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* Discovered 1965
* Every point in the sky appears to be -2.725K
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e Discovered 1965
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1) String Theory v.
Dimensional Analysis

* Does this have observational consequences’
* Assume a fundamental mass scale, M

* Quantum gravity / Planck scale 1079 GeV

e String scale up to 2 orders of magnitude lower?
e Inflationary scale - 105 GeV

e p'2 - H (Hubble scale), Linflation - 1/H

¢ Dimensionless combination: H/M

* Impact of fundamental scale - (H/M)"

e Key question: is n = 1 or n =27 (and prefactor?)
* Possibly a 1% effect??
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2) String Theory and
Perturbations: Case Study

* Can’t do @b initio perturbations in string theory.
* Introduce minimum length via anstatz.
e Can modify evolution (n=2, typically)
 Or initial conditions (n=1, typically)
e See: Schalm, Shiu van der Schaar, Greene
o Effective field theory approach
* Trans-planck physics introduced via high
dimensional operators
e UV completion of GR unknown
¢ Initial conditions specified on surface, n=1.
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Modulated Spectrum

Tensor to scalar ratio
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Parameter Recovery

0.684 = 0.001
0.112 = 0.002

| 0.871 = 0.001
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Parameter Recovery

parameter | estimated

CTEE73 < 0.0

| {degeneracy mean 0.02)
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* Impact of “minimum length” small for any
reasonable parameter choice.
* But stringy effects still much closer to the
surface in cosmology than in particle physics.
* Basic inflationary predictions are safe.
* Results depend on assumptions about initial
conditions and overall model.
* Everyone agrees H/M is the key quantity.
e Argument is over exponent (and prefactor).
» Effective field theory approach powertful tool.
* Ongoing work comparing our spectrum to
lowest order correction from Schalm ez &/
¢ Comparison with data...
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