Title: Reconnection of Colliding Cosmic Strings

Date: Mar 29, 2005 10:35 AM

URL: http://pirsa.org/05030136

Abstract:

29 March. 2005 Talk at Perimeter Institute, String phenomenology workshop

Reconnection of Colliding Cosmic Strings

Koji Hashimoto

Institute of Physics, University of Tokyo, Komaba Center for Theoretical Physics, MIT

hep-th/0501031 w/ A. Hanany (MIT) work in progress w/ D. Tong (Cambridge)

Pirsa: 05030136 Page 2/39

How can we distinguish several possible origins of cosmic strings?

Ans.

Reconnection (or Recombination, Intercommutation) probability P in collision process

- P = 1 (deterministic reconnection) for field theory vortex strings

 [Shellard][Matzner][Moriarty-Myers-Rebbi]
 - Numerical simulations show that they always reconnect.
 - There seems to be an upperbound of velocity for reconnection.
- $P \neq 1$ (probabilistic reconnection) for cosmic super(/D-)strings

 [Copeland-Myers-Polchinski][Jackson-Jones-Polchinski]
 - Worldsheet calculations show $10^{-3} \lesssim P \lesssim 1$ for some compactification scenario.
 - Fundamental strings should be of this type, $P \sim g_s^2$.

N

In this talk, the following questions will be answered, from the viewpoint of effective field theory on the cosmic strings:

- What is the mechanism of the reconnection of the vortex strings and of the D-strings?
- Why are they different in reconnection property?
- How can one compute the reconnection probability for D-strings?

———— Plan of this talk ————

- Introduction
- Vortex strings and D-strings: the difference
- Reconnection of vortex strings
- Reconnection of D-strings
- Summary and discussions

Pirsa: 05030136 Page 4/39

Vortex strings and D-strings

2

D-strings can pass through each other

$$S=rac{2\pi l_{
m s}^2}{g_{
m s}}\int\! dt dx~{
m Tr}\left[-rac{1}{4}F_{\mu
u}F^{\mu
u}-rac{1}{2}D_{\mu}\Phi_iD^{\mu}\Phi^i+rac{1}{4}[\Phi_i,\Phi_j]^2
ight]$$

In this D-string action, there is a classical solution representing them passing through each other without reconnection:

$$2\pi l_{
m s}^2\Phi_2=\left(egin{array}{cc} \overline{v}t & 0 \ 0 & -\overline{v}t \end{array}
ight) \;\;, \quad 2\pi l_{
m s}^2\Phi_3=\left(egin{array}{cc} an(heta/2)x & 0 \ 0 & - an(heta/2)x \end{array}
ight)$$

 $\theta \ll 1, \ \bar{v} \ll 1, \ g_{\rm s} \to 0 \ :$ Action (low energy approx.) is valid.

A

Then what about vortex strings?

To see the reconnection property of vortex strings, we need effective action on the multiple vortex strings...

Brane realization of 4d $\mathcal{N}=2$ Abelian Higgs model w/ $(A_{\mu}, \phi, q, \tilde{q})$

Gauge coupling:
$$\frac{1}{e_{\rm AH}^2} = \frac{\Delta x^6}{(2\pi)^2 g_s l_s} \;, \; \text{FI parameter} : \zeta_{\rm AH} = \frac{\Delta x^9}{(2\pi)^3 g_s l_s^3}$$

Decoupling limit: $\Delta x^6 \sim \epsilon l_s$, $\Delta x^9 \sim \epsilon^2 l_s$, $g_s \sim \epsilon$, $\epsilon \to 0$

Vortex strings = D2-branes suspending between D4s on D6

[Hanany-Tong]

Vortex strings and D-strings

2

D-strings can pass through each other

$$S=rac{2\pi l_{
m s}^2}{g_{
m s}}\int\! dt dx~{
m Tr}\left[-rac{1}{4}F_{\mu
u}F^{\mu
u}-rac{1}{2}D_{\mu}\Phi_iD^{\mu}\Phi^i+rac{1}{4}[\Phi_i,\Phi_j]^2
ight]$$

In this D-string action, there is a classical solution representing them passing through each other without reconnection:

$$2\pi l_{
m s}^2\Phi_2=\left(egin{array}{cc} \overline{v}t & 0 \ 0 & -\overline{v}t \end{array}
ight) \;\;, \quad 2\pi l_{
m s}^2\Phi_3=\left(egin{array}{cc} an(heta/2)x & 0 \ 0 & - an(heta/2)x \end{array}
ight)$$

 $\theta \ll 1, \ \bar{v} \ll 1, \ g_{\rm s} \to 0 \ :$ Action (low energy approx.) is valid.

