Title: Interpretation of Quantum Theory: Lecture 17

Date: Mar 08, 2005 02:15 PM

URL: http://pirsa.org/05030100

Abstract:

Pirsa: 05030100

Consistent/Decoherent Histories

- Conceptual difficulties in QM come from introducing probabilities in the wrong way
- Histories approach: consistent introduction of probabilities eliminates difficulties and resolves (tames) paradoxes
- History of histories:
 - o Griffiths 1984
 - o Omnès 1987
 - o Gell-Mann and Hartle 1990
 - o Many subsequent papers, books
 - o Griffiths, CONSISTENT QUANTUM THEORY

(Cambridge 2002)

first 12 chapters at http://quantum.phys.cmu.edu

Histories and Paradoxes

- Paradoxes that are resolved/tamed using histories:
 - o Einstein, Podolsky, Rosen
 - o Double slit
 - o Bell, Kochen, Specker
 - o Greenberger, Horne, Zeilinger
 - o Hardy
 - o Aharonov and Vaidman multiple box
 - o Wheeler delayed choice
 - o Elitzur and Vaidman noninteracting measurement
 - 0 ...
- Paradoxes that are not resolved using histories:

o Any suggestions?

Double Slit I

- Slit system, detectors in interference region
 - o Horizontal bars: counting rates
 - o Interference depends on difference d-d', so
 - particles pass through slits coherently
 - o Particles arrive randomly at detectors
- Consistent histories
 - o Randomness an intrinsic part of nature
 - o Anti-Einstein. There are no hidden variables

Histories and Measurements

- Textbook QM:
 - \circ Randomness arises through measurements
- Histories:
 - \circ Randomness intrinsic in QM
 - o Measurements are examples of physical processes
 - o Same quantum principles govern all processes
 - o There is no classical world, apparatus
 - o Sometimes classical mechanics is a good approx
 - o Quantum principles determine those circumstances

Double Slit II

- Experimentalist:
 - o Detector triggers because particle arrives
- o Just before detection particle was near detector, on its way to detector
- Historian:
 - o Good experimentalists know what they're doing
 - o Triggered detector indicates arrival of particle
 - o QM justifies this talk; indicates its limitations
 - o Theorists should not bully competent people!

Double Slit III

- Detectors directly behind slits
 - o Particles arrive at random
 - o Total counting rate same as before
 - o One detector, not both, detects each particle
- Explanations
 - o Experimentalist:

Particle came through slit preceding detector— Collimators work this way

o Textbook:

Cannot discuss what happened before measurement "Great Smoky Dragon"

o Historian:

QM supports experimentalist account

Double Slit + Mach-Zehnder

- Correspondences:
 - o Which slit? ↔ Which arm?
 - o Detectors behind slits ↔ inside interferometer
 - \circ In interference zone \leftrightarrow following 2d beam splitter
- For precise description, use Mach-Zehnder
 - o Basic idea applies to double slit

Double Slit III

- Detectors directly behind slits
 - o Particles arrive at random
 - o Total counting rate same as before
 - o One detector, not both, detects each particle
- Explanations
 - o Experimentalist:

Particle came through slit preceding detector— Collimators work this way

o Textbook:

Cannot discuss what happened before measurement "Great Smoky Dragon"

o Historian:

QM supports experimentalist account

Double Slit IV

- Detectors behind slits removed at the last moment
 - o Detectors remain:
 - particle came through definite slit
 - o Detectors removed:
 - particle passed through slits coherently
- Particle could enter slit system before decision to remove detectors was made! (Wheeler delayed choice)
 - o Does the future influence the past?

Phase Space and Hilbert Space

	Classical	Quantum
Physical state	Point	Ray
Property P	Subset P	Subspace \mathcal{P}
NOT P	Compl. $\sim P$	Orthog. compl. \mathcal{P}^{\perp}
P AND Q	$P \cap Q$?

