Title: Interpretation of Quantum Theory: Lecture 18

Date: Mar 10, 2005 02:15 PM

URL: http://pirsa.org/05030104

Abstract:

Pirsa: 05030104 Page 1/21

Summary of Previous Lecture Consistent Histories:

- 1. Pure Hilbert space QM. No classical world
- 2. Randomness intrinsic to nature
 Not just measurements
- 3. Standard probability theory
 -Sample space $I = \Sigma_j P^j P^j P^k = S_j L^j$. Orthonormal basis is an example
- 4. Standard logic
 -Single framework rule: Cannot combine incompatible descriptions
- 5. Probabilities of dynamical processes
 Use Schr Eqn to calculate probabilities
 Born rule for two times

Histories

- ullet Samples space ${\mathcal S}$ for classical stochastic process
 - o Sequence of events
 - o Example: coin tossed three times:

HTH, HTT, HHT, ... are all different

- o One and only one sequence in given experiment
- Other stochastic processes:
 - o Random walk
 - o Brownian motion
 - o Waterloo weather
- ullet Quantum sequence of events for Hilbert space ${\cal H}$

$$Y = F_0 \odot F_1 \odot \cdots F_f$$

- o F_j projector on ray/subspace of \mathcal{H}
- \circ " F_0 at t_0 , F_1 at t_1 , ..."
- o Different F_j not (necessarily) related by Schr Eqn
- o Call such a sequence a history
- Technical comments:
 - $\circ \odot$ is a modification of \otimes
 - o History Y an element of $\mathcal{H} \odot \mathcal{H} \odot \cdots \mathcal{H}$.

Families of Histories

- Quantum sample space $S = \{Y^{\alpha}\}$ consists of histories
- Simplest interesting situation:
 - o Single initial state $[\psi_0] = |\psi_0\rangle\langle\psi_0|$ at t_0
 - o $t_j > t_0$: $I = \sum_{\alpha_j} P_j^{\alpha_j}$
- Histories indexed by $\alpha = (\alpha_1, \alpha_2 ...)$ $Y^{\alpha} = [\psi_0] \odot P_1^{\alpha_1} \odot P_2^{\alpha_2} \odot \cdots$
- One and only one history from $S = \{Y^{\alpha}\}$ actually occurs in quantum system starting in $[\psi_0]$ at t_0 .
 - o Projectors $P_i^{\alpha_j}$ not related by Schr eqn
- QM does not say which history occurs
 - o QM can assign probabilities

Probabilities for Histories

- Use isolated/closed system
 - o Open systems more complicated
 - o Any apparatus is part of quantum system
 - in contrast with textbook approach
- Born rule limited to 2-time histories, $t_0 < t_1$
 - o New rule needed for 3 or more times
 - o Quantum probabilities (usually) not Markovian
- Histories approach only assigns probabilities to consistent families
 - o For consistent families these probabilities
 - make physical sense
 - agree with Born for two times
- Consistency conditions: Chs. 10, 11 of Consistent Quantum Theory

Consistency Conditions

- Simplest case: pure initial state $|\psi_0\rangle$, chain kets; see Consistent Quantum Theory, Sec. 11.6
- Recursively define

$$\begin{aligned} |\alpha_1\rangle &= P^{\alpha_1}T(t_1, t_0)|\psi_0\rangle, \\ |\alpha_1, \alpha_2\rangle &= P^{\alpha_2}T(t_2, t_1)|\alpha_1\rangle, \\ |\alpha_1, \alpha_2, \alpha_3\rangle &= P^{\alpha_3}T(t_3, t_2)|\alpha_1, \alpha_2\rangle \end{aligned}$$

and so forth

• Require orthogonality at each stage:

$$\alpha_1 \neq \alpha_1' \Rightarrow \langle \alpha_1 | \alpha_1' \rangle = 0,$$

$$\alpha_1 \neq \alpha_1' \text{ OR } \alpha_2 \neq \alpha_2' \Rightarrow \langle \alpha_1, \alpha_2 | \alpha_1', \alpha_2' \rangle = 0,$$

Etc.

- $\Pr(Y^{(\alpha_1,\alpha_2,\ldots)}) = \langle \alpha_1,\ldots\alpha_f | \alpha_1,\ldots\alpha_f \rangle.$
- {P₁^{α₁}} orthogonal implies: α₁ ≠ α'₁ ⇒ ⟨α₁|α'₁⟩ = 0
 Two-time t₀ < t₁ histories automatically consistent
 Born rule always works
- Consistency not trivial for 3 or more times.

