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1 Introduction

How can we distinguish several possible origins of cosmic strings?

Ans.
Reconnection ( or Recombination, / \ \/

Intercommutation) probability P
in collision process / /—\\

@ P — 1 (deterministic reconnection) for field theory vortex strings
[Shellard ][ Mat zner|[ Moriarty-Myers-Rebbi]

— Numerical simulations show that they always reconnect.

— There seems to be an upperbound of velocity for reconnection.

e P # 1 (probabilistic reconnection) for cosmic super(/D-)strings
[Copeland-Myers-Polchinski][ Jackson-Jones-Polchinski]

— Worldsheet calculations show 107° < P < 1 for some compact-
ification scenario.

— Fundamental strings should be of this type, P ~ g-.
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In this talk, the following questions will be answered, from the view-
point of effective field theory on the cosmic strings:

e What is the mechanism of the reconnection of the vortex strings
and of the D-strings?

e Why are they different in reconnection property?

e How can one compute the reconnection probability for D-strings?

Plan of this talk

Introduction

Vortex strings and D-strings: the difference
Reconnection of vortex strings
Reconnection of D-strings

Summary and discussions
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2 Vortex strings and D-strings

D-strings can pass through each other

27> 1 s =] K

— dtde Tr |——F,, F"" — —D,®; D"®" + —[®;, ®,]
9s 4 2 4

In this D-string action, there is a classical solution representing

them passing through each other without reconnection:

Y 2~ _ [ tan(0/2)x 0
2'?1'15(1)2 — ( 0 —Ft) 1 2‘?1'15(1)3 e ( 0 —tﬂﬂ(9/2)$

0 L1, K1, go— 0 : Action (low energy approx.) is valid.
A
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Then what about vortex strings?

To see the reconnection property of vortex strings, we need effective
action on the multiple vortex strings...

/ : zt, 25

# ! A

NS5 D4 NS5 ,’D2 | | . NS5: 0123-45

D6 - V" T Da4: 01236
' z® D6: 0123-789

Azx® Ax? [Hanany-Witten]

Brane realization of 4d N =2 Abelian Higgs model w/ (4,, ¢, q, q)
: 1 Ax® Ax?

Gauge coupling: =23 _— (27)2g.l. , FI parameter : (ag = (27)°g.83

Decoupling limit: Azx® ~el,, Az’ ~¢€%l,, g.~€¢, €—0

Vortex strings — D2-branes suspending between D4s on D6

[Hanany-Tong]
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2 Vortex strings and D-strings

D-strings can pass through each other

27> 1 e PR .

— dtde Tr |——F,, F"" — —D,®;D"®" + —[®;, ®/]
9s 4 2 4

In this D-string action, there is a classical solution representing

them passing through each other without reconnection:

2r [Tt O 2~ _ [ tan(0/2)x 0
2'?1'15(1)2 — ( 0 —Ft) * 2‘?1'15(1)3 e ( 0 —tﬂﬂ(9/2)$

0 L1, vkK1, g.— 0 : Action (low energy approx.) is valid.
A
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Then what about vortex strings?

To see the reconnection property of vortex strings, we need effective
action on the multiple vortex strings...

/ : zt, 25

NS5 DI | NS o= |1 | ~, NS5: 0123-45

D6 H— L ®_  Da4: 01236
j z*  D6: 0123-789

Ax® Ax? [Hanany-Witten]

Brane realization of 4d N =2 Abelian Higgs model w/ (A,, ¢, q, q)
. 1 Ax® Azx?

Gauge coupling: = — (27)2g.l. , FI parameter : (ag = (27)°9.83

Decoupling limit: Ax® ~el,, Az’ ~¢€’l,, g.~€¢, €—0

Vortex strings — D2-branes suspending between D4s on D6

[Hanany-Tong]
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Vortex string effective action comes from a D2-brane action.

1
S = / dtdz Tr [—4—925;,,1?#" — D, Z'D*Z — D,w D"y

2
g 2
= (Yo' — [Z, Z"] — rlaxo)
Z x ®* + 1®° : complex adjoint field, 7/ : new fundamental field
1 ILAzx® e Ax® 27
— = = (27)°l_¢an , FI parameter r = —
g’ gs 27wgsls EEH

Decoupling limit = g — oo = Only the potential bottom survives!