Spin Half Particle

- S_z = +1/2 is a physical state
 Ray in Hilbert space. Point on Bloch sphere
- $S_z = -1/2$ is negation of $S_z = +1/2$ • Orthogonal ray. Antipode on Bloch sphere
- · For any spin-half particle,
 - o Either $S_z = +1/2$ or $S_z = -1/2$, not both
 - o Stern-Gerlach measurement shows which is the case
- Nothing special about z. The x axis is just as good.
- · For any spin-half particle,
 - o Either $S_x = +1/2$ or $S_x = -1/2$, not both
 - o Stern-Gerlach measurement shows which is the case
- $S_z = +1/2$ AND $S_x = +1/2$ is meaningless:
 - o Hilbert space QM assigns it no meaning
 - No corresponding ray in the Hilbert space
 - o No experiment which can measure it
 - Because it is not there!

Phase Space and Hilbert Space

	Classical	Quantum
Physical state	Point	Ray
Property P	Subset P	Subspace \mathcal{P}
NOT P	Compl. $\sim P$	Orthog. compl. \mathcal{P}^{\perp}
P AND Q	$P \cap Q$?

Spin Half Particle

- S_z = +1/2 is a physical state
 Ray in Hilbert space. Point on Bloch sphere
- $S_z = -1/2$ is negation of $S_z = +1/2$ o Orthogonal ray. Antipode on Bloch sphere
- · For any spin-half particle,
 - o Either $S_z = +1/2$ or $S_z = -1/2$, not both
 - o Stern-Gerlach measurement shows which is the case
- Nothing special about z. The x axis is just as good.
- For any spin-half particle,
 - o Either $S_x = +1/2$ or $S_x = -1/2$, not both
 - o Stern-Gerlach measurement shows which is the case
- $S_z = +1/2$ AND $S_x = +1/2$ is meaningless:
 - Hilbert space QM assigns it no meaning
 - No corresponding ray in the Hilbert space
 - o No experiment which can measure it
 - Because it is not there!

Phase Space and Hilbert Space

	Classical	Quantum
Physical state	Point	Ray
Property P	Subset P	Subspace \mathcal{P}
NOT P	Compl. $\sim P$	Orthog. compl. P
P AND Q	$P \cap Q$?

Spin Half Particle

- S_z = +1/2 is a physical state
 Ray in Hilbert space. Point on Bloch sphere
- $S_z = -1/2$ is negation of $S_z = +1/2$ • Orthogonal ray. Antipode on Bloch sphere
- · For any spin-half particle,
 - Either $S_z = +1/2$ or $S_z = -1/2$, not both
 - o Stern-Gerlach measurement shows which is the case
- Nothing special about z. The x axis is just as good.
- · For any spin-half particle,
 - \circ Either $S_x = +1/2$ or $S_x = -1/2$, not both
 - o Stern-Gerlach measurement shows which is the case
- $S_z = +1/2$ AND $S_x = +1/2$ is meaningless:
 - o Hilbert space QM assigns it no meaning
 - No corresponding ray in the Hilbert space
 - o No experiment which can measure it
 - Because it is not there!

Spin Half Particle

- $S_z = +1/2$ is a physical state • Ray in Hilbert space. Point on Bloch sphere
- $S_z = -1/2$ is negation of $S_z = +1/2$ • Orthogonal ray. Antipode on Bloch sphere
- For any spin-half particle,
 - o Either $S_z = +1/2$ or $S_z = -1/2$, not both
 - o Stern-Gerlach measurement shows which is the case
- Nothing special about z. The x axis is just as good.
- For any spin-half particle,
 - \circ Either $S_x = +1/2$ or $S_x = -1/2$, not both
 - o Stern-Gerlach measurement shows which is the case
- $S_z = +1/2$ AND $S_x = +1/2$ is meaningless:
 - o Hilbert space QM assigns it no meaning
 - No corresponding ray in the Hilbert space
 - o No experiment which can measure it
 - Because it is not there!

