Title: What Counts as String Phenomenology?

Date: Mar 28, 2005 10:00 AM

URL: http://pirsa.org/05030128

Abstract:

WHAT COUNTS AS STRING PHENOMENOLOGY?

-- INCREASINGLY MORE

COLLIDER PHYSICS DOES – HOW CAN WE LEARN ABOUT THE UNDERLYING THEORY, ABOUT SUPERSYMMETYRY BREAKING, FROM DATA – NOT SO EASY

LHC STRETCHING EXERCISE – REPORT OF FIRST DISCOVERIES

Gordy Kane, Perimeter, March 2005

What counts as string phenomenology?

- Cosmology—inflaton, CC
- 3 families
- 3-2-1 Standard Model gauge group
- Supersymmetry
- Unification of forces? E.g. in D-brane models?
- Fermion yukawas
- Exotics (beyond superpartners) in particular, Z'?
- Electroweak symmetry breaking?
- Supersymmetry breaking
- Superpartner masses
- Neutrino masses, FC interactions, CP physics?
- Proton decay?
- Cosmic strings?

String phenomenology attempts to **explain** at least: (definition of string phenomenology)

- No large cosmological constant
- Dark energy—what, how much
- What is the dark matter
- Baryon asymmetry amount, origin
- Inflation, big bang
- Standard model (why quarks and leptons, their charges, gauge group)
- Electroweak symmetry breaking calculate M_Z
- Unification of forces
- Supersymmetry
- Supersymmetry breaking
- Superpartner masses
- Number of families why not 1?
- Quark and lepton and neutrino masses

Pirsa: 05080128 igin and pattern of CP violation

No other subfield focuses on these

Why are many of us excited about string theory?

- -- quantum theory of gravity?
- --OK, but more important, because string theory can address all (?) basic questions

QUESTION	Standard Model(s)	Supersymmetric SM(s), light superpartners	String Theory	
What is matter?	V		V	
What is light?	V V			
What interactions give our world?	V		V	
Gravity			11	
Stabilize weak scale hierarchy?		V V		
Explain weak scale hierarchy?			1	
Unify gauge couplings?		1		
Higgs mechanism?		V		
What is dark matter?		V	V	
Baryon asymmetry?		V		
Low scale superpartners?			V	
How is supersymmetry broken?			1	
More than one family? 3?			√	
Values of quark, lepton masses?			√	
Values of neutrino masses?			V	
Origin of CP violation?		V	1	
Inflaton?		√	√	
Cosmological constant not large?			V	
Dark energy?			V	
What is electric charge?			√	
Space-time?			1	
Quantum theory?			1	
Pirsa Osogies of universe?			1	Page 6/29

QUESTION	Standard Model(s)	Supersymmetric SM(s), light superpartners	String Theory	
What is matter?	1		V	
What is light?	VV			
What interactions give our w	orld?		V	
Gravity				
Stabilize weak scale hierarch	hy?	11		
Explain weak scale hierarchy	-		V	
Unify gauge couplings?		VV		
Higgs mechanism?		V		
What is dark matter?		√		
Baryon asymmetry?		√		
Low scale superpartners?			√	
How is supersymmetry broke	en?		V	
More than one family? 3?			V	
Values of quark, lepton mass	ses?	ee talk of	V	
Values of neutrino masses?			V	
Origin of CP violation?	1	oel Giedt	1	
Inflaton?		1	1	
Cosmological constant not la	arge?		V	
Dark energy?			1	
What is electric charge?			1	
Space-time?			1	
Quantum theory?			1	
:⊚oigina of universe?			1	Page 7/29

Electroweak symmetry breaking

- --why are relevant superpartner masses ~ TeV?
 - --why is $\mu \sim \text{TeV}$?
 - --calculate tanβ top-down
 - tanβ not in high scale theory!
 - --deduce EWSB!
 - --calculate M(Z)

Pirsa: 05030128 Page 8/29

FC physics - no tree level

- so sensitive to light superpartners currently ~3 σ effect CP asymmetry in several channels, combining Belle and Babar
- If this persists it corresponds to a fairly large high scale effect
 GK, L-T. Wang, H. Wang, T. Wang, ph/0407351
- Cannot get it with diagonal, universal trilinears and Kahler potential, but it could arise from either diagonal non-universal, or off-diagonal terms ~ 10%
- Probes stringy physics
- •Pirsa: 15530 Pao such effects, why not?

CPV origins, pattern??