The effective theory of the vortex strings is a sigma model whose
target space is the D-term equation ¥! — [Z, Zﬂ —rlye = 0.

The important fact is that the D-term equation does not allow the
passing-through solution due to the FI parameter r.

=> There is no naive classical solution of vortex strings passing
through each other.
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Then what about vortex strings?

To see the reconnection property of vortex strings, we need effective
action on the multiple vortex strings...
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Vortex string effective action comes from a D2-brane action.

1
Seortex = / dtdz Tr [—4—921?,‘,,1?*‘" — D, Z'D*Z — D" D*yp

2
g 2
_—— (Yo' — [Z, Z"] — rlaxo) ]
Z x ®* + 1®° : complex adjoint field, 7/ : new fundamental field
1 ILAzx® . Ax® 27
— = = (27)°l_¢an , FI parameter r = —
g’ gs 27wgsls EEH

Decoupling limit = g — oo = Only the potential bottom survives!

The effective theory of the vortex strings is a sigma model whose
target space is the D-term equation ¥! — |Z, Zﬂ —rlyye = 0.

The important fact is that the D-term equation does not allow the
passing-through solution due to the FI parameter r.

=> There is no naive classical solution of vortex strings passing
through each other.
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Then what about vortex strings?

To see the reconnection property of vortex strings, we need effective
action on the multiple vortex strings...
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Vortex string effective action comes from a D2-brane action.

1
.~ — / dtdz Tr [—4—9251,‘,,1?“" — D,Z'"D*Z — D" D"y

2
g 2
e (Yo' — [Z, Z'] — rlaxo)
Z x ®* + 1®° : complex adjoint field, 7/ : new fundamental field
1 ILAzx® R Ax® 27
— = = (27)°l_¢an , FI parameter r = —
g’ gs 27mwgsls EEH

Decoupling limit = g — oo = Only the potential bottom survives!

The effective theory of the vortex strings is a sigma model whose
target space is the D-term equation ¥! — [Z, Zﬂ —rlyye = 0.

The important fact is that the D-term equation does not allow the
passing-through solution due to the FI parameter r.

=> There is no naive classical solution of vortex strings passing
through each other.
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2 Vortex strings and D-strings

D-strings can pass through each other
27> 1 5 B 5
dtde Tr |——F,, F"" — —D,®;D"®" + —[®;, ®/]
Gs 4 2 4
In this D-string action, there is a classical solution representing
them passing through each other without reconnection:

> [k @ 2~ _ [ tan(0/2)x 0
B ( 0 —Ft) »: TR ( 0 —tan(6/2)x
0 L1, 7K1, go— 0 : Action (low energy approx.) is valid.
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Vortex string effective action comes from a D2-brane action.

1
S — / dtdz Tr [—4—9251,‘,,1?*‘" — D, Z'D*Z — D" D*ep

2
g 2
e (Yo' — [Z, Z"] — rlaxo) ]
Z x ®* +1®° : complex adjoint field, 7/ : new fundamental field
1 ILAzx® e Ax® 27
— = = (27)°l_¢an , FI parameter r = —
gz gs 2#9313 Eiﬂ

Decoupling limit = g — oo = Only the potential bottom survives!

The effective theory of the vortex strings is a sigma model whose
target space is the D-term equation ¥ — [Z, Zﬂ —rly e = 0.

The important fact is that the D-term equation does not allow the
passing-through solution due to the FI parameter r.

=> There is no naive classical solution of vortex strings passing
through each other.

Pirsa: 05030136 Page 15/39




= Reconnection of colliding vortex strings

Solving the D-term condition by [Kim-Lee-Yi]

2_\!} ,.r‘l_b 2.22 1
Z = wlaxa+ = (1 \/:)’ = \/F(v’1+b)’ “’E_lrl-,bEal‘/l—l—az

w : center-of-mass for the two vortex strings, 2= : relative position

]

Using Manton’s method, we obtain the effective action of the rela-
tive motion of the two vortex strings:

|z
vzt +r2/4

2 [T
e Behavior of the metric : g(|z|) ~ il e e <y A
1 for |z| > /r/2
When strings are close (z ~ 0), a coordinate transformation
z ~ z2/4/2r gives a flat metric ds® ~ |dz|>.

