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Why Fluxes?

e Standard \" = 1 Calabi-Yau string compactifications suffer from two
well-known problems of string phenomenology

— Moduli stabilization
— Supersymmetry breaking
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Why Fluxes?

e Standard \" = 1 Calabi-Yau string compactifications suffer from two
well-known problems of string phenomenology

— Moduli stabilization
— Supersymmetry breaking

e Generalizations to compactifications with background fluxes may help
solving both since

— Most moduli get lifted by an effective potential
— SUSY can be broken in a controlled way
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Fluxes in Type IIB

e Type IIB flux compactifications provide an interesting framework for
realizing these ideas. Introducing a non-trivial 3-form flux

F3 RR flux

{','f:,: — f'f%_; — ."H'g; H3 NSNS flux
+ complex dilaton
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Fluxes in Type IIB

e Type IIB flux compactifications provide an interesting framework for
realizing these ideas. Introducing a non-trivial 3-form flux

F3 RR flux
G3 = F3 — 7H3 H3 NSNS flux
T+ complex dilaton

— Generates a superpotential W which freezes the complex structure
moduli and dilaton [Gut /afa, Witten]

— Induces soft terms in gauge theories living on D-branes
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Fluxes in Type IIB

e lype IIB flux compactifications provide an interesting framework for
realizing these ideas. Introducing a non-trivial 3-form flux

F3 RR flux
{',r*;] = f‘? — 7 HA H3 NSNS flux
7 complex dilaton

— Generates a superpotential W which freezes the complex structure
moduli and dilaton [GVW ,DRS]

— Induces soft terms in gauge theories living on D-branes

e In addition, this class of supergravity backgrounds

— Embed the Randall-Sundrum scenario by means of a warped metric

— Admit the construction of de Sitter vacua
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D-branes & chirality

e [ype IIB flux compactifications naturally involve D-branes, which yield
['(N) gauge theories at low energies.

e In order to get a realistic vacuum, however, we need these gauge the-
ories to be chiral.
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e lype IIB flux compactifications naturally involve D-branes, which yield
[’(N) gauge theories at low energies.

e In order to get a realistic vacuum, however, we need these gauge the-
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e T wo known ways to achieve chirality in type IIB flux compactification

— D-branes at singularities

Oirbafold Singularity

1 Orbifold Singularity

/ / Chiral D3-Brane World
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Singus vs. Magnus

e Both types of constructions are based on B-type branes, so they are
essentially the same from an stringy point of view.

e However, they look different in a supergravity construction, and in
particular in flux model building.
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Towards realistic vacua

¢ Much of the flux physics in the literature is based on \" = 1 vacua,
over which we have a better theoretical control.

e However, the gauge sector of these vacua is too simple;:
no chiral D = 4, \" = 1 flux compactification as above has been found.
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Towards realistic vacua

e Much of the flux physics in the literature is based on A" = 1 vacua,
over which we have a better theoretical control.

e However, the gauge sector of these vacua is too simple;
no chiral D = 4, \" = 1 flux compactification as above has been found.
e [ he aim of this talk is to describe the first examples of such vacua.

e In particular, we find \" = 1 and \" = 0 chiral flux vacua solving the
supergravity equations, by means of magnetized D-branes.

e Moreover, these vacua are not only chiral, but also vield gauge theories
remarkably close to the MSSM.
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Towards realistic vacua

Much of the flux physics in the literature is based on \" = 1 vacua,
over which we have a better theoretical control.

However, the gauge sector of these vacua is too simple:
no chiral D = 4, \" = 1 flux compactification as above has been found.

The aim of this talk is to describe the first examples of such vacua.

In particular, we find \" =1 and \" = 0 chiral flux vacua solving the
supergravity equations, by means of magnetized D-branes.

Moreover, these vacua are not only chiral, but also vield gauge theories
remarkably close to the MSSM.

Talk based on:
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e [ here is a wide class of type IIB flux compactifications vielding D

General Flux Vacua

Minkowski vacua.

e [ he

— A (warped) compact Calabi-Yau background metric Xg

Pirsa: 05030099

necessary ingredients are:

O3-planes (and O7-planes) localized in Xg
D-branes filling M4 and not breaking supersymmetry

A 3-form flux G3 on Xg such that
gz —1G3
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General Flux Vacua

e T here is a wide class of type IIB flux compactifications vielding D = 4
Minkowski vacua.

e [ he necessary ingredients are:

— A (warped) compact Calabi-Yau background metric Xg
— O3-planes (and O7-planes) localized in Xg

— D-branes filling M4 and not breaking supersymmetry

— A 3-form flux G3 on Xg such that

:€6(;¥3 — (__7'3

e | wo possibilities

— Gzisa (2,1)-form = \" =1
— G5 contains a (0,3) component = \" =0

Pirsa: 05030099 Page 65/232



An orientifold example

e A simple example of CY4 is given by a T6 (Z» x Z») orbifold

= - = -

@:(z1,22,23)— (—21, —22, 23)
b~ {3 2 2ol =3 — 2o, — )
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An orientifold example