- From projection of 10D to 4D? From F-term vevs that break susy?
- Presumably enters 4D world via superpotential, Kahler potential
- Must enter W in yukawas to give CKM phase—only there? Presumably also in soft breaking Lagrangian
- At least 2 independent phases in 4D effective theory,
 CKM and baryogenesis conceivably could come from one phase in underlying theory or susy breaking
- CP asymmetry in b→sss would require another phase

 Pirsa: 05030128
 In the soft breaking Lagrangian

Discovery of superpartners at Tevatron, LHC could be especially productive

- $-L_{soft}$ is determined by W, K, f, which in turn are generated as go to 4D world
- -- so if we can measure L_{soft} maybe we can go the other way and learn about the 10D theory
- -- also need to learn about phases since most masses in L_{soft} are complex

Pirsa: 05030128 Page 11/29

Further – Lagrangian masses mostly complex

- No known symmetry implies phases small if the phases are small it tells us something basic
- Some phases constrained by EDMs, most not
- Phases affect superpartner masses, σxBR, higgs sector, dark matter, etc
- If set phases to zero when analyzing data can be very misleading (e.g higgs mass limit from LEP) — L. Wang, GK
- Need to develop techniques to search for existence of phases by consistency checks, looking for CPV effects in hadron collider data

So see signal

- String theorists: so what, we knew that, keep studying theory
- Just look at data and think a little?
- Not so simple!
 - Particularly at hadron collider, many obstacles
 - Usual methods cannot work!
 - Experiments measure masses of mass-eigenstates (usually mass differences), σ x BR, but those not in Lagrangian (e.g. rate for events with same sign dileptons with energies above 20 GeV and missing transverse energy above 100 GeV is 53fb)
 - At hadron colliders there are always more Lagrangian parameters than observables, so cannot in general solve for Lagrangian parameters such as soft-breaking masses (actually best reason to want a linear collider)
 - No general method known to measure tanβ (certain lucky situations may occur ...), test gaugino mass degeneracy,

Pirsa: 05030128

etc

What was learned from LEP? Basically 3 things:

- Gauge coupling unification
- Global fit implies light fundamental higgs boson
- No deviations from SM numbers implies weakly coupled extension
- All required major interaction of experiment and theory – none could be learned from data alone

What will happen at LHC?

- First, a susy signal of some sort
- Then, like LEP without big role of theory no clue to implications

Pirsa: 05030128 Page 15/29

Is it susy??

Same sign dileptons, or ...

Datta, GK, Toharia

Pirsa: 05030128 Page 16/29

What kind of information will experimenters report? How can we learn to interpret it?

- Show "inclusive signature" plots
 - main paper: Pierre Binetruy, GK, Brent Nelson, LianTao Wang, hep-ph/0312248, see for references
- Their pattern contains much information that usual approaches do not
- Collaborators also Jake Bourjaily, Piyush Kumar, Ting Wang
- All signatures have missing transverse energy > 100 GeV, so assume this removes all SM "background"

mSUGRA must lie in blue region, for any parameter values

 Easy to lie outside that region – red stars are string constructions

 Make such plots for many observables – every hypothesis covers some region that does not cover area

Pirsa: 05030128 Page 19/29

Can get more systematic, study underlying theories (letters are string constructions)

- High scale theory
- RGEs to get low scale, calculate spectrum, e.g. SUSPECT2 (Djouadi, Kneur, Moultaka)
- PYTHIA to produce events, impose cuts, etc

With data, hope to reverse direction

Pirsa: 05030128 Page 21/29

LHC STRETCHING EXERCISE

LHC HAS RUN FOR A WHILE, NEXT
WE SUMMARIZE THE INITIAL
RESULTS FOR OBSERVED SIGNALS
BEYOND THE STANDARD MODEL

Inclusive signatures

 $(10 \text{ fb}^{-1} = 1 \text{yr}, 10^{33} \text{ cm}^{-2} \text{sec}^{-1})$

		-	
CROSS SECTION	2 jets	3 jets	>3 jets
fb			
0 leptons	33036	5874	373
1 lepton	2292	393	20
I lepton	2232	393	20
OS dileptons	89	16	0
SS dileptons	1	8	0
33 dileptoris	4	0	U
risa: 05030128 trileptons	0	4	0 Page 26/29

 For opposite sign dilepton channels, the dilepton invariant mass distribution has its end point at 20 GeV

 For channels without leptons, the sum of missing E_T and P_T of all jets has its peak at 715 GeV

CUTS

- η<3 for jets
- R>0.7
- Jets have E_T>100 GeV
- Leptons =e,µ with η<5 and p_T>20 GeV
- Lepton isolation, E_T within a cone of R=0.3<5 GeV
- Missing E_T>100 GeV
- Transverse plane angle between missing E_T and closest jet > 15°

Pirsa: 05030128 Page 28/29

REMEMBER

 String phenomenology is here to stay – domain should be expanded

 Learning implications of LHC data will take serious effort and thinking – start learning and thinking now

Pirsa: 05030128 Page 29/29