S^4 instanton solution:

$$a(\tau) = \frac{1}{\sqrt{\Lambda}} \cos(\sqrt{\Lambda}\tau)$$

continued to Lorentzian signature :

$$a(t) = \frac{1}{\sqrt{\Lambda}} \cosh(\sqrt{\Lambda}t)$$

 $S_E = -3\pi/2G\Lambda$; $P \sim e^{3\pi/G\Lambda}$

Problems with Hartle-Hawking

- An infrared problem in scenarios with dynamical Λ - as in scenarios with four-form flux, Bousso-Polchinski type scenarios.
- $\Psi_{HH} \sim e^{3\pi/2G_N\Lambda}$ Such a universe prefers $\Lambda \to 0$ and Size $\to \infty$. $(a \sim \frac{1}{\sqrt{\Lambda}})$
- This means the Euclidean action does not have a minimum. $S_E \to -\infty$.
- This renders Ψ_{HH} unnormalizable.
- This infrared divergence is related to the lack of a lower bound to the Euclidean action in theories with dynamical Λ.
- Problem with topology change: the S⁴ is unstable to the formation of other topologies.
 Fischler, Morgan, Polchinski, 1990
- Loop corrections, and string corrections, not

Decoherence: Solution to the Infrared Problem of Ψ_{HH}

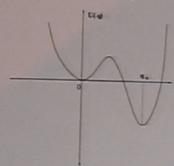
"Environment" induced tunneling suppression. Example: Caldeira, Leggett, 1983

•
$$L = L_{system} + L_{environ} + L_{coupling}$$

$$L_{system} = \frac{M}{2}\dot{q}^2 + U(q)$$

$$L_{environ} = \frac{1}{2}\sum_{\alpha} m_{\alpha} \left(\dot{x}_{\alpha}^2 - \omega_{\alpha}^2 x_{\alpha}^2\right)$$

$$L_{coupling} = q \sum_{\alpha} C_{\alpha} x_{\alpha}$$



• Calculation of the effective bounce by tracing out the environment

$$Z = \int D[q]e^{-S_o[q]} \prod_{\alpha} \int dx_{\alpha} e^{-S_{env}[q,x_{\alpha}]}$$

$$\simeq e^{-S_o[q]-\chi[q]}$$

$$\chi[q] > 0$$

Comments

 $S_E = \int \sqrt{2MU(q, x_{\alpha})} ds$ $ds^2 = dq^2 + \sum \frac{m_{\alpha}}{M} dx_{\alpha}$

Increase in S_E is due to the longer path length in the many dimensional (q, x_{α}) space.

- Interaction of q with x_{α} interferes with its attempt to tunnel. This interaction can be seen as attempts to observe q. Repeated measurements of q suppresses the tunneling rate.
- Interaction of q with the environment introduces decoherence, .The system behaves more like a classical system than like a quantum system.
- For bounded case, there is a mere correction.
- For gravity, picture changes qualitatively.
- Not a 1-loop correction.

Why an Environment for deSitter?

- Universe should be a superposition of different linearly independent wavefunctions.
- Environment offers as a source of decoherence to explain the classical evolution of the universe.
- Classical evolution crucial for the calculation of density perturbations.
- The environment from the Euclidean region can be continued to the Lorentzian region to get density perturbations in inflation.

Metric and Non-Metric Perturbations

· Metric perturbation

$$h_{ij} = a^2 \left(\Omega_{ij} + \epsilon_{ij} \right)$$

Expansion in spherical harmonics of S³

$$\epsilon_{ij} = \sum_{n,l,m} \left[\sqrt{6} a_{nlm} \frac{1}{3} \Omega_{ij} Q_{lm}^n + \sqrt{6} b_{nlm} (P_{ij})_{lm}^n + \right.$$

$$\sqrt{2}c_{nlm}^{0}(S_{ij}^{0})_{lm}^{n} + \sqrt{2}c_{nlm}^{e}(S_{ij}^{e})_{lm}^{n} + 2d_{nlm}^{0}(G_{ij}^{0})_{lm}^{n} + 2d_{nlm}^{e}(G_{ij}^{e})_{lm}^{n}$$

$$N = N_0 \left[1 + \frac{1}{\sqrt{6}} \sum_{n,l,m} g_{nlm} Q_{lm}^n \right]$$

$$N_i = a(t) \sum_{n,l,m} \left[\frac{1}{\sqrt{6}} k_{nlm} (P_i)_{lm}^n + \sqrt{2} j_{nlm} (S_i)_{lm}^n \right]$$

$$\Phi = \sigma^{-1} \left[\frac{1}{\sqrt{2\pi}} \phi(t) + \sum_{n,l,m} f_{nlm} Q_{lm}^n \right]$$