Then what about vortex strings?

To see the reconnection property of vortex strings, we need effective action on the multiple vortex strings...

Brane realization of 4d $\mathcal{N}=2$ Abelian Higgs model w/ $(A_{\mu}, \phi, q, \tilde{q})$

Gauge coupling:
$$\frac{1}{e_{\rm AH}^2} = \frac{\Delta x^6}{(2\pi)^2 g_s l_s} \;, \; {\rm FI \; parameter} : \zeta_{\rm AH} = \frac{\Delta x^9}{(2\pi)^3 g_s l_s^3}$$

Decoupling limit: $\Delta x^6 \sim \epsilon l_s$, $\Delta x^9 \sim \epsilon^2 l_s$, $g_s \sim \epsilon$, $\epsilon \to 0$

Vortex strings = D2-branes suspending between D4s on D6

[Hanany-Tong]

Vortex string effective action comes from a D2-brane action.

$$egin{aligned} S_{ ext{vortex}} &= \int\! dt dx \; ext{Tr} \left[-rac{1}{4g^2} F_{\mu
u} F^{\mu
u} - \mathcal{D}_{\mu} Z^{\dagger} \mathcal{D}^{\mu} Z - \mathcal{D}_{\mu} \psi^{\dagger} \mathcal{D}^{\mu} \psi
ight. \ &\left. -rac{g^2}{2} \left(\psi \psi^{\dagger} - \left[Z, Z^{\dagger}
ight] - r \mathbf{1}_{2 imes 2}
ight)^2
ight] \end{aligned}$$

 $Z \propto \Phi^2 + i\Phi^3$: complex adjoint field, ψ : new fundamental field

$$rac{1}{g^2} = rac{l_{
m s}\Delta x^9}{g_{
m s}} = (2\pi)^3 l_{
m s}^4 \zeta_{
m AH} \;, \quad ext{FI parameter } r = rac{\Delta x^6}{2\pi g_{
m s} l_{
m s}} = rac{2\pi}{e_{
m AH}^2}$$

Decoupling limit $\Rightarrow g \to \infty \Rightarrow$ Only the potential bottom survives!

The effective theory of the vortex strings is a sigma model whose target space is the D-term equation $\psi \psi^{\dagger} - [Z, Z^{\dagger}] - r \mathbf{1}_{2 \times 2} = 0$.

The important fact is that the D-term equation does not allow the passing-through solution due to the FI parameter r.

⇒ There is no naive classical solution of vortex strings passing through each other.

Then what about vortex strings?

To see the reconnection property of vortex strings, we need effective action on the multiple vortex strings...

Brane realization of 4d $\mathcal{N}=2$ Abelian Higgs model w/ $(A_{\mu}, \phi, q, \tilde{q})$

Gauge coupling:
$$\frac{1}{e_{\rm AH}^2} = \frac{\Delta x^6}{(2\pi)^2 g_s l_s} \;, \; {\rm FI \; parameter} : \zeta_{\rm AH} = \frac{\Delta x^9}{(2\pi)^3 g_s l_s^3}$$

Decoupling limit: $\Delta x^6 \sim \epsilon l_s$, $\Delta x^9 \sim \epsilon^2 l_s$, $g_s \sim \epsilon$, $\epsilon \to 0$

Vortex strings = D2-branes suspending between D4s on D6

[Hanany-Tong]

Vortex string effective action comes from a D2-brane action.

