Title: Can cosmology test string theory? Date: Mar 17, 2005 11:30 AM URL: http://pirsa.org/05030113 Abstract:

- Do we really understand the generation of cosmological perturbations?
- Can a "minimum length" have an observable impact on cosmology?
- Can we see Planck scale physics with the cosmological microscope?

- Do we really understand the generation of cosmological perturbations?
- Can a "minimum length" have an observable impact on cosmology?
- Can we see Planck scale physics with the cosmological microscope?

- Do we really understand the generation of cosmological perturbations?
- Can a "minimum length" have an observable impact on cosmology?
- Can we see Planck scale physics with the cosmological microscope?

- Do we really understand the generation of cosmological perturbations? YES
- Can a "minimum length" have an observable impact on cosmology? **MAYBE**
- Can we see Planck scale physics with the cosmological microscope?

- Do we really understand the generation of cosmological perturbations? YES
- Can a "minimum length" have an observable impact on cosmology? **MAYBE**
- Can we see Planck scale physics with the cosmological microscope? **IF WE ARE LUCKY**

- Do we really understand the generation of cosmological perturbations? YES
- Can a "minimum length" have an observable impact on cosmology? **MAYBE**
- Can we see Planck scale physics with the cosmological microscope? **IF WE ARE LUCKY**

- Do we really understand the generation of cosmological perturbations? YES
- Can a "minimum length" have an observable impact on cosmology? **MAYBE**
- Can we see Planck scale physics with the cosmological microscope? **IF WE ARE LUCKY**

- Do we really understand the generation of cosmological perturbations?
- Can a "minimum length" have an observable impact on cosmology?
- Can we see Planck scale physics with the cosmological microscope?

- Minimal stringy / Planckian modifications
 - Does string/Planck physics change cosmology?
- Feasibility study motivated by
 - High quality data ("golden age")
 - Chance to test string / Planck physics
- Not cosmology directly based on string theory
 - Corrections to Einstein action (pre-big-bang)
 - Brane worlds / Brane-gas / Brandenberger-Vafa scenario
 - Holography
 - Stringy inflation models.

- Minimal stringy / Planckian modifications
 - Does string/Planck physics change cosmology?
- Feasibility study motivated by
 - High quality data ("golden age")
 - Chance to test string / Planck physics
- Not cosmology directly based on string theory
 - Corrections to Einstein action (pre-big-bang)
 - Brane worlds / Brane-gas / Brandenberger-Vafa scenario
 - Holography
 - Stringy inflation models.

- Minimal stringy / Planckian modifications
 - Does string/Planck physics change cosmology?
- Feasibility study motivated by
 - High quality data ("golden age")
 - Chance to test string / Planck physics
- Not cosmology directly based on string theory
 - Corrections to Einstein action (pre-big-bang)
 - Brane worlds / Brane-gas / Brandenberger-Vafa scenario
 - Holography
 - Stringy inflation models.

- Minimal stringy / Planckian modifications
 - Does string/Planck physics change cosmology?
- Feasibility study motivated by
 - High quality data ("golden age")
 - Chance to test string / Planck physics
- Not cosmology directly based on string theory
 - Corrections to Einstein action (pre-big-bang)
 - Brane worlds / Brane-gas / Brandenberger-Vafa scenario
 - Holography
 - Stringy inflation models.

- Minimal stringy / Planckian modifications
 - Does string/Planck physics change cosmology?
- Feasibility study motivated by
 - High quality data ("golden age")
 - Chance to test string / Planck physics
- Not cosmology directly based on string theory
 - Corrections to Einstein action (pre-big-bang)
 - Brane worlds / Brane-gas / Brandenberger-Vafa scenario
 - Holography
 - Stringy inflation models.

- Minimal stringy / Planckian modifications
 - Does string/Planck physics change cosmology?
- Feasibility study motivated by
 - High quality data ("golden age")
 - Chance to test string / Planck physics
- Not cosmology directly based on string theory
 - Corrections to Einstein action (pre-big-bang)
 - Brane worlds / Brane-gas / Brandenberger-Vafa scenario
 - Holography
 - Stringy inflation models.