Perturbed Action

$$I = I_0(a, \phi, N_0) + \sum_n I_n$$

"Environment" induced tunneling suppression for Ψ_{HH}

- Gravitational perturbations $ds^2 = d\tau^2 + a^2(\Omega_{ij} + \epsilon_{ij})dx^idx^j$
- System: The scale factor $a(\tau)$

$$S_E^o = rac{1}{2} \int d au \left(-a \dot{a}^2 - a + \Lambda a^3
ight)$$

• Environment : Gravitational metric perturbations

$$S_E^n = \frac{1}{2} \int d\tau a^3 \left(\dot{d_n}^2 + \frac{(n^2 - 1)}{a^2} d_n^2 \right)$$

· The path integral is

$$\int D[a] \prod_{n} \int_{d_n^i}^{d_n^f} D[d_n] e^{-S_E^o[a] - \sum_n S_E^n[a, d_n]}$$

• To find the effect of the environment, trace over the d_n 's with $(d_n^i \neq d_n^f \neq 0)$

$$\Psi[a] = TrZ = \prod_n \int dd_n^i \int dd_n^f \; \delta(d_n^i - d_n^f) \; Z$$

Calculation

· A new time variable

$$du = \frac{d\tau}{a(\tau)^3}$$

• The equation of motion

$$d_n'' - \omega_n(a)^2 d_n = 0$$

- Relevant modes ω_n << ω_n².
- WKB approximation

$$d_n^{\pm} = \frac{1}{\sqrt{\omega_n}} \exp\left(\pm \int^u du' \omega_n(u')\right)$$

• Classical Action

$$S_E(d_{cl}) = \frac{1}{2(\exp(D_n) - \exp(-D_n))} \left[\left((d_n^f)^2 \omega_n(u_f) + (d_n^i)^2 \omega_n(u_i) \right) + (\exp(D_n) - \exp(-D_n)) - 4d_n^i d_n^f \sqrt{\omega_n(u_i)\omega_n(u_f)} \right]$$

• Trace over dn

$$\prod_{n} \int df_{n}^{i} \int_{f_{n}^{i}}^{f_{n}^{i}} D[f_{n}] \exp(S_{E})$$

$$\simeq \prod_{n} \frac{1}{\sqrt{(\exp(D_{n}) - \exp(-D_{n}))}}$$

The Modified Bounce

• Tracing out the environment leads to

$$\begin{split} S_E^{eff} &= S_E^o[a] + D[a] = \frac{1}{2} \int d\tau \left(-a\dot{a}^2 - a + \Lambda a^3 + \frac{\nu}{\Lambda^3 a} \right) \\ \text{where } \nu \simeq M_s^6. \end{split}$$

- \bullet ν related to the large wavelength (Hubble) and small wavelength (string) cutoffs.
- Equation of Motion

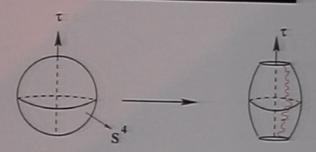
$$-2\frac{\ddot{a}}{a} - \frac{\dot{a}^2}{a^2} + \frac{1}{a^2} = 3\Lambda - \frac{\nu}{\Lambda^3 a^4}$$

Modified Bounce Solution

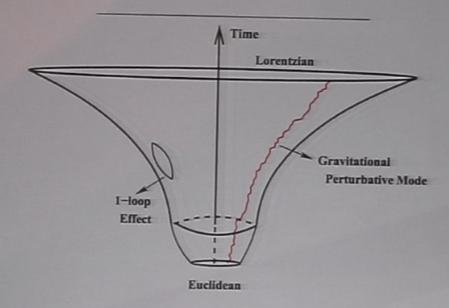
$$a(\tau) = \frac{1}{\sqrt{2\Lambda}} \sqrt{\left(1 + \sqrt{\left(1 - \frac{4\nu}{\Lambda^2}\right)}\cos(2\sqrt{\Lambda}\tau)\right)}$$

• S^4 recovered when $\nu = 0$.