$$egin{aligned} S_{ ext{vortex}} &= \int\! dt dx \; ext{Tr} \left[-rac{1}{4g^2} F_{\mu
u} F^{\mu
u} - \mathcal{D}_{\mu} Z^{\dagger} \mathcal{D}^{\mu} Z - \mathcal{D}_{\mu} \psi^{\dagger} \mathcal{D}^{\mu} \psi
ight. \ &\left. -rac{g^2}{2} \left(\psi \psi^{\dagger} - \left[Z, Z^{\dagger}
ight] - r \mathbf{1}_{2 imes 2}
ight)^2
ight] \end{aligned}$$

 $Z \propto \Phi^2 + i\Phi^3$: complex adjoint field, ψ : new fundamental field

$$rac{1}{g^2} = rac{l_{
m s}\Delta x^9}{g_{
m s}} = (2\pi)^3 l_{
m s}^4 \zeta_{
m AH} \;, \quad ext{FI parameter } r = rac{\Delta x^6}{2\pi g_{
m s} l_{
m s}} = rac{2\pi}{e_{
m AH}^2}$$

Decoupling limit $\Rightarrow g \to \infty \Rightarrow$ Only the potential bottom survives!

The effective theory of the vortex strings is a sigma model whose target space is the D-term equation $\psi \psi^{\dagger} - [Z, Z^{\dagger}] - r \mathbf{1}_{2 \times 2} = 0$.

The important fact is that the D-term equation does not allow the passing-through solution due to the FI parameter r.

⇒ There is no naive classical solution of vortex strings passing through each other.

Then what about vortex strings?

To see the reconnection property of vortex strings, we need effective action on the multiple vortex strings...

Brane realization of 4d $\mathcal{N}=2$ Abelian Higgs model w/ $(A_{\mu}, \phi, q, \tilde{q})$

Gauge coupling:
$$\frac{1}{e_{\rm AH}^2} = \frac{\Delta x^6}{(2\pi)^2 g_s l_s} \;, \; \text{FI parameter} : \zeta_{\rm AH} = \frac{\Delta x^9}{(2\pi)^3 g_s l_s^3}$$

Decoupling limit: $\Delta x^6 \sim \epsilon l_s$, $\Delta x^9 \sim \epsilon^2 l_s$, $g_s \sim \epsilon$, $\epsilon \to 0$

Vortex strings = D2-branes suspending between D4s on D6

[Hanany-Tong]

Vortex string effective action comes from a D2-brane action.

$$egin{aligned} S_{ ext{vortex}} &= \int\! dt dx \; ext{Tr} \left[-rac{1}{4g^2} F_{\mu
u} F^{\mu
u} - \mathcal{D}_{\mu} Z^{\dagger} \mathcal{D}^{\mu} Z - \mathcal{D}_{\mu} \psi^{\dagger} \mathcal{D}^{\mu} \psi
ight. \ &\left. -rac{g^2}{2} \left(\psi \psi^{\dagger} - \left[Z, Z^{\dagger}
ight] - r \mathbf{1}_{2 imes 2}
ight)^2
ight] \end{aligned}$$

 $Z \propto \Phi^2 + i\Phi^3$: complex adjoint field, ψ : new fundamental field

$$rac{1}{g^2} = rac{l_{
m s}\Delta x^9}{g_{
m s}} = (2\pi)^3 l_{
m s}^4 \zeta_{
m AH} \;, \quad ext{FI parameter } r = rac{\Delta x^6}{2\pi g_{
m s} l_{
m s}} = rac{2\pi}{e_{
m AH}^2}$$

Decoupling limit $\Rightarrow g \to \infty \Rightarrow$ Only the potential bottom survives!

The effective theory of the vortex strings is a sigma model whose target space is the D-term equation $\psi \psi^{\dagger} - [Z, Z^{\dagger}] - r \mathbf{1}_{2 \times 2} = 0$.

The important fact is that the D-term equation does not allow the passing-through solution due to the FI parameter r.

⇒ There is no naive classical solution of vortex strings passing through each other.