Logic of Quantum Properties

- False statement is one whose negation is true
 - o "Pennsylvania is a Canadian province"
- Meaningless statement: not formed according to rules governing proper use of the language
 - o Example: " $P \wedge \vee Q$ "
 - o Negation of meaningless statement is meaningless
- Classical physical system:
 - o Meaningful to combine two properties with AND
 - "The position is..." AND "The momentum is..."
- Quantum physical system:
 - o Use AND only with compatible properties
 - o Compatible: projectors commute: PQ = QP
 - o $S_z = +1/2$, $S_x = +1/2$ are incompatible

Quantum Logic

- George Birkhoff and John von Neumann, Ann. Math.
- 37 (1936) 823, "The Logic of Quantum Mechanics"
 - o $S_z = +1/2$ AND $S_x = +1/2$ is meaningful, false
 - Must modify rules of logic:

$$A \lor (B \land C) \neq (A \lor B) \land (A \lor C)$$

$$A \wedge (B \vee C) \neq (A \wedge B) \vee (A \wedge C)$$

- Consistent histories recognizes logical problem
 - o But solves it in a different way
 - o $S_z = +1/2$ AND $S_x = +1/2$ is meaningless
- Rules of logic remain unchanged, but one must
 - o Recognize and exclude meaningless statements
- Single framework rule:
- o Meaningful quantum descriptions use a *single* collection of mutually compatible properties
 - Incompatible descriptions cannot be combined!
- Spin half
 - o Can discuss S_z , which is +1/2 or -1/2
 - o Can discuss S_x , which is +1/2 or -1/2
 - o Cannot combine these discussions
 - Doing so makes no sense in Hilbert space QM

Probabilities I

- Standard (textbook) probability theory: (S, E, Pr)
- Sample space S of mutually-exclusive possibilities
 - o One and only one occurs in a given experiment
 - o Examples:
 - $-\{H,T\}$ for coin toss
 - $-\{1, 2, 3, 4, 5, 6\}$ for roll of die
- Event algebra E.
 - \circ Assume \mathcal{S} discrete; $\mathcal{E} = \text{all subsets of } \mathcal{S}$
- Probability distribution Pr
 - o To each s_i in S assign $p_i = \Pr(s_i) \ge 0$; $\sum_i p_i = 1$.
- Quantum mechanics: three options for probabilities
- (i) Use standard theory; (ii) Invent new one;
- (iii) Become confused (very popular option)
- Consistent histories uses standard probability theory
 - o There are two tasks:
 - Define quantum sample space ${\cal S}$
 - Introduce probabilities Pr

Probabilities II

- · Example of spin half
- $S_z = +1/2, -1/2$ are mutually exclusive possibilities
 - o If one is true, the other is false
 - o One, only one occurs in Stern-Gerlach experiment
 - o They constitute the S_z sample space
- Likewise, $S_x = +1/2, -1/2$ constitute S_x sample space
- \bullet S_z and S_x sample spaces are incompatible
 - o Events cannot be combined
 - o Probabilistic inference cannot be combined

WARNING!

- o Incompatible is a quantum concept
- o Mutually Exclusive is classical or quantum
- o Do not confuse the two!

Probabilities III

- General structure of quantum sample spaces
- Decomposition of the identity in projectors {P^j}
 (Superscript is label, not power)

 $\circ P^j = (P^j)^{\dagger}, \quad P^j P^k = \delta_{jk} P^j, \quad I = \sum_j P^j$

- o Each $P^j \leftrightarrow$ physical property (Hilbert subspace)
- o $j \neq k \Rightarrow P^{j}P^{k} = 0$: mutually exclusive properties
- o $\sum_{j} P^{j} = 1$: at least one property is true.
- Event algebra \mathcal{E} consists of all projectors of type $P = \sum_{j} \pi_{j} P^{j}, \quad \pi_{j} = 0 \text{ or } 1$
- Example: Orthonormal basis $\{|\phi^j\rangle\}; P^j = |\phi^j\rangle\langle\phi^j|.$
- S_z sample space for spin half: $I = [z^+] + [z^-]$ • Use $[\psi]$ as abbreviation for dyad $|\psi\rangle\langle\psi|$.
- Before discussing quantum probabilities, make sure sample space exists! Many quantum paradoxes and other confusion can be traced to nonexistent sample spaces!