The Modified Bounce contn'd

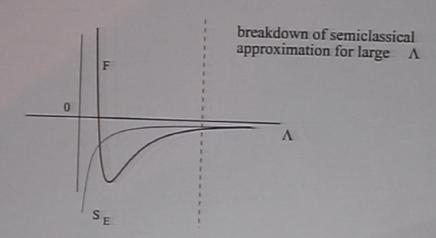


The environment deforms the S^4 bounce solution.



The Improved Wavefunction

- $\bullet \ P \simeq e^F$
- Where F is twice the modified Euclidean action $F=\frac{3\pi}{G\Lambda}-\frac{243\nu\pi^3}{G^3\Lambda^3}$



 S_E is unbounded from below. But the interaction with the environment has made F bounded from below.

The Gravitational Potential

Modified Lorentzian Action

$$S = \frac{1}{2} \int d\tau \left(-a\dot{a}^2 + a - \lambda a^3 - \frac{\nu}{\lambda^3 a} \right)$$

Modified Hamiltonian constraint

$$H = \frac{1}{2a} \left(-\Pi_a^2 - a^2 + \lambda a^4 + \frac{\nu}{\lambda^3} \right) = 0$$

 $\Pi_a = -a\dot{a}$ is the conjugate momentum.

• The gravitational potential is given by

$$U(a) = -a + \lambda a^3 + \frac{\nu}{\lambda^3 a}$$

a

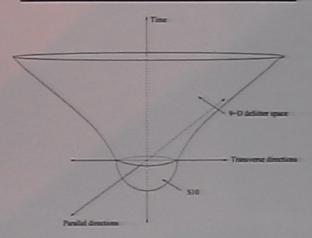
$$U_{min} = 2\sqrt{\frac{\lambda}{3}} \left(\frac{3\nu}{2\lambda^3} - \frac{1}{3\lambda} + 0(\frac{1}{\lambda^4}) \right)$$

Gravitational Potential bounded now.

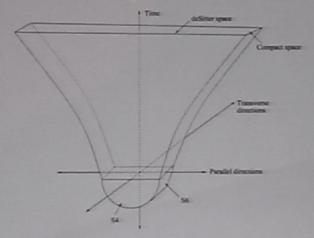
Applying the Wavefunction to the Landscape

- The wavefunction can be applied as a selection principle on the cosmic landscape. Firouzjahi, Sarangi, Tye 2004; Ooguri, Vafa, Verlinde 2005
- Hartle-Hawking wavefunction, however, is problematic. One has to use the imroved wavefunction.
- There are 10-D generalizations of the S⁴ instanton: S¹⁰, S⁴ × S⁶, S⁵ × S⁵, S⁴ × Calabi-Yau etc.
- String scale lower than the Planck scale : Semiclassical treatment still valid.
- Each instanton corresponds to certain number of inflating dimensions and some static dimensions whose size is fixed.

10 - D Gravitational Instantons



 S^{10} Instanton : 9 Inflating Dimensions + 1 Time Direction



 $S^4\times S^6$ Instanton : 3 Inflating Dimensions + 1 Time Direction + 6 Static Dimensions

Improved Wavefunction in Higher Dimensions

- Modified wavefunction leads to a tunneling probability $P \sim e^F$.
- $\bullet \ F = -S_E D.$
- In 10-D, $P \sim \exp(-S_E cV_9^2 + ...)$.
- In effective 4-D theory, $F = \frac{3\pi}{G\Lambda} \frac{cV_6^2}{G^3\Lambda^3}$
- The constant c has to be calculated for each vacuum.

Tunneling Probabilities

The Improved Wavefunction can be used to find the probability of every single vacuum in the landscape.

Since S_E is bounded, $F = -S_E = -(S_E^o + D)$.