D-strings can pass through each other

$$S=rac{2\pi l_{
m s}^2}{g_{
m s}}\int\! dt dx~{
m Tr}\left[-rac{1}{4}F_{\mu
u}F^{\mu
u}-rac{1}{2}D_{\mu}\Phi_iD^{\mu}\Phi^i+rac{1}{4}[\Phi_i,\Phi_j]^2
ight]$$

In this D-string action, there is a classical solution representing them passing through each other without reconnection:

$$2\pi l_{
m s}^2\Phi_2=\left(egin{array}{cc} \overline{v}t & 0 \ 0 & -\overline{v}t \end{array}
ight) \;\;, \quad 2\pi l_{
m s}^2\Phi_3=\left(egin{array}{cc} an(heta/2)x & 0 \ 0 & - an(heta/2)x \end{array}
ight)$$

 $\theta \ll 1, \, \bar{v} \ll 1, \, g_{\rm s} \to 0 \, : \, {\rm Action} \, ({\rm low \; energy \; approx.}) \, {\rm is \; valid.}$

Vortex string effective action comes from a D2-brane action.

$$egin{aligned} S_{ ext{vortex}} &= \int\! dt dx \; ext{Tr} \left[-rac{1}{4g^2} F_{\mu
u} F^{\mu
u} - \mathcal{D}_{\mu} Z^{\dagger} \mathcal{D}^{\mu} Z - \mathcal{D}_{\mu} \psi^{\dagger} \mathcal{D}^{\mu} \psi
ight. \ &\left. -rac{g^2}{2} \left(\psi \psi^{\dagger} - \left[Z, Z^{\dagger}
ight] - r \mathbf{1}_{2 imes 2}
ight)^2
ight] \end{aligned}$$

 $Z \propto \Phi^2 + i\Phi^3$: complex adjoint field, ψ : new fundamental field

$$rac{1}{g^2} = rac{l_{
m s}\Delta x^9}{g_{
m s}} = (2\pi)^3 l_{
m s}^4 \zeta_{
m AH} \;, \quad ext{FI parameter } r = rac{\Delta x^6}{2\pi g_{
m s} l_{
m s}} = rac{2\pi}{e_{
m AH}^2}$$

Decoupling limit $\Rightarrow g \to \infty \Rightarrow$ Only the potential bottom survives!

The effective theory of the vortex strings is a sigma model whose target space is the D-term equation $\psi \psi^{\dagger} - [Z, Z^{\dagger}] - r \mathbf{1}_{2 \times 2} = 0$.

The important fact is that the D-term equation does not allow the passing-through solution due to the FI parameter r.

⇒ There is no naive classical solution of vortex strings passing through each other.

Solving the D-term condition by

[Kim-Lee-Yi]

$$Z = \frac{\mathbf{w}}{1}_{2 \times 2} + \frac{\mathbf{z}}{2} \begin{pmatrix} 1 \sqrt{\frac{2b}{a}} \\ 0 & -1 \end{pmatrix}, \ \psi = \sqrt{r} \begin{pmatrix} \sqrt{1-b} \\ \sqrt{1+b} \end{pmatrix}, \ a \equiv \frac{2|z|^2}{r}, b \equiv \frac{1}{a + \sqrt{1+a^2}}$$

w: center-of-mass for the two vortex strings, 2z: relative position

Using Manton's method, we obtain the effective action of the relative motion of the two vortex strings:

$$S=\mathcal{T}\int\!dtdx\;g(|z|)\partial_{\mu}z(t,x)\partial^{\mu}\overline{z}(t,x),\quad g(|z|)\equivrac{|z|^2}{\sqrt{|z|^4+r^2/4}}$$

• Behavior of the metric : $g(|z|) \sim \begin{cases} 2|z|^2/r \text{ for } |z| < \sqrt{r/2} \\ 1 \text{ for } |z| > \sqrt{r/2} \end{cases}$

When strings are close $(z \sim 0)$, a coordinate transformation $\tilde{z} \sim z^2/\sqrt{2r}$ gives a flat metric $ds^2 \sim |d\tilde{z}|^2$.

 \Rightarrow Antipodal points in z space are identified

[Vilenkin-Shellard] [Ruback]

We make the field redefinition

$$\widetilde{z} \equiv rac{z^2}{2(|z|^4 + r^2/4)^{1/4}}$$

Then in terms of $\tilde{z} \equiv \rho e^{i\varphi}$,

$$ds^2 = \left(1 + \left(rac{df(
ho)}{d
ho}
ight)^2
ight)d
ho^2 +
ho^2 darphi^2$$

where $f(\rho)$ is a smooth function with

$$f(\rho) \sim -\sqrt{3}\rho \quad (\rho \sim \infty) \ , \quad f(\rho) \sim -\sqrt{\frac{2}{r}}\rho^2 \quad (\rho \sim 0)$$

#

A smeared surface of a cone with a deficit angle π

Effective sigma model describes

a Polyakov string moving on the surface of the smeared cone.