Double Slit + Mach-Zehnder

- Correspondences:
 - o Which slit? \leftrightarrow Which arm?
 - \circ Detectors behind slits \leftrightarrow inside interferometer
 - o In interference zone \leftrightarrow following 2d beam splitter
- For precise description, use Mach-Zehnder
 - o Basic idea applies to double slit

No detectors

- Family "Super" (superposition)
 - o Initial wave $|\psi_0\rangle$ arrives at slits
 - Ignore reflection (Mach-Zehnder better for this)
 - o Passes through slits in coherent superposition
- Family "Which" (which slit?)
 - \circ Same $|\psi_0\rangle$
 - o Particle passes through definite slit
- Either family gives valid quantum description
 - o Physicist can choose either. Liberté!
 - o Spin 1/2 analogy: Use either S_z or S_x basis
- Both families equally "fundamental" QM: Egalité!
- Cannot combine Super with Which: Incompatibilité!

Detectors Behind Slits I

- Detectors are quantum objects!
 - o Hilbert space includes detectors
 - o Histories include projectors on detector states
- o "Pointer basis": Macroscopically distinct detector states for decomposition of identity
- Histories: [Ψ₀] ⊙ Particle ⊙ Detector
 - o Initial $|\Psi_0\rangle = |\psi\rangle \otimes |\text{Detectors Ready}\rangle$
 - o Particle: Super(position) OR Which (slit) basis
 - o Detector: Point(er) basis OR Scat (Schr. cat) basis

Detectors Behind Slits II

Family:	Particle:	Detector:	Consistent?
1. Unitary	Super	Scat	Yes
2. Textbook	Super	Point	Yes
3. Exptlist	Which	Point	Yes
4. Nonsense	Super	Point Scat -	→ No

- Families 1, 2, 3 equally good quantum descriptions!
 - Individual detectors cannot be discussed.
 Misleading concept of "dead and live" cat
 - 2. "Which slit?" is meaningless question for this family
- 3. Experimentalist description: Particle came through slit preceding triggered detector
- Family 4 unacceptable: violates consistency conditions

Detectors in Interference Region

Family:	Particle:	Detector:	Consistent?
1. Unitary	Super	Scat	Yes
2. Textbook	Super	Point	Yes
3. DefinSlit	Which	Scat*	Yes
4. Nonsense	Which	Point	No

- Families 1, 2, 3 equally good quantum descriptions!
 - 1. Individual detectors cannot be discussed
 - 2. "Which slit?" is meaningless question
 - 3. Scat* differs from Scat, but equally odd
- Family 4 unacceptable: violates consistency conditions

Delayed Choice

- Detectors behind slits removed at last moment
 Does the future influence the past?
- Consistent families in the two cases:

Family:	Particle:	Near Detectors:	Far Detectors:
1. Unitary	Super	Scat	
2. Textbook	Super	Point	
3. Exptlist	Which	Point	
4. Unitary	Super		Scat
5. Textbook	Super		Point
6. DefinSlit	Which		Scat*

- Future influences past = misunderstanding
 - o Many equally valid quantum descriptions
- o Chosing one does not influence reality; it determines which questions have answers

Delayed Choice

- Detectors behind slits removed at last moment
 Does the future influence the past?
- Consistent families in the two cases:

Family:	Particle:	Near Detectors:	Far Detectors:
1. Unitary	Super	Scat	
2. Textbook	Super	Point	
3. Exptlist	Which	Point	
4. Unitary	Super		Scat
5. Textbook	Super		Point
6. DefinSlit	Which		Scat*

- \bullet Future influences past = misunderstanding
 - o Many equally valid quantum descriptions
- o Chosing one does not influence reality; it determines which questions have answers

Einstein Podolsky Rosen

- Phys. Rev. 1935 "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"
 - o Their answer: No
- Bohm 1952. Particles a and b far apart in spin singlet
 - $\circ |\psi_0\rangle = \left(|z_a^+ z_b^-\rangle |z_a^- z_b^+\rangle\right)/\sqrt{2}$
 - o A measures S_{az} , gets result +1/2 or -1/2Conclusion $S_{bz} = -S_{az}$
 - o A could measure S_{ax} , get result +1/2 or -1/2Conclusion $S_{bx} = -S_{ax}$
- EPR objection, stated in Bohm language
 - Measurement of a cannot affect b, so
 - o S_{bz} values same before and after A measurement
 - \circ A could just as well measure S_{ax}
- \circ Both S_{bz} , S_{bx} have definite values regardless of what is measured
 - o QM is incomplete: Hilbert space is too small!