- Cosmic Microwave Background
- Inflationary perturbations: a quick review
 - The Cosmological Microscope.
- Lengthscales and Dimensional Analysis.
- Perturbations: the standard lore.
- Adding a minimum length
 - Power spectrum and observability
- Conclusions & Summary

- Cosmic Microwave Background
- Inflationary perturbations: a quick review
 - The Cosmological Microscope.
- Lengthscales and Dimensional Analysis.
- Perturbations: the standard lore.
- Adding a minimum length
 - Power spectrum and observability
- Conclusions & Summary

- Cosmic Microwave Background
- Inflationary perturbations: a quick review
 - The Cosmological Microscope.
- Lengthscales and Dimensional Analysis.
- Perturbations: the standard lore.
- Adding a minimum length
 - Power spectrum and observability
- Conclusions & Summary

- Cosmic Microwave Background
- Inflationary perturbations: a quick review
 - The Cosmological Microscope.
- Lengthscales and Dimensional Analysis.
- Perturbations: the standard lore.
- Adding a minimum length
 - Power spectrum and observability
- Conclusions & Summary

- Cosmic Microwave Background
- Inflationary perturbations: a quick review
 - The Cosmological Microscope.
- Lengthscales and Dimensional Analysis.
- Perturbations: the standard lore.
- Adding a minimum length
 - Power spectrum and observability
- Conclusions & Summary

- Cosmic Microwave Background
- Inflationary perturbations: a quick review
 - The Cosmological Microscope.
- Lengthscales and Dimensional Analysis.
- Perturbations: the standard lore.
- Adding a minimum length
 - Power spectrum and observability
- Conclusions & Summary

- Cosmic Microwave Background
- Inflationary perturbations: a quick review
 - The Cosmological Microscope.
- Lengthscales and Dimensional Analysis.
- Perturbations: the standard lore.
- Adding a minimum length
 - Power spectrum and observability
- Conclusions & Summary

Cosmic Microwave Background

- Discovered 1965
- Every point in the sky appears to be -2.725K
 - Almost perfect blackbody spectrum

Cosmic Microwave Background

- Discovered 1965
- Every point in the sky appears to be -2.725K
 - Almost perfect blackbody spectrum

Cosmic Microwave Background

- Discovered 1965
- Every point in the sky appears to be -2.725K
 - Almost perfect blackbody spectrum
Inflationary Perturbations

- Universe roughly homogeneous and isotropic
- We observe departures from smoothness
 - Galaxies and clusters of galaxies
 - Overall matter distribution
 - Microwave background anisotropies
- Inflation also predicts perturbations
 - Used to test specific inflationary models.
 - Physics determined by late time limit.
- Quantum mechanical origin, classical evolution.

Inflationary Perturbations

- Universe roughly homogeneous and isotropic
- We observe departures from smoothness
 - Galaxies and clusters of galaxies
 - Overall matter distribution
 - Microwave background anisotropies
- Inflation also predicts perturbations
 - Used to test specific inflationary models.
 - Physics determined by late time limit.
- Quantum mechanical origin, classical evolution.

Inflationary Perturbations

- Universe roughly homogeneous and isotropic
- We observe departures from smoothness
 - Galaxies and clusters of galaxies
 - Overall matter distribution
 - Microwave background anisotropies
- Inflation also predicts perturbations
 - Used to test specific inflationary models.
 - Physics determined by late time limit.
- Quantum mechanical origin, classical evolution.

- Hubble length dynamical scale, 1/H, H $\rho^{1/2}$
 - Often just called "the horizon"
 - Reduces to future light cone in de Sitter limit.
- Inflation decreases comoving Hubble length
 - Perturbations have fixed comoving length
 - Perturbations "exit horizon" and "freeze out"
 - Longest scales leave horizon earliest (small k)
- Inflation ends, Hubble length increases
 - Perturbations re-enter horizon, seed structure.