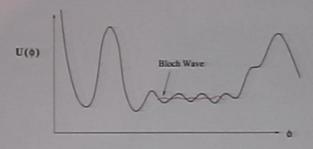
- Tunneling to an inflationary universe (KKLMMT model with fluxes M and K fixed to maximize F) $F \sim 10^{18}$
- To 10-D deSitter space S^{10} $F \sim 10^9$ Similarly, for $S^4 \times S^6$, $S^5 \times S^5$, etc.
- To KKLT vacuum F < 0
- \bullet To a vacuum with today's cosmological constant $F<-10^{170}$

Selection of the Original Universe Principle

- The improved wavefunction can give the probability for each individual vacuum in the landscape.
- Decoherence term to be calculated for each individual vacuum.
- Comparing the probabilities will tell which vacua are preferred.
- Once the inflationary universe gets created, it can follow a path that leads to todays vacuum with a low cosmological constant.

Other Implications of Decoherence

- At the end of inflation, a Bloch wave covering a neighborhood of degenerate vacua Kane, Perry, Zytkow, hep-th/0311152
- Universe, after tunneling, will span the neighborhood of vacua.
- Decoherence will help the universe settle down to a single vacuum.



Eternal Inflation?

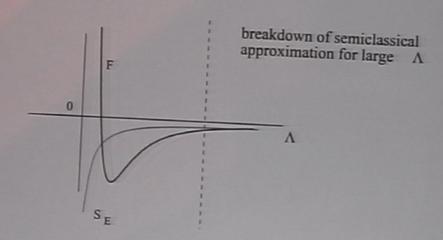
- Decoherence suppressed tunneling may modify the criteria for eternal inflation.
- Decoherence may modify Coleman-DeLuccia instanton.

Comments

- \bullet At large values of Λ the semiclassical treatment breaksdown
- ullet At small values of Λ decoherence effects become very large.
- In the region of interest (inflationary scale) we may have a good control over the behavior of the wavefunction.
- We have calculated the decoherence effect of a pure gravitational field. One can include matter fields as well. Qualitative features do not change.
- The parameter ν deforms the S^4 instanton. For large values of ν , S^4 becomes $R^1 \times S^3$ and tunneling is totally suppressed. Such vacua will not allow the spontaneous creation of universe.

The Improved Wavefunction

- $\bullet \ P \simeq e^F$
- Where F is twice the modified Euclidean action $F = \frac{3\pi}{G\Lambda} \frac{243\nu\pi^3}{G^3\Lambda^3}$



 S_E is unbounded from below. But the interaction with the environment has made F bounded from below.

Comments

- At large values of Λ the semiclassical treatment breaksdown.
- At small values of Λ decoherence effects become very large.
- In the region of interest (inflationary scale) we may have a good control over the behavior of the wavefunction.
- We have calculated the decoherence effect of a pure gravitational field. One can include matter fields as well. Qualitative features do not change.
- The parameter ν deforms the S⁴ instanton. For large values of ν, S⁴ becomes R¹ × S³ and tunneling is totally suppressed. Such vacua will not allow the spontaneous creation of universe.

Summary and Conclusion

- The modified Hartle-Hawking wavefunction with the inclusion of decoherence can be used as a selection principle on the cosmic landscape.
- Decoherence effect can provide a lower bound to the gravitational action.
- A better understanding of decoherence and its determination important.
- Inflationary vacua seem to be favored over supersymmetric, KKLT vacua.
- Find other vacua, especially vacua with other large spatial dimensions; and determine the tunneling probability from nothing to any one of them. Find out whether 4D is selected or not.

Tunneling Probabilities

The Improved Wavefunction can be used to find the probability of every single vacuum in the landscape.

Since S_E is bounded, $F = -S_E = -(S_E^o + D)$.

- Tunneling to an inflationary universe (KKLMMT model with fluxes M and K fixed to maximize F) $F \sim 10^{18}$
- To 10-D deSitter space S^{10} $F \sim 10^9$ Similarly, for $S^4 \times S^6$, $S^5 \times S^5$, etc.
- To KKLT vacuum F < 0
- \bullet To a vacuum with today's cosmological constant $F<-10^{170}$