Nonlocality

- Claim: EPR ⇒ QM nonlocal!
- o A's measurement of particle a has an Instantaneous Nonlocal Superluminal (INS) influence on particle b
 - Idea supposedly supported by Bell inequalities
- Laborious analysis proves that
 - o INS influences carry no information!
- Histories response:
- INS influences carry no information —
 because they do not exist!
 - o Bell ineq. violations ⇒ hidden variables don't work
 - Hilbert space QM, properly understood, is local

Classical Analogy

- Two colored slips of paper: R(ed), G(reen)
- Pete in Pittsburgh
 - o Seals them in opague envelopes
 - o Shuffles envelopes
 - o Addresses one to Alice in Atlanta
 - o The other to Bob and Boston
- Alice opens her envelope, sees G
 - o Conclusion: Bob's envelope contains R
- Does this indicate INS influence of Alice's action on Bob's envelope?
 - o Perhaps there is some simpler explanation

EPR Correlations

- Histories with initial $|\psi_0\rangle = (|z_a^+ z_b^-\rangle |z_a^- z_b^+\rangle)/\sqrt{2}$ • No measurements (until later)
- Unitary family $[\psi_0] \odot [\psi_0] \odot [\psi_0] \odot \cdots$
 - o Consistent, probability 1
 - \circ Incompatible with individual properties of a, b
- o Must consider $|\psi\rangle$ pre-probability in order to use reduced density operators ρ_a, ρ_b
- • Family using S_z bases: $[\psi_0] \odot \begin{cases} z_a^+ z_b^- \\ z_a^- z_b^+ \end{cases}$
 - o Perfect correlations with no measurements
 - o Like R, G slips of paper inside envelopes
 - o Good measurements will show what is there
- Family using S_x bases: $[\psi_0] \odot \begin{cases} x_a^+ x_b^- \\ x_a^- x_b^+ \end{cases}$
 - o Incompatible with previous family
- No magical INS influences thus far!
 - o Will measurements bring them to light?

EPR Measurement Correlations

- Measuring apparatus Z_a for S_{az}
 - o Initial state $|\Psi_0\rangle = |\psi_0\rangle \otimes |Z_a^0\rangle$
 - o Pointer basis projectors Z_a^+, Z_a^-
- Unitary history → apparatus Schrödinger cat state
 Good QM, but does not address our questions
- Family 1. $[\Psi_0] \odot \begin{cases} z_a^+ z_b^- \odot Z_a^+ \\ z_a^- z_b^+ \odot Z_a^- \end{cases}$
- o Apparatus Z_a^{\pm} correlated with prior states of both particles
 - o Good measurements show what is there
- Extensions of this family show that:
- o Z_a^+ outcome implies $S_{bz}=-1/2$ for particle b before, during and after measurement
 - o No sign of INS influence!

EPR Delayed Choice

- Measure S_{ax} instead of S_{az}
 - o Use $|\Psi_0\rangle = |\psi_0\rangle \otimes |X_a^0\rangle$
 - \circ Or use quantum coin to replace Z_a with X_a
 - Possibly at the last moment
- Family 2. $[\Psi_0] \odot \begin{cases} x_a^+ x_b^- \odot X_a^+ \odot x_b^- \\ x_a^- x_b^+ \odot X_a^- \odot x_b^+ \end{cases}$

o Outcome X_a^+ correlated with x_b^- — both before and after measurement

- Family 3. $[\Psi_0] \odot \begin{cases} z_b^+ \odot \{X_a^+, X_a^-\} \odot z_b^+ \\ z_b^- \odot \{X_a^+, X_a^-\} \odot z_b^- \end{cases}$
 - o Can discuss S_{bz} when S_{ax} measured, why not?
- o S_{bz} for particle b exactly the same before and after measurement on particle a
 - o Demonstration of absence of INS influences!

Is QM Complete?

- Quantum description of physical reality available in 1935 was incomplete because it:
 - Lacked consistent probabilities
 - o Limited set of stochastic descriptions
 - o Misleading reliance on "measurement"
 - o Lacked good description of measurement apparatus
 - o Wavefunction "collapse" not well formulated
- Einstein, Podolsky, Rosen correct in raising objections
- Quantum description available in 2005 has
 - o Consistent system of probabilities for microsystems
 - o Broad class of stochastic descriptions
 - o Formulation does not rely on measurement
 - o Same principles for measurements, other processes
 - o Conditional probabilities replace "collapse"
- Is it now complete?

Discussion Topics

- a Liberty in choosing alternative descriptions / consistent families
 - · Analog of ordinary historian
- · Approach is consistent; does not lead to contradictions
- 1 Measurements
- Reveal pre-existing properties if the latter are included in the description
 - Von Neumann type
 Very special
 Usual interpretation not wrong,
 but mistending
- J Approximate consistency Dowker & Kent
- a CH vs. Everett. | Vt > a pre-probability of limited utility
- OCH VS. Bohm Particle that triggers detector by not passing through it