- Hubble length dynamical scale, 1/H, H $\rho^{1/2}$
 - Often just called "the horizon"
 - Reduces to future light cone in de Sitter limit.
- Inflation decreases comoving Hubble length
 - Perturbations have fixed comoving length
 - Perturbations "exit horizon" and "freeze out"
 - Longest scales leave horizon earliest (small k)
- Inflation ends, Hubble length increases
 - Perturbations re-enter horizon, seed structure.

- Hubble length dynamical scale, 1/H, H $\rho^{1/2}$
 - Often just called "the horizon"
 - Reduces to future light cone in de Sitter limit.
- Inflation decreases comoving Hubble length
 - Perturbations have fixed comoving length
 - Perturbations "exit horizon" and "freeze out"
 - Longest scales leave horizon earliest (small k)
- Inflation ends, Hubble length increases
 - Perturbations re-enter horizon, seed structure.

- Hubble length dynamical scale, 1/H, H $\rho^{1/2}$
 - Often just called "the horizon"
 - Reduces to future light cone in de Sitter limit.
- Inflation decreases comoving Hubble length
 - Perturbations have fixed comoving length
 - Perturbations "exit horizon" and "freeze out"
 - Longest scales leave horizon earliest (small k)
- Inflation ends, Hubble length increases
 - Perturbations re-enter horizon, seed structure.

Observe CMB:eg WMAP

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

- Predict spectrum:
 - via CMBfast

- Baryon fraction, dark matter, Hubble constant, cosmological constant, spatial curvature ...
- Underlying spectrum $P \propto k^{n-1}$
 - (Usually) just two parameters, plus tensors.
 - · Effects we study modify underlying spectrum.

Scales in Inflation

- Inflation occurs at GUT scale (or lower)
- Final temperature: Treheat ~1015 GeV
- $T_{Planck} = IO^{19} GeV$, $l_{Planck} = I/T_{Planck}$
 - $1 \text{GeV} = 10^{13} \text{K}$, $1 \text{ly} = 10^{18} \text{ cm}$
- Today: visible universe is
 - 10^{10} ly = 10^{61} l_{Planck}, T=2.7K
 - $a_{today} / a_{end} = T_{end} / T_{reheat} = 10^{28}$
- Longest perturbations grow
 - $>e^{60} = 10^{26}$ during inflation, 10^{28} afterward
 - Total growth at least 1054
- Long scales almost always subplanckian

Scales in Inflation

- Inflation occurs at GUT scale (or lower)
- Final temperature: Treheat ~1015 GeV
- $T_{Planck} = IO^{19} GeV$, $l_{Planck} = I/T_{Planck}$
 - $1 \text{GeV} = 10^{13} \text{K}$, $1 \text{ly} = 10^{18} \text{ cm}$
- Today: visible universe is
 - 10^{10} ly = 10^{61} l_{Planck}, T=2.7K
 - $a_{today} / a_{end} = T_{end} / T_{reheat} = 10^{28}$
- Longest perturbations grow
 - $>e^{60} = 10^{26}$ during inflation, 10^{28} afterward
 - Total growth at least 1054
- Long scales almost always subplanckian

Scales in Inflation

- Inflation occurs at GUT scale (or lower)
- Final temperature: Treheat ~1015 GeV
- $T_{Planck} = IO^{19} GeV$, $l_{Planck} = I/T_{Planck}$
 - $1 \text{GeV} = 10^{13} \text{K}$, $1 \text{ly} = 10^{18} \text{ cm}$
- Today: visible universe is
 - 10^{10} ly = 10^{61} l_{Planck}, T=2.7K
 - $a_{today} / a_{end} = T_{end} / T_{reheat} = 10^{28}$
- Longest perturbations grow
 - > $e^{60} = 10^{26}$ during inflation, 10²⁸ afterward
 - Total growth at least 1054
- Long scales almost always subplanckian
- Inflation occurs at GUT scale (or lower)
- Final temperature: Treheat ~1015 GeV
- $T_{Planck} = IO^{19} GeV$, $l_{Planck} = I/T_{Planck}$
 - $1 \text{GeV} = 10^{13} \text{K}$, $1 \text{ly} = 10^{18} \text{ cm}$
- Today: visible universe is
 - 10^{10} ly = 10^{61} l_{Planck}, T=2.7K
 - $a_{today} / a_{end} = T_{end} / T_{reheat} = 10^{28}$
- Longest perturbations grow
 - $>e^{60} = 10^{26}$ during inflation, 10^{28} afterward
 - Total growth at least 1054
- Long scales almost always subplanckian