= Antipodal points in z space are identified
[Vilenkin-Shellard][R uback]

S="T [ dtde g(12)8,2(t,2)0"=(t,2),  g(l=]) =
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We make the field redefinition

ZE

2(|z|* + r2/4)"/*

Then in terms of = = pe'?,

2
s — (1 - (@) ) dp® + p*dy’

E

p

where f(p) is a smooth function with

2
flo)~—V3p (p~), flp)~—\/-p* (p~0)
|k
A smeared surface of a cone with a deficit angle &
i

Effective sigma model describes
a Polyakov string moving on the surface of the smeared cone.
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Proof of reconnection of colliding vortex strings

4
|

Initial condition at some time for the vortex strings :

v
z=zg+ttan(@/2)x, z = = (8, zp and v are real)

e When 6, v < 1, Moduli space approximation is valid.

e Initial strings are straight, but in a natural metric they are equiv-
alent to a single curved Polyakov string.

— It moves in = space.
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The Polyakov string slips
off the top of the cone.

Rez _ 7 % ) |

Going back to the original space,
the vortex strings have been reconnected!

je e n,
9./
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Proof of reconnection of colliding vortex strings

4
Y

Initial condition at some time for the vortex strings :

v
z=zg+ttan(@/2)x, z = = (8, zp and v are real)

e When 0, v < 1, Moduli space approximation is valid.

e Initial strings are straight, but in a natural metric they are equiv-
alent to a single curved Polyakov string.

— It moves in = space.
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The Polyakov string slips
off the top of the cone.

Rez _ 7 % ) |

Going back to the original space,
the vortex strings have been reconnected!

je e n,
9./
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Velocity upperbound for the reconnection

v : velocity of the
original strings in the
center-of-mass frame
V : velocity of the re-
connected region

t = 0 : collision inci-
dence

(a)

(<)

Kink points are at (Vicot(8/2),Vt,ot), (—Vicot(8/2),Vt,—ot).
Consider the energy gain, 6E = E, — E_.

e E_. : energy produced by reconnection = energy between kinks.
(solid lines along the box surface)

e E_ : energy of the original strings which disappeared after the
reconnection. (dashed lines)

Given v, if dFE < 0 for some velocity V, then the reconnection
should occur.
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B V52 + V2cot?(0/2) |4
SR ( Vv1— V2  Vi-#2 sin(9/2))

Kinks should not travel faster than the speed of light

OFE OFE
(Large v) (Small &)
Vv v
: . sin(@/2)
Velocity upperbound : v <
/1 + sin(6/2)

This coincides with a field theory result by [Copeland-Turok],

. 4ex(1 — cos9) ‘
o< with the ansatz parameter a = 1/8.
1+ 4a(1 — cos )
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4 Reconnection of colliding D-strings

Reconnection = Tachyon condensation

Worldsheet string theory result:

spectrum of a string connecting
the two D-Stl‘illgs is [Berkooz-Douglas-Leigh]

1\ & 2z0)2
e . (=)
2) =2 (2=xi12)?

The lowest mode n = 0 becomes tachy-
onic for sufficiently close D-strings.

It was proved that the condensation of the tachyonic mode corre-
sponds to the reconnection. The proof is [Nagaocka-K.H.]

(1) Describe the tilted D-strings by 2d Yang-Mills.

