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What is quantum logic?

Feynman vs. von Neumann

Probabity
Classical logic, set wim Classical probabity
theory, sample spaces ™ theory

Amplitudes :
Quantum mechanics

Probability
Classical logic, set e Classical probability
theary, sample spaces ™ theory
Probability :
Quantum logic measures Quantum mechanics
-
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Outline

1) Classical logic, sets and Boolean latices
2) Quantum logic, dosed subspaces and Hilbert latlices
3) Quantum probability
4 Quantum logic and Hidden Variable Theories
Partal Boolean algebras and the Bel-Koohen-Specker Theoram
5)  The quantum logic interpretaiion
Puinam s quanitum logical reaksm - is it really reatsm ?
6) Operational Quantum Logic

How can two logics coexist?

m - s ¥ L0 - e =i T Y LR T . ¥
Denvaion of Hibert Space Quanium Meohanics

7) Condusion
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1) Classical Logic

Logic = Syntax + Semantics
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1) Classical Logic

Syntax of propositional logic:

Propositions abe.....z

Represent staterments like "Wateroo is in Canada’, "FHogs are green”, “Itis raining”

Compound propositons (or sentences) formed using connectives

= NOT negaton
A AND conjunciion
\' OR disjunction
il IF... THEN ... implicaion /conditional
- IF AND ONLY IF... THEN .. equality
Rules for forming sentences

1. If @ is asentence then — @ is a sentence.

2 It @ and b are sentences then (anb) is a sentence.
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3. Intuiive rules for addition and remaoval of parentheses



1) Classical Logic
Syntax of propositional logic:
Definiians: avb=—v( —adA b)

a—b=-avb
a==b=(a—Db)A(b—a)

Example: “Ifitis raining then Wateroo is in Canada and Fogs are green”

a —(bac)= -rav(bnc) =-(-~-aa-(bac))
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1) Classical Logic

Truth Table Semantics of propositional logic:
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1) Classical Logic

Set Theoretical Semantics of propositional logic:

Propositions are assodated with the set of objects for which they are fue:

The abjectis green’ {frogs, grass, emeralds, leaves, ...}
‘Itis raining’ {Monday, Tuesday, Friday}

‘Physical system X has a value of quaniity Q ntherange ¥ = Q =7
Set of phase-space points
Infroduce a Universal Set
U = {cows, cats, frogs, goldfish, grass, diamonds, emeralds, leaves, ...}

And the empty set
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1) Classical Logic

Set Theoretical Semantics of propositional logic:

Noiason: [a ] = the mathematical object assodated o propasition @ under the semantics we are using.
Negaion:  [-a |= [a]: ={xheUx&|a]

Canjunciion: :a A b] - [a]ﬁ [b] - {.1'|1‘ = [a]..t = [b]}

Disuncion:  [av b= [a|U[b]= {-l‘l‘l‘ Elajorx e [b]}

examper U ={cows, cats, frogs, goldfish, grass, diamonds, emeralds, leaves}

@ = "The abjectis green.” [a]= {frogs, grass, emeralds, leaves}
b="meo pject is an amphibious animal.” [b] = {frogs, _goldﬂsh}
[-a]={cows, cats, goldfish, diamonds} |a A b]={frogs}

[a v b] = {frogs, goldfish, grass, emeralds, leaves} S
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1) Classical Logic

Set Theoretical Semantics of propositional logic:
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a is a auiblogy iff [a ] = U underal possible assignments of sets to elementary propasitions.

Example: av-a

a is a conyadician iff [a] = (J under all possible assignments of sets o elementary propositions.

Example: aan-—a

a and b are eguivaient iff [a ] = [b] under all possible assignments of sets to elementary propaositions.
Examples: "G =g double negaion
~aanb)=-av-b
~(avb)=-anr-b

de-Maivre's laws

an(bve)=(anb)v(anc)
dismbutive lavs
aV(th')=(ﬂ\fb)h(a VC) Page 11/37



Mathematical interlude: posets and lattices
Posets: ®

[=. o
e
§-
I
(=
=

c=aVyli

7. h b=dAe ¢

A poset is aset P with a parfal ardler refaton < satistying Va,b,e € P

-d=d
-a<badb<saita=>b
-ft@a<sbandb<ctena<c

Two elements @, b € P have a jain or leastupper bound it here is an element @ v b satistying

a<avbad b=avb
Any € safisfying @ < ¢ and b < ¢ asosatsfesa vb < ¢.

Two elements @ ,b & P have ameet ar greaiestlower bound if there is an element @ A b safisfying

Pirsa: 05030122 A b < {1 and an b - b Page 12/37
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Mathematical interlude: posets and lattices

Lattices:

1
L
1
»
Rl L ]
® o [ ] »
L ] L]
L ]
0
® Diamond
0
Pentagan

A lafice is a poset where every pair of elements has a meet or a join.
We will also require that there is a greatest element 1 and aleast element 0.