- Inflation occurs at GUT scale (or lower)
- Final temperature: Treheat ~1015 GeV
- $T_{Planck} = IO^{19} GeV$, $l_{Planck} = I/T_{Planck}$
 - $1 \text{GeV} = 10^{13} \text{K}$, $1 \text{ly} = 10^{18} \text{ cm}$
- Today: visible universe is
 - 10^{10} ly = 10^{61} l_{Planck}, T=2.7K
 - $a_{today} / a_{end} = T_{end} / T_{reheat} = 10^{28}$
- Longest perturbations grow
 - $>e^{60} = 10^{26}$ during inflation, 10^{28} afterward
 - Total growth at least 1054
- Long scales almost always subplanckian

- Inflation occurs at GUT scale (or lower)
- Final temperature: Treheat ~1015 GeV
- $T_{Planck} = IO^{19} GeV$, $l_{Planck} = I/T_{Planck}$
 - $1 \text{GeV} = 10^{13} \text{K}$, $1 \text{ly} = 10^{18} \text{ cm}$
- Today: visible universe is
 - 10^{10} ly = 10^{61} lplanck, T=2.7K
 - $a_{today} / a_{end} = T_{end} / T_{reheat} = 10^{28}$
- Longest perturbations grow
 - $>e^{60} = 10^{26}$ during inflation, 10^{28} afterward
 - Total growth at least 1054
- Long scales almost always subplanckian

- Inflation occurs at GUT scale (or lower)
- Final temperature: Treheat ~1015 GeV
- $T_{Planck} = IO^{19} GeV$, $l_{Planck} = I/T_{Planck}$
 - $1 \text{GeV} = 10^{13} \text{K}$, $1 \text{ly} = 10^{18} \text{ cm}$
- Today: visible universe is
 - 10^{10} ly = 10^{61} l_{Planck}, T=2.7K
 - $a_{today} / a_{end} = T_{end} / T_{reheat} = 10^{28}$
- Longest perturbations grow
 - $>e^{60} = 10^{26}$ during inflation, 10^{28} afterward
 - Total growth at least 1054
- Long scales almost always subplanckian

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Does this have observational consequences?
- Assume a fundamental mass scale, M
 - Quantum gravity / Planck scale 1019 GeV
 - String scale up to 2 orders of magnitude lower?
- Inflationary scale 1015 GeV
 - ρ^{1/2} H (Hubble scale), L_{inflation} 1/H
- Dimensionless combination: H/M
 - Impact of fundamental scale (H/M)ⁿ
 - Key question: is n = 1 or n =2? (and prefactor?)
 - Possibly a 1% effect??

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

- Can't do *ab initio* perturbations in string theory.
- Introduce minimum length via anstatz.
 - Can modify evolution (n=2, typically)
 - Or initial conditions (n=1, typically)
- See: Schalm, Shiu van der Schaar, Greene
 - Effective field theory approach
 - Trans-planck physics introduced via high dimensional operators
 - UV completion of GR unknown
 - Initial conditions specified on surface, n=1.

Modulated Spectrum

• Standard calculation:

$$u_k'' + \left(k^2 - \frac{z''}{z}\right)u_k = 0$$
$$u_k \sim \frac{1}{\sqrt{2k}}e^{-ik\eta}, \quad \eta \to -\infty$$

- Initial conditions guarantee bosonic statistics for fluctuations
 - Fixed at arbitrarily small scales.
Initial Conditions Ansatz

- Power law solution; generalize to slow roll $u_{k} = \frac{\sqrt{-\pi\eta}}{2} \left[C_{+}H_{\nu}(-k\eta) + C_{-}H_{\nu}^{\star}(-k\eta) \right]$ $u_{k}(\eta_{k}) = \frac{1}{\sqrt{2k}}e^{-i\eta_{k}}$ $C_{-} \neq 0, \quad C_{-} \sim \frac{H}{M}$
- Mode created in Minkowski space, at finite time.
 - Extract power spectrum from late time limit.
 - Details in EGKS-III