(2) Fluctuation around the classical solution reproduces the spec-

trum, and the tachyon mode comes from an off-diagonal entry.
(3) Condensation of it leads to the reconnection by diagonalization.

tan(8/2)x T(t)e = o 2 _2ge2
~ ( T(t)e—5" —tan(9/2)m) — :l:\/(:l:tan(ﬂ/2)) + T'(t)%e—28
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Effective action of the off-diagonal tachyonic mode:
1 1 1
S =—[dit [—((‘%T(t))z — —m2T?
gr 2 2

Tachyon dynamics and the reconnection is a quantum mechanical
problem. A particle interpretation :

1 222718 ,
s — — serves as a mass of the particle located at T'(t)
gr gs\/a
0 (2z0)% . -
em? = - 5 gives a frequency of the harmonic potential

B 272 (2=12)
(T, t), V(T)

~

It
\

Moving D-strings 2z — vt show a tachionic period —ty < t <

(tg = I”—“f’rﬂ) during which the potential becomes upside down.
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4 Reconnection of colliding D-strings

Reconnection = Tachyon condensation

Worldsheet string theory result:

spectrum of a string connecting
the two D-Stl‘illgs is [Berkooz-Douglas-Leigh]

1\ & 2z0)°
el D . (=)
2) w2 (2wi2)?

The lowest mode n = 0 becomes tachy-
onic for sufficiently close D-strings.

It was proved that the condensation of the tachyonic mode corre-
sponds to the reconnection. The proof is [Nagaocka-K.H.]

(1) Describe the tilted D-strings by 2d Yang-Mills.

(2) Fluctuation around the classical solution reproduces the spec-

trum, and the tachyon mode comes from an off-diagonal entry.
(3) Condensation of it leads to the reconnection by diagonalization.
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Effective action of the off-diagonal tachyonic mode:
1 1 1
S =— [ di [—((‘%T(t))z — —m2T?
gr 2 2

Tachyon dynamics and the reconnection is a quantum mechanical
problem. A particle interpretation :

1 2¢y/22°1 ‘
e — — serves as a mass of the particle located at T'(t)
gr gs\/a
2 0 (233)2 . . .
oem- = — gives a frequency of the harmonic potential

2wz (2mi2)?
¥(T,t). V(T)

=

It
\

Moving D-strings 2z — vt show a tachionic period —ty < t <

(tg = I”—“f’rﬂ) during which the potential becomes upside down.
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4 Reconnection of colliding D-strings

Reconnection = Tachyon condensation

Worldsheet string theory result:
spectrum of a string connecting
the two D-Stl‘illgs is [Berkooz-Douglas-Leigh]

I\ & 2z0)2
sl . (=)
2) =2 (2x12)?

The lowest mode n = 0 becomes tachy-
onic for sufficiently close D-strings.

It was proved that the condensation of the tachyonic mode corre-
sponds to the reconnection. The proof is [Nagaocka-K.H.]

(1) Describe the tilted D-strings by 2d Yang-Mills.

(2) Fluctuation around the classical solution reproduces the spec-

trum, and the tachyon mode comes from an off-diagonal entry.
(3) Condensation of it leads to the reconnection by diagonalization.

tan(0/2)xz T(t)e = - 2 _2ge3
~ ( T(t)e—5" —tan(9/2)m) — :l:\/(:l:tan(ﬂ/2)) 4 T(#) 2"
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Effective action of the off-diagonal tachyonic mode:
1 1 1
S=—[di [—((‘%T(t))z — —m2T?
gr 2 2

Tachyon dynamics and the reconnection is a quantum mechanical
problem. A particle interpretation :

1 222718 ‘
e — — serves as a mass of the particle located at T'(t)
gr gs\/a
2 0 (2‘3‘])2 . . .
oem- = + gives a frequency of the harmonic potential

2wz (2mi2)?
¥(T,t). V(T)

~

It
\

Moving D-strinés 2z9 = vt show a tachionic period —ty < t < 1p

(tg = I”—“f’m) during which the potential becomes upside down.
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Reconnection Condition

t{—tu —t(]{t{tu t=tu '

If the tachyon value is large enough at the end of the tachyonic
period, the reconnection occurs.