Aioms of a latice are those elements for which 0 is the only smaller element.
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Mathematical interlude: posets and lattices
Posets: °
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A poset is aset P with a parfal ardler refation < satistying Va,b,e € P

-d=4a
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Mathematical interlude: posets and lattices

Lattices:

1
®
1
.
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0
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0
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A lafice is a paset where every pair of elements has a meetor a join.
We will also require that there is a greatest element 1 and aleastelement 0.

Aioms of a latice are those elements for which 0 is the only smaller element.

Pirsa: 05030122

Page 15/37



Pi

1) Classical Logic

Logic and Boolean lattices

Cansider the logic of propaositions that can be formulated from R elementary propasitions @, .4, ,. . ., a..

There is a canonical way of assodating these with sets of integers:

a, ={l}.a, ={2}.....a, = {n}

The universal setis U = {1.2,...,n}

Mare than one propaosiion comesponds o the same set, e g

[~a,]=[a,va;v...va, |={2.3.. n}

The resuling stuciure is a Soolean fafice with parfial order given by subsetindusion.

Greatestand lowestelements 0 =3, 1 =U = {1,2 ..... Jl}

Meetis given by ("] and join is given by .

||||| : 05030122

Page 16/37



irsa: 05030122

:=U ==U
o {12}
e} {2}
o {I}
g, 0=
;=U
0=-0
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2) Quantum Logic

Attaching meaning to heretical propositions

Note that the syn&xof quantum logicis exaclly the same as dassical logic, except that we will notdefine — and ==.
The anly difference is in the meaning, i.e. the semanics.

“The momentum of the partide is between P and p+dp 3
Orthodoxy: Meaningless uniess system is in an approprate eigenstate.

“The pasition of the partide is between X and X+ dx and he momentum of the partide is between pand p+ dp 3
Orthodoxy: Always compiletely and utierdy meaningless!

Requirements for a semantics of quantum propositions:

1) Respect the eigenvalue-eigenstate link.
2) Equivalent to dassical set-theorefic semantics when propasitions are about pairwise commuiing observables.

Consider an observable: A= T?,a P, PP, =06,F, JER =]

it e state is an eigenstate |a; }hen  prob(P, ) = {a;|B,|a; } = & L



2) Quantum Logic
Semantics of Quantum Logic

| @ | = the subspace comesponcing to propositon @ P, - the prjectoronio [a |

e [-a]=[a] - {|v)€ HMo)< o] (o]y)-0}
F oy

Canjunction: [ahb]= [a]lﬂl[b]= {|I,U>E HI;U)E [a],|tp)€ [b]}
Pmﬂijﬂ(ﬂﬂr
" lavbl-[a]0[b]- (I} HA)E [a}AE[B] st. [v)- alo)+ Bin)
P, - I-lim{(I- B(I-B))

H—a 2

We may define tautologies, contradictions and equivalence in a similar way to the dassical case.

Page 19/37
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2) Quantum Logic

A 2D Real Hilbert Space Example

e |z 1) 2]

I_l. r} e

. = “The paride has spin up in the z-direction ”
Pirsa: 05030122 '
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2) Quantum Logic

A 3D Real Hilbert Space Example

_____________________
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2) Quantum Logic

Quantum Logic is not distributive

1

L]
anlbv-b)=anrl=a

e d e da ob L

(anb)v(aan-b)=0v0=0

L

0

Moctianty:
tp=qten pv(raq)=(pvr)aq

irsa: 05030122 fp=qgtenqg=pvVv (q AP ) Page 22/37



3) Quantum Probability

Classical Probability measures

In standard probability theory, we define a probability measure on a set of subsets (equivalenily on a set of
propasiions or on a Boolean latiice).

(e"subsets of U"— [0,1]
Let a,,Q, ..., o, beany paiwise disjpintsets, ie. o; (1 a, =D
Let A=qUaqU.. .Uagq,.

Requie:  p(A)=u(ey)+ule)+...+ule,)

u(2)=0 and u(U) =1

irsa: 05030122 Page 23/37



2) Quantum Logic

Quantum Logic is not distributive

1
L
anlbv-b)=anrl=a
e ad e —da ob L
(anb)v(an-b)=0v0=0
L
0
Moctianty:
tp=qten pv(raq)=(pvr)aq
Orhomoatlanty:
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3) Quantum Probability

Classical Probability measures

In standard probability theory, we define a probability measure on a set of subsets (equivalenily on a set of
propasiions or on a Boolean latice).