Initial Conditions Ansatz

- Power law solution; generalize to slow roll $u_{k} = \frac{\sqrt{-\pi\eta}}{2} \left[C_{+}H_{\nu}(-k\eta) + C_{-}H_{\nu}^{\star}(-k\eta) \right]$ $u_{k}(\eta_{k}) = \frac{1}{\sqrt{2k}}e^{-i\eta_{k}}$ $C_{-} \neq 0, \quad C_{-} \sim \frac{H}{M}$
- Mode created in Minkowski space, at finite time.
 - Extract power spectrum from late time limit.
 - Details in EGKS-III

Initial Conditions Ansatz

- Power law solution; generalize to slow roll $u_{k} = \frac{\sqrt{-\pi\eta}}{2} \left[C_{+}H_{\nu}(-k\eta) + C_{-}H_{\nu}^{\star}(-k\eta) \right]$ $u_{k}(\eta_{k}) = \frac{1}{\sqrt{2k}}e^{-i\eta_{k}}$ $C_{-} \neq 0, \quad C_{-} \sim \frac{H}{M}$
- Mode created in Minkowski space, at finite time.
 - Extract power spectrum from late time limit.
 - Details in EGKS-III

 $P_{TP} = \left\{ 1 + \left(\frac{H_*}{M}\right) \left(\frac{k}{k_*}\right)^{-\varepsilon} \sin\left[\frac{2}{1-\varepsilon} \left(\frac{M}{H_*}\right) \left(\frac{k}{k_*}\right)^{\varepsilon} + \phi\right] \right\} P$

 $P_{TP} = \left\{ 1 + \left(\frac{H_*}{M}\right) \left(\frac{k}{k_*}\right)^{-\varepsilon} \sin\left[\frac{2}{1-\varepsilon} \left(\frac{M}{H_*}\right) \left(\frac{k}{k_*}\right)^{\varepsilon} + \phi\right] \right\} P$

 $P_{TP} = \left\{ 1 + \left(\frac{H_*}{M}\right) \left(\frac{k}{k_*}\right)^{-\varepsilon} \sin\left[\frac{2}{1-\varepsilon} \left(\frac{M}{H_*}\right) \left(\frac{k}{k_*}\right)^{\varepsilon} + \phi\right] \right\} P$ Amplitude

• p=100, ε = .01, H/M = 100

· Tensor to scalar ratio expected: H changes slowly.

• p=100, ε = .01, H/M = 100

· Tensor to scalar ratio expected: H changes slowly.

- p=100, & = .01, H/M = 100
- · Tensor to scalar ratio expected: H changes slowly.

• p=100, & = .01, H/M = 100

· Tensor to scalar ratio expected: H changes slowly.

Page 126/194

Computational Strategy

- Look at synthetic CMB datasets
 - Cosmic variance, noise free, weak lensing
 - l<2000, {TT,TE,EE,BB}
- Assume central values from WMAP
 - Allow late time parameters to float.
 - Vary spectral index, running, tensor to scalar ratio, trans-Planck parameters.
- Multiple peaks in probability space
 - Fisher matrix calculation
 - Grid search
 - Monte Carlo Markov chains (MCMC)

Computational Strategy

- Look at synthetic CMB datasets
 - Cosmic variance, noise free, weak lensing
 - l<2000, {TT,TE,EE,BB}
- Assume central values from WMAP
 - Allow late time parameters to float.
 - Vary spectral index, running, tensor to scalar ratio, trans-Planck parameters.
- Multiple peaks in probability space
 - Fisher matrix calculation
 - Grid search
 - Monte Carlo Markov chains (MCMC)

Markov Chain Results

- Fisher matrix computed at a point in parameter space: already critiqued in this context.
- Grid search too slow with many parameters
- Markov chains are fast
 - Linear with # of parameters
 - Well understood / easy to implement
 - Standard tool in CMB physics today
- Computationally demanding problem