Proof of reconnection of colliding vortex strings

Initial condition at some time for the vortex strings:

$$z=z_0+i an(heta/2)x,\quad \dot{z}=rac{v}{2}\quad (heta,\,z_0 ext{ and }v ext{ are real})$$

- When $\theta, v \ll 1$, Moduli space approximation is valid.
- Initial strings are straight, but in a natural metric they are equivalent to a single curved Polyakov string.
 - \rightarrow It moves in \tilde{z} space.

The Polyakov string slips off the top of the cone.

Going back to the original space, the vortex strings have been reconnected!

Pirsa: 05030136 Page 19/39

Proof of reconnection of colliding vortex strings

Initial condition at some time for the vortex strings:

$$z=z_0+i an(heta/2)x,\quad \dot{z}=rac{v}{2}\quad (heta,\,z_0 ext{ and }v ext{ are real})$$

- When $\theta, v \ll 1$, Moduli space approximation is valid.
- Initial strings are straight, but in a natural metric they are equivalent to a single curved Polyakov string.
 - \rightarrow It moves in \tilde{z} space.

The Polyakov string slips off the top of the cone.

Going back to the original space, the vortex strings have been reconnected!

Pirsa: 05030136 Page 21/39

Velocity upperbound for the reconnection

 \overline{v} : velocity of the original strings in the center-of-mass frame V: velocity of the reconnected region t=0: collision incidence

Kink points are at $(Vt \cot(\theta/2), Vt, \bar{v}t), (-Vt \cot(\theta/2), Vt, -\bar{v}t)$. Consider the energy gain, $\delta E = E_+ - E_-$.

- E_+ : energy produced by reconnection = energy between kinks. (solid lines along the box surface)
- E_{-} : energy of the original strings which disappeared after the reconnection. (dashed lines)

Given \bar{v} , if $\delta E < 0$ for some velocity V, then the reconnection should occur.

$$\delta E = 4\mathcal{T}t\left(rac{\sqrt{ar{v}^2 + V^2\cot^2(heta/2)}}{\sqrt{1-V^2}} - rac{V}{\sqrt{1-ar{v}^2}\sin(heta/2)}
ight)$$

Kinks should not travel faster than the speed of light

$$\Rightarrow$$
 $0 \le V \le \sqrt{1 - \bar{v}^2} \sin(\theta/2) \ (\equiv V_{\text{max}})$

$$\text{Velocity upperbound}: \quad \bar{v} < \frac{\sin(\theta/2)}{\sqrt{1+\sin^2(\theta/2)}}$$

This coincides with a field theory result by [Copeland-Turok],

$$\bar{v} < \sqrt{\frac{4\alpha(1-\cos\theta)}{1+4\alpha(1-\cos\theta)}}$$
 with the ansatz parameter $\alpha=1/8$.

Reconnection of colliding D-strings

Reconnection = Tachyon condensation

Worldsheet string theory result: spectrum of a string connecting the two D-strings is [Berkooz-Douglas-Leigh]

$$m^2 = \left(n - rac{1}{2}
ight)rac{ heta}{\pi l_{
m s}^2} + rac{(2z_0)^2}{(2\pi l_{
m s}^2)^2}$$

The lowest mode n = 0 becomes tachyonic for sufficiently close D-strings.

It was proved that the condensation of the tachyonic mode corresponds to the reconnection. The proof is [Nagaoka-K.H.]