(e"subsets of U"—ﬁ-[O,l]
Let a,,Q, ..., o, beany paiwise dispintsets, ie. a; (1 a, =0
Let A=qUaqU.. .Uagq,.

requie:  p(A)=u(ey)+ule)+...+ule,)

u(2)=0 and u(U) =1
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3) Quantum Probability

Probability measures on Hilbert space PBAs
In quantum probability theory we have similar requirements:

1:"Projectors on H"— [0,1]

Let B.F,....,P, beany pojectors onto pairwise orthogonal subspaces,ie. PP, =0
Let O=F+P+..+P
requie:  (Q) = p(R)+u(P)+...+u(F,)

u(0)=0 u(l)=1

Gleason's Theorem:

The only measures on the full PBA of Hilbert spaces of dmension = 3 are of the fom

p(P) — Tr(Pp). where 0 is a posifive operator, with Tr(p) =]

irsa: 05030122 Page 26/37



4) Quantum Logic and HVTs

Bell-Kochen-Specker Theorem
Twa natural requirements for a Hidden Variable Theory:

1) The n::EEIeE state of the system determines the value outcome of a measurement of any
observable.

2)  The outcome assigned to an observable does not depend on which other compatible observables
are measured with it (nonconiextality).

Bell's version of BKS theorem: Gleason's thearem implies 1) and 2) cannot both be satfisfied.

Why? Projectors are observables with e-values Uand 1, so 1) implies that we mustassign U or 1 o every
projector.

2) and empincal adequacy implies that the assignment is a quantum probability measure.
However, Gleason says all probability measures are Tr(P p) and there is no density operator that
assigns probability 0 or 1 to every projector.
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3) Quantum Probability

Probability measures on Hilbert space PBAs
In quantum probability theory we have similar requirements:

1:"Projectors on H"— [0,1]

Let B.F,....,P, beany projectors onto pairwise orthogonal subspaces,ie. PP, =0
Let O=FR+P+..+P
requie:  (Q) = pu(R)+pu(P,)+...+u(P,)

u(0)=0 u(l)=1

Gleason's Theorem:
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4) Quantum Logic and HVTs

Bell-Kochen-Specker Theorem
Two natural requirements for a Hidden Varable Theory:

1) The é-v"zgee state of the system determines the value outcome of a measurement of any
obs le.

2)  The outcome assigned o an observable does not depend on which other compatible observables
are measured with it (nonconiextality).

Bell's version of BKS theorem: Gleason's thearem implies 1) and 2) cannot both be satfisfied.

Why? Projectors are observables with e-values Uand 1, so 1) implies that we mustassign U or 1 o every
projector.

2) and empincal adequacy implies that the assignmentis a quantum probability measure.
However, Gleason says all probability measures are Tr(P p) and there is no density operator that
assigns probability 0 or 1 to every projector.
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3) Quantum Probability

Probability measures on Hilbert space PBAs
In quantum probability theory we have similar requirements:

1:"Projectors on H"— [0,1]

Let B.F,....,P, beany projectors onto pairwise orthogonal subspaces,ie. PP, =0
Let O=F+P+..+P
requie:  (Q) = p(R)+u(P,)+...+u(F,)

u(0)=0 u(l)=1

Gleason's Theorem:

The only measures on the full PBA of Hilbert spaces of dmension = 3 are of the fom

;I(P) = Tr(Pp}. where QO is a posifive operator, with Tr(p) =]
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4) Quantum Logic and HVTs

Bell-Kochen-Specker Theorem
Two natural requirements for a Hidden Variable Theory:

1) The é-v"aEEE state of the system determines the value outcome of a measurement of any
obs le.

2) The outcome assigned 1o an observable does not depend on which other compatible observables
are measured with it (nonconiexialty).

Bell's version of BKS theorem: Gleason's thearem implies 1) and 2) cannot both be satfisfied.

Why? Projectors are observables with e-values Uand 1, so 1) implies that we mustassign U or 1 o every
projector.

2) and empincal adequacy implies that the assignmentis a quantum probability measure.

However, Gleason says all probability measures are Tr(P p) and there is no density operator that
assigns probability 0 or 1 to every projector.
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4) Quantum Logic and HVTs

Finite versions of the KS theorem
Memnin-Peres-Kemaghan proof

(1000)|(1000)|(1000)) 1000 | A )| AN A1 -11)0O1-10)(@01-1)( (1,0,1,0)

@100|@©0100|@©010| ©oo0H |11 D)) 1-1)(100-1)((1-100)| ©,10,1)

@010|@©0011)|0410H| 0410 | (141|010 | 0410|004 )| A A1) ((11-1,-1)

@©g0.01)oo1-1)010-1)|01-10(111-1)010-1)|100-)|A100A A1) 1-1-1)0-1-11)