Markov Chain Results

- Fisher matrix computed at a point in parameter space: already critiqued in this context.
- · Grid search too slow with many parameters
- Markov chains are fast
 - Linear with # of parameters
 - Well understood / easy to implement
 - Standard tool in CMB physics today
- Computationally demanding problem

Parameter Recovery

parameter	input	estimated
$\Omega_{b}h^{2}$	0.02273	0.02273 ± 0.00006
Ω_{m}	0.3097	0.3096 ± 0.0016
h	0.684	0.684 ± 0.001
τ	0.112	0.112 ± 0.002
n _s (k=0.002)	0.962	0.964 ± 0.013
A (k=0.002)	0.879	0.878 ± 0.016
r (k=0.002)	0.150	0.150 ± 0.004
dn _s / d ln k	0	0.000 ± 0.004
H/M	0	0.002 ± 0.002
φ	0	(degeneracy; mean 0.02)
σ ₈		0.871 ± 0.001

Parameter Recovery

parameter	input	estimated
$\Omega_{b}h^{2}$	0.02273	0.02273 ± 0.00006
Ω_{m}	0.3097	0.3096 ± 0.0016
h	0.684	0.684 ± 0.001
τ	0.112	0.112 ± 0.002
n _s (k=0.002)	0.962	0.964 ± 0.013
A (k=0.002)	0.879	0.878 ± 0.016
r (k=0.002)	0.150	0.150 ± 0.004
dn _s / d ln k	0	0.000 ± 0.004
H/M	0	0.002 ± 0.002
φ	0	(degeneracy; mean 0.02)
σ		0.871 ± 0.001

Islands in Parameter Space

- Real effect
 - Also seen by Okamoto & Lim
 - Problem for MCMC analysis

- Chain trapped in local maxima of likelihood space.
- We had hoped multi-parameter fit would smear them out.
- Understood semi-analytically as "beating" from oscillatory spectrum.

Islands in Parameter Space

- Real effect
 - Also seen by Okamoto & Lim
 - Problem for MCMC analysis

- Chain trapped in local maxima of likelihood space.
- We had hoped multi-parameter fit would smear them out.
- Understood semi-analytically as "beating" from oscillatory spectrum.

Islands in Parameter Space

- Real effect
- Also seen by Okamoto & Lim
- Problem for MCMC analysis

- Chain trapped in local maxima of likelihood space.
- We had hoped multi-parameter fit would smear them out.
- Understood semi-analytically as "beating" from oscillatory spectrum.

Page 155/194

- Probed possible generic effects of string theory / quantum gravity on cosmology
 - Feasibility study only.
 - Tells us that the problem is worth closer inspection

- Probed possible generic effects of string theory / quantum gravity on cosmology
 - Feasibility study only.
 - Tells us that the problem is worth closer inspection
- Would not want to spend billions of dollars on the strength of this calculation (seriously!)

- Probed possible generic effects of string theory / quantum gravity on cosmology
 - Feasibility study only.
 - Tells us that the problem is worth closer inspection
- Would not want to spend billions of dollars on the strength of this calculation (seriously!)

- Probed possible generic effects of string theory / quantum gravity on cosmology
 - Feasibility study only.
 - Tells us that the problem is worth closer inspection
- Would not want to spend billions of dollars on the strength of this calculation (seriously!)

- Probed possible generic effects of string theory / quantum gravity on cosmology
 - Feasibility study only.
 - Tells us that the problem is worth closer inspection
- Would not want to spend billions of dollars on the strength of this calculation (seriously!)
- But we are doing the observations anyway
 - Planck, ACT, CMBPol, BICEP, PolarBear, galaxy surveys, Lyman alpha...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...
- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...

- Impact of "minimum length" small for any reasonable parameter choice.
 - But stringy effects still much closer to the surface in cosmology than in particle physics.
 - Basic inflationary predictions are safe.
- Results depend on assumptions about initial conditions and overall model.
 - Everyone agrees H/M is the key quantity.
 - Argument is over exponent (and prefactor).
- Effective field theory approach powerful tool.
 - Ongoing work comparing our spectrum to lowest order correction from Schalm *et al.*
 - Comparison with data...