- (1) Describe the tilted D-strings by 2d Yang-Mills.
- (2) Fluctuation around the classical solution reproduces the spectrum, and the tachyon mode comes from an off-diagonal entry.
- (3) Condensation of it leads to the reconnection by diagonalization.

$$\Phi \sim \begin{pmatrix} \tan(\theta/2)x & T(t)e^{-\theta x^2} \\ T(t)e^{-\theta x^2} & -\tan(\theta/2)x \end{pmatrix} \ \rightarrow \ \pm \sqrt{(x\tan(\theta/2))^2 + T(t)^2 e^{-2\theta x^2}}$$

Effective action of the off-diagonal tachyonic mode:

$$S \,=\, rac{1}{g_T} \int dt \left[rac{1}{2} (\partial_t T(t))^2 - rac{1}{2} m^2 T^2
ight]$$

Tachyon dynamics and the reconnection is a quantum mechanical problem. A particle interpretation:

 $ullet rac{1}{g_T} = rac{2\sqrt{2}\pi^2 l_s^3}{g_s\sqrt{ heta}} ext{ serves as a mass of the particle located at } T(t)$

 \bullet $m^2 = -rac{ heta}{2\pi l_s^2} + rac{(2z_0)^2}{(2\pi l_s^2)^2}$ gives a frequency of the harmonic potential

Moving D-strings $2z_0 = vt$ show a tachionic period $-t_0 < t < t_0$ $(t_0 \equiv \frac{l_s\sqrt{2\pi\theta}}{v})$ during which the potential becomes upside down.

Reconnection of colliding D-strings

Reconnection = Tachyon condensation

Worldsheet string theory result: spectrum of a string connecting the two D-strings is [Berkooz-Douglas-Leigh]

$$m^2 = \left(n - rac{1}{2}
ight)rac{ heta}{\pi l_{
m s}^2} + rac{(2z_0)^2}{(2\pi l_{
m s}^2)^2}$$

The lowest mode n = 0 becomes tachyonic for sufficiently close D-strings.

It was proved that the condensation of the tachyonic mode corresponds to the reconnection. The proof is [Nagaoka-K.H.]

- (1) Describe the tilted D-strings by 2d Yang-Mills.
- (2) Fluctuation around the classical solution reproduces the spectrum, and the tachyon mode comes from an off-diagonal entry.
- (3) Condensation of it leads to the reconnection by diagonalization.

$$\Phi \sim \begin{pmatrix} \tan(\theta/2)x & T(t)e^{-\theta x^2} \\ T(t)e^{-\theta x^2} & -\tan(\theta/2)x \end{pmatrix} \ \rightarrow \ \pm \sqrt{(x\tan(\theta/2))^2 + T(t)^2 e^{-2\theta x^2}}$$

Effective action of the off-diagonal tachyonic mode:

$$S \,=\, rac{1}{g_T} \int dt \left[rac{1}{2} (\partial_t T(t))^2 - rac{1}{2} m^2 T^2
ight]$$

Tachyon dynamics and the reconnection is a quantum mechanical problem. A particle interpretation:

 $ullet rac{1}{g_T} = rac{2\sqrt{2}\pi^2 l_s^3}{g_s\sqrt{ heta}} ext{ serves as a mass of the particle located at } T(t)$

 \bullet $m^2 = -rac{ heta}{2\pi l_s^2} + rac{(2z_0)^2}{(2\pi l_s^2)^2}$ gives a frequency of the harmonic potential

Moving D-strings $2z_0 = vt$ show a tachionic period $-t_0 < t < t_0$ $(t_0 \equiv \frac{l_s\sqrt{2\pi\theta}}{v})$ during which the potential becomes upside down.

Reconnection of colliding D-strings

Reconnection = Tachyon condensation

Worldsheet string theory result: spectrum of a string connecting the two D-strings is [Berkooz-Douglas-Leigh]

$$m^2 = \left(n - rac{1}{2}
ight)rac{ heta}{\pi l_{
m s}^2} + rac{(2z_0)^2}{(2\pi l_{
m s}^2)^2}$$

The lowest mode n = 0 becomes tachyonic for sufficiently close D-strings.

It was proved that the condensation of the tachyonic mode corresponds to the reconnection. The proof is [Nagaoka-K.H.]