Vo
V2rl,

: Reconnection Condition

‘[?tu{& < T)’

Reconnection probability

1 V35 4./703/2
P=2[ df [T t=to)f = St eI exp |- VRS avsore
I e/ vami, 273/493/4 =

Our result is close to that of [Jackson-Jones-Polchinski|, a string

worldsheet calculation, -
P = exp [(4 — ) E_rw"]
2g
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Effective action of the off-diagonal tachyonic mode:
1 1 1
S =—[di [—((‘%T(t))z — —m2T?
qgT 2 2

Tachyon dynamics and the reconnection is a quantum mechanical
problem. A particle interpretation :

1 222718 :
e — — serves as a mass of the particle located at T'(t)
gr gs\/a
2 0 (220)2 . . .
oem- = — 5 gives a frequency of the harmonic potential

2 272 (2=12)
(T, t). V(T)

~

It
\

Moving D-strings 2z — vt show a tachionic period —ty < t < t

(tg = I”—“f’rﬂ) during which the potential becomes upside down.
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Reconnection Condition

t{—tu —t(]{t{tu t=tu '

If the tachyon value is large enough at the end of the tachyonic
period, the reconnection occurs.

Vo
V2rl,

: Reconnection Condition

‘Utu{& < T)’

Reconnection probability

B V35 4./703/2
P=2[ df [y(T.t=to)f = ;Yo eVl exp |- VRO s
I e/ vami, 27r3/493/4 p=

Our result is close to that of [Jackson-Jones-Polchinski|, a string

worldsheet calculation, =
P = exp [(4 — ) E_rw"]
29
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5 Summary and Discussions

Summary

For vortex strings,

e Inevitable reconnection of colliding strings was shown classically.

e Velocity upperbound for it was derived.
For D-strings,

e Reconnection is a quantum phenomenon.

® Tachyon condensation leads to the reconnection.

e Reconnection probability was evaluated with evolution of tachyon

wave function.
S =L
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Origin of the difference : an energetic consideration

Why is there a classical difference for the strings?

P
A /““““\
Vv(T) V(T)
A A

D-string reconnection is accompanied by bond production

[Taylor-K.H.|[Sato]
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Nonabelian vortex strings [Tong-K.H.]

In nonabelian Higgs models, several kinds of vortex strings appear.

o

N J
T
g g T
W
e

Different kinds of strings can pass through each other.
P =1/N + O(e™/T) for N = N. = N;

\0—/ Generation of
/—0\ Tong’s Monopoles!

How can we distinguish field theory vortices from superstrings?!
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& Summaryv and Discussions

Summary

For vortex strings,

e Inevitable reconnection of colliding strings was shown classically.

e Velocity upperbound for it was derived.
For D-strings,

e Reconnection is a quantum phenomenon.

® Tachyon condensation leads to the reconnection.

e Reconnection probability was evaluated with evolution of tachyon

wave function.
el L
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Vortex string effective action comes from a D2-brane action.

1
s — / dtdzx Tr [—4—921:;“,1?“" — D, Z"D*Z — D, "D

2
g 2
= (Yo' — [Z, Z"] — riaxo)
Z x ®* + 1®° : complex adjoint field, 7/ : new fundamental field
1 ILAzx® - Ax® 27
— = = (27)°l;¢an , FI parameter r = —
g’ gs 27mwgsls EiH

Decoupling limit = ¢ — oo = Only the potential bottom survives!

The effective theory of the vortex strings is a sigma model whose
target space is the D-term equation ¥! — [Z, Zﬂ —rlyye = 0.

The important fact is that the D-term equation does not allow the
passing-through solution due to the FI parameter r.

=> There is no naive classical solution of vortex strings passing
through each other.
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2 Vortex strings and D-strings

D-strings can pass through each other

27> 1 &y =) .

N — dtde Tr |——F,, F"" — —D,®;D"®" + —[®;, D]
Gs 4 2 4

In this D-string action, there is a classical solution representing

them passing through each other without reconnection:

2v (Tt O 2~ _ [ tan(0/2)x 0
2'?1'15(1)2 — ( G —Et) 1 2‘?1'35(1)3 o ( 0 _tan(9/2)$

0 L1, 7K1, go— 0 : Action (low energy approx.) is valid.
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Nonabelian vortex strings [Tong-K.H.]

In nonabelian Higgs models, several kinds of vortex strings appear.

o

i
]

Different kinds of strings can pass through each other.
P =1/N + O(e™/T) for N = N. = Nj

i \0—/ Generation of
/—0\ Tong’s Monopoles!

How can we distinguish field theory vortices from superstrings?!
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