Born Rule I

- Time development of closed or isolated physical system
 - o Open system: make it part of larger closed system
 - Use Schrödinger Eqn to compute probabilities
 - o Born rule is first (but not last!) step
- Unitary time development operator T(t, t')
 - Comes from solving Schrödinger's equation
 - o Time-independent H: $T(t,t')=e^{-i(t-t')H/\hbar}$
- Assume $|\psi_0\rangle$ at t_0
 - o Sample space S: basis $\{|\phi_1^k\rangle\}$ at t_1
- · Born probabilities:

$$\Pr(\phi_1^k) = \Pr(\phi_1^k | \psi_0) = |\langle \phi_1^k | T(t_1, t_0) | \psi_0 \rangle|^2$$

- $\Pr(\phi_1^k) = \text{prob of } [\phi_1^k], \text{ not measurement of } \phi_1^k.$
 - o Good measurements reveal pre-existing properties.
- Use quantum description including apparatus to discuss measurements

Born Rule II

- Born probabilities depend on basis $\{|\phi_1^k\rangle\}$
- Example. Spin half, $|\psi_0\rangle = |z^+\rangle$, H = 0, T(t,t') = I
- S_z basis $\{|z^+\rangle, |z^-\rangle\}$ at t_1 : • $\Pr(z_1^+) = 1$, $\Pr(z_1^-) = 0$ • Subscript 1 indicates time t_1 .
- S_x basis $\{|x^+\rangle, |x^-\rangle\}$ at t_1 : • $\Pr(x_1^+) = 1/2 = \Pr(x_1^-)$
- Probabilities refer to properties of particle!
 - o Bases incompatible; cannot assign probability to $S_z = +1/2$ AND $S_x = -1/2$ at time t_1
- "Gyroscope with axis in z direction" is misleading
- o $S_z = +1/2$ at t_0 , $S_x = -1/2$ at t_1 does not mean change in direction of axis!
 - o Better picture: gyroscope axis in random direction
- o Given z component at t_0 , what is probability of x component at t_1 ?

Pre-Probability $|\psi_t\rangle$

· Born probability

$$\Pr(\phi_1^k) = \Pr(\phi_1^k | \psi_0) = |\langle \phi_1^k | T(t_1, t_0) | \psi_0 \rangle|^2$$

can be calculated in different ways.

- 1. Integrate Schrödinger Eqn from t₀ to t₁
 - $\circ |\psi_1\rangle = T(t_1, t_0)|\psi_0\rangle$
 - $\circ \Pr(\phi_1^k | \psi_0) = |\langle \phi_1^k | \psi_1 \rangle|^2$
- 2. Integrate Schrödinger Eqn from t_1 to t_0
 - $\circ |\phi_0^k\rangle = T(t_0, t_1)|\phi_1^k\rangle$
 - $\circ \Pr(\phi_1^k | \psi_0) = |\langle \phi_0^k | \psi_0 \rangle|^2$
- Approaches 1 and 2 equally good
 - o Compare E&M: same result using different gauge
- Physical reality: |ψ₀⟩ and the {|φ₁^k⟩};
 however, |ψ₁⟩ and {|φ₀^k⟩} are pre-probabilities:
 tools for computing probabilities, not physical reality!
- "Wave function of universe" $|\psi_t\rangle = T(t,t_0)|\psi_0\rangle$
 - o Everett: $|\psi_t\rangle$ represents physical reality
- \circ Histories: $|\psi_t\rangle$ is pre-probability: useful for finding Born probabilities; inadequate for others

Double Slit + Mach-Zehnder

- Correspondences:
 - \circ Which slit? \leftrightarrow Which arm?
 - Detectors behind slits ↔ inside interferometer
 - o In interference zone \leftrightarrow following 2d beam splitter
- For precise description, use Mach-Zehnder
 - o Basic idea applies to double slit