- (1) Describe the tilted D-strings by 2d Yang-Mills.
- (2) Fluctuation around the classical solution reproduces the spectrum, and the tachyon mode comes from an off-diagonal entry.
- (3) Condensation of it leads to the reconnection by diagonalization.

$$\Phi \sim \begin{pmatrix} \tan(\theta/2)x & T(t)e^{-\theta x^2} \\ T(t)e^{-\theta x^2} & -\tan(\theta/2)x \end{pmatrix} \ \rightarrow \ \pm \sqrt{(x\tan(\theta/2))^2 + T(t)^2 e^{-2\theta x^2}}$$

Effective action of the off-diagonal tachyonic mode:

$$S \,=\, rac{1}{g_T} \int dt \left[rac{1}{2} (\partial_t T(t))^2 - rac{1}{2} m^2 T^2
ight]$$

Tachyon dynamics and the reconnection is a quantum mechanical problem. A particle interpretation:

 $ullet rac{1}{g_T} = rac{2\sqrt{2}\pi^2 l_s^3}{g_s\sqrt{ heta}} ext{ serves as a mass of the particle located at } T(t)$

 \bullet $m^2 = -rac{ heta}{2\pi l_s^2} + rac{(2z_0)^2}{(2\pi l_s^2)^2}$ gives a frequency of the harmonic potential

Moving D-strings $2z_0 = vt$ show a tachionic period $-t_0 < t < t_0$ $(t_0 \equiv \frac{l_s\sqrt{2\pi\theta}}{v})$ during which the potential becomes upside down.

Reconnection Condition

If the tachyon value is large enough at the end of the tachyonic period, the reconnection occurs.

$$vt_0 < \Delta \quad \Leftrightarrow \quad T > rac{\sqrt{ heta}}{\sqrt{2\pi}l_s} \quad : ext{ Reconnection Condition}$$

Reconnection probability

$$P = 2 \int_{\sqrt{ heta}/\sqrt{2\pi}l_s}^{\infty} \! |\psi(T,t\!=\!t_0)|^2 \simeq rac{\sqrt{g_s}}{2\pi^{3/4} heta^{3/4}} e^{2\sqrt{s} heta/v} \exp\left[-rac{4\sqrt{\pi} heta^{3/2}}{g_s} e^{-4\sqrt{s} heta/v}
ight]$$

Our result is close to that of [Jackson-Jones-Polchinski], a string worldsheet calculation,

$$P=\exp\left[\left(4-rac{v}{2g_s}
ight)e^{-\pi heta/v}
ight]$$

B

Effective action of the off-diagonal tachyonic mode:

$$S \,=\, rac{1}{g_T} \int dt \left[rac{1}{2} (\partial_t T(t))^2 - rac{1}{2} m^2 T^2
ight]$$

Tachyon dynamics and the reconnection is a quantum mechanical problem. A particle interpretation:

 $ullet rac{1}{g_T} = rac{2\sqrt{2}\pi^2 l_s^3}{g_s\sqrt{ heta}} ext{ serves as a mass of the particle located at } T(t)$

 $ullet m^2 = -rac{ heta}{2\pi l_{
m s}^2} + rac{(2z_0)^2}{(2\pi l_{
m s}^2)^2}$ gives a frequency of the harmonic potential

Moving D-strings $2z_0 = vt$ show a tachionic period $-t_0 < t < t_0$ $(t_0 \equiv \frac{l_s\sqrt{2\pi\theta}}{v})$ during which the potential becomes upside down.

Reconnection Condition

If the tachyon value is large enough at the end of the tachyonic period, the reconnection occurs.

$$vt_0 < \Delta \quad \Leftrightarrow \quad T > rac{\sqrt{ heta}}{\sqrt{2\pi}l_s} \quad : ext{ Reconnection Condition}$$

Reconnection probability

$$P = 2 \int_{\sqrt{ heta}/\sqrt{2\pi}l_s}^{\infty} \! |\psi(T,t\!=\!t_0)|^2 \simeq rac{\sqrt{g_s}}{2\pi^{3/4} heta^{3/4}} e^{2\sqrt{s} heta/v} \exp\left[-rac{4\sqrt{\pi} heta^{3/2}}{g_s} e^{-4\sqrt{s} heta/v}
ight]$$

Our result is close to that of [Jackson-Jones-Polchinski], a string worldsheet calculation,

$$P=\exp\left[\left(4-rac{v}{2g_s}
ight)e^{-\pi heta/v}
ight]$$

Summary

For vortex strings,

- Inevitable reconnection of colliding strings was shown classically.
- Velocity upperbound for it was derived.