What is the quanium logical significance of this?
Orthogonality consfraints can be formulated as logical statements:
A= (an—-bﬁ.—-cn—-d)v(—-anbn—rcn—-d)v(—-an—-bncn—-d)v(—ra A-ba-cad)

A =(an-ba-er-f)v(-anbr-er-f)v(-ar-brer-f)v(-ar-br-enf)

A =(an-ca-ga-h)v(-anern-ga-h)v(-an-eaga-h)v(-ar-ca-gnah)
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5) The QL Interpretation

Putnam’s main claims
Proposed by Putnam in “Is Logic Emprical?"/The Logic of Quantum Mechanics" (1969).
This summary is adapted from Gibbins, "Parides and Paradoxes”, CUP (1987).

1)

2)

Logic is empirical, and open to revision in the light of a new physical theory - just like
geometry was seen to be emprical with the advent of General Relativity.

The logic of quantum mechanics is non-Boolean.

The peculiarities of quantum mechanics arise from illegitimate uses of classical logic in the
description of individual quantum systems. Paradoxes are reso/ved by using quantum
logic.

Quantum probabilities present no difficulty. They arise in exactly the same way as in
classical theories.

Quantum l0gIC licenses a realst interpretation of quantum mechanics.

Ideal measurements reveal the values of dynamical variables posessedby the system
prior to measurement.

Although quantum-mechanical states are not classically complete, they do correspond to
quantum logically maximally consistent sets of sentences. Indeterminacy arises not
because the laws of quantum mechanics are indeterministic but because quantum-
mechanical states are not classically complete.

Pirsa: 05030122 Page 33/37
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The meaning of the quantum logical connectives are the same as those of the classical
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5) The QL Interpretation

Quantum logical Realism

Cansider an observable A = } a; P, where we indude eigenvalue () if necessary.

J

Define a}. = “The value of A is aj '

Then P, =P+P+F+...=1 [alvazvagv...]=}f

AR AL
ava,va,v...=1
But the LHS is just the definiion of Hj(a ] ) SO We can say “here exists some J st the value of Ais a;’

However, we canof point to any particular value that the observable A actually posseses, unless the systemis in an
appropnate eigenstate.

Consider the same consfruction for observables B, L e

dj(a,;)A3k(b)AIm(c, )A...= (a,va,vasv.. )a(lvh vhv. )a(e,ve, ves v )a...
is always true

But. 3j3kIm3..(a;Ab A, A...)=(ayabac a . )v(a, Abae A )V ...

Pirsa: 0503012 ) i
is always a confradiction.
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5) The QL Interpretation

Application: Mach-Zehnder version of double slit experiment

Apologies for exfreme abuse of notation:

| @)= le)+ild)—=|f)
£}~ |e)+ild)

m Quantum logically:
a ¢ falevd)istueorhe sate | f) but.

fae, fad, (fac)v(fad)

| b are all contradictions.
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5) The QL Interpretation

Standard Objections
1)  Classical logicis necesanly tue.

Response: There is along fradition of philosophical debate about tis, which is not fully resolved. It
can be plausibly denied.

2) Al proposiiions about experiments can be phrased in terms of dassical logic, so the daim that logic is
ampincalis untue.

Response: QL does nothave o be the unigue way of dealing with propaosifions, just the most
elegant one. In comparison, itis possible to phrase all statements about General
Relafivity in Eudidean geometry by introdudng all sorts of unnatural forces, but that does
not mean that GR does not entail that geometry is non-Eudidean.

3) Quantum Logic does not account for the success of dassical logic.

Hesponse: Classical logicis valid for proposiions about compatble observables. We may be
able 1o make use of decoherence fo argue that most propositions we are interested in
obey dassical logic.

4) Realism essentally enialfs the use of dassical logic. Yuudehiﬁu'mfaisirmna:tbmehewewm
of what 3 means does not make sense unless itis the dassical version of 3.

Response: Fora full-blooded realist interpretation | agree with you. However, | never daimed this
was a realistinterpretation of that type (even if Putnam sometmes did).

3) Lrembawyauusehﬂh about quanium logic is dassical, so you haven't replaced dassical logic after

Responses: - Copenhagen has a quantum.tassical spiitas well. QL is animprovement on this
e s because itis expliat about where this split ocours. Page 36/37

- Mavhe we can ecnnemict all valicd reasaning usina O all the way  Admittedly the



5) Conclusion

Three roads from quantum mechanics

Instrumentalism,

Operationalism, Qu antum Ir;:. gical re alism
Copenhagen, E'*an Many Worlds sohm-type theories,
Orthodoxy Consistent Histories Spontaneous collapse

The middle
way
Anti-Realism Full-blooded,

John Bell endorsed,
realism

Quantum
] ' ]e
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