For D-strings,

- Reconnection is a quantum phenomenon.
- Tachyon condensation leads to the reconnection.
- Reconnection probability was evaluated with evolution of tachyon wave function.

Origin of the difference: an energetic consideration

Why is there a classical difference for the strings?

D-string reconnection is accompanied by bond production

[Taylor-K.H.][Sato]

Nonabelian vortex strings

Tong-K.H.

In nonabelian Higgs models, several kinds of vortex strings appear.

Different kinds of strings can pass through each other.

How can we distinguish field theory vortices from superstrings?!

Summary

For vortex strings,

- Inevitable reconnection of colliding strings was shown classically.
- Velocity upperbound for it was derived.

For D-strings,

- Reconnection is a quantum phenomenon.
- Tachyon condensation leads to the reconnection.
- Reconnection probability was evaluated with evolution of tachyon wave function.

Vortex string effective action comes from a D2-brane action.

$$egin{aligned} S_{ ext{vortex}} &= \int\! dt dx \; ext{Tr} \left[-rac{1}{4g^2} F_{\mu
u} F^{\mu
u} - \mathcal{D}_{\mu} Z^{\dagger} \mathcal{D}^{\mu} Z - \mathcal{D}_{\mu} \psi^{\dagger} \mathcal{D}^{\mu} \psi
ight. \ &\left. -rac{g^2}{2} \left(\psi \psi^{\dagger} - \left[Z, Z^{\dagger}
ight] - r \mathbf{1}_{2 imes 2}
ight)^2
ight] \end{aligned}$$

 $Z \propto \Phi^2 + i\Phi^3$: complex adjoint field, ψ : new fundamental field

$$rac{1}{g^2} = rac{l_{
m s}\Delta x^9}{g_{
m s}} = (2\pi)^3 l_{
m s}^4 \zeta_{
m AH} \;, \quad ext{FI parameter } r = rac{\Delta x^6}{2\pi g_{
m s} l_{
m s}} = rac{2\pi}{e_{
m AH}^2}$$

Decoupling limit $\Rightarrow g \to \infty \Rightarrow$ Only the potential bottom survives!

The effective theory of the vortex strings is a sigma model whose target space is the D-term equation $\psi \psi^{\dagger} - [Z, Z^{\dagger}] - r \mathbf{1}_{2 \times 2} = 0$.

The important fact is that the D-term equation does not allow the passing-through solution due to the FI parameter r.

⇒ There is no naive classical solution of vortex strings passing through each other.

Vortex strings and D-strings

2

D-strings can pass through each other

$$S=rac{2\pi l_{
m s}^2}{g_{
m s}}\int\! dt dx~{
m Tr}\left[-rac{1}{4}F_{\mu
u}F^{\mu
u}-rac{1}{2}D_{\mu}\Phi_iD^{\mu}\Phi^i+rac{1}{4}[\Phi_i,\Phi_j]^2
ight]$$

In this D-string action, there is a classical solution representing them passing through each other without reconnection:

$$2\pi l_{
m s}^2\Phi_2=\left(egin{array}{cc} \overline{v}t & 0 \ 0 & -\overline{v}t \end{array}
ight) \;\;,\quad 2\pi l_{
m s}^2\Phi_3=\left(egin{array}{cc} an(heta/2)x & 0 \ 0 & - an(heta/2)x \end{array}
ight)$$

 $\theta \ll 1, \ \bar{v} \ll 1, \ g_{\rm s} \to 0 \ :$ Action (low energy approx.) is valid.

B

Nonabelian vortex strings

[Tong-K.H.]

In nonabelian Higgs models, several kinds of vortex strings appear.

Different kinds of strings can pass through each other.

$$P=1/N+\mathcal{O}(e^{m^2/\mathcal{T}})$$
 for $N=N_c=N_f$

Generation of Tong's Monopoles!

How can we distinguish field theory vortices from superstrings?!

Pirsa: 05030136 Page 39/39