(Z~» % Z~) orbifold

2 : 2

= = = -
@ - (=, z3)r > {—=3, =3 73
— %1, —%2, —23)

Page 67/232



An orientifold example

(Z~» x Z») orbifold

e A simple example of CYg4 is given by a T6
= ==

Pirsa: 05030099

Page 68/232



An orientifold example

e A simple example of CYg4 is given by a T6 (Z~» x Z~) orbifold

Pirsa: 05030099

Page 69/232



General Flux Vacua

e [ here is a wide class of type IIB flux compactifications vielding D = 4
Minkowski vacua. : S

e [ he necessary inagredients are:

— A (warped) compact Calabi-Yau background metric Xg
— O3-planes (and O7-planes) localized in Xg

— D-branes filling M4 and not breaking supersymmetry

— A 3-form flux G3 on Xg such that

:if(i(;_;_?} =1 (__7'3

e [ wo possibilities

— Gzisa (2,1)-form = A" =1
— (3 contains a (0,3) component = \" =0
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An orientifold example

e A simple example of CYg4 is given by a T®/(Z> x Z>) orbifold

= - = -

#:(z1.22.23) — (—=21. —22.23)
ol _ LZy. . Zp b+ {Ey — 5 — 3

Pirsa: 05030099 Page 71/232



An orientifold example

e A simple example of CYg3 is given by a T /(Z~ x Z-

= aT aT
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An orientifold example

e A simple example of CY; is given by a T®/(Z> x Z>) orbifold

“ 7.
= = = -
& . 2. 23t > § 23, =3 23
L2y, —Z2, 23]
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An orientifold example

e A simple example of CY; is given by a T®/(Z» x Z>) orbifold

Cm— =

e

0 : (21,22,23) — (—21, —22, 23)
l 1y 22,23} > B = =3
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An orientifold example

e A simple example of CY3 is given by a T® (Z~» x Z-) orbifold

= -

Pz =n gl o § =g =

]

.23}

e By further quotienting by the orientifold action Q2R

C2: World-sheet parity
R (‘1 ‘2 "3) s (—_1 __2 __?})

we introduce O3-planes and O7-planes at Z» fixed points.

| | |

| i I

+ » + E | + E ]
I | '

. s .

Pirsa: 05030099

Page 76/232



An orientifold example

e A simple example of CYj3 is given by a T®/(Z> x Z>) orbifold

= - = -

@:(z1.22.23) — (—=21. —=

I

e By further quotienting by the orientifold action Q2R

€2: World-sheet parity
R :(z1.29.23) — (—21.—29. —23)

we introduce O3-planes and O7-planes at Z» fixed points.

4:..
) S
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An orientifold example

e A simple example of CYj3 is given by a T®/(Z> x Z>) orbifold

e By further quotienting by the orientifold action Q2R

C2: World-sheet parity
R (‘1 _‘_;21 -_-:3) s (—_1 _.__12. __3)

we introduce O3-planes and O7-planes at Z, fixed points.

I
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Adding D-branes

e Absence of tadpole divergences requires that we add D-branes in our
compactification.

e [ he simplest way to cancel O-plane charges is to consider D3 and
D7-branes parallel to the O3 and O7-planes.

Pirsa: 05030099 Page 79/232



Adding D-branes

e Absence of tadpole divergences requires that we add D-branes in our
compactification.

e [he simplest way to cancel O-plane charges is to consider D3 and
D7-branes parallel to the O3 and O7-planes.

Pirsa: 05030099 Page 80/232



Adding D-branes

e Absence of tadpole divergences requires that we add D-branes in our
compactification.

e [ he simplest way to cancel O-plane charges is to consider D3 and
D7-branes parallel to the O3 and O7-planes.

Pirsa: 05030099 Page 81/232



Adding D-branes

e Absence of tadpole divergences requires that we add D-branes in our
compactification.

e [ he simplest way to cancel O-plane charges is to consider D3 and
D7-branes parallel to the O3 and O7-planes.

Pirsa: 05030099 Page 82/232



Adding D-branes

e Absence of tadpole divergences requires that we add D-branes in our
compactification.

e [he simplest way to cancel O-plane charges is to consider D3 and
D7-branes parallel to the O3 and O7-planes.

Pirsa: 05030099 Page 83/232



Adding D-branes

Absence of tadpole divergences requires that we add D-branes in our
compactification.

The simplest way to cancel O-plane charges is to consider D3 and
D7-branes parallel to the O3 and O7-planes. Be z and Leigh]

This theory is however non-chiral. We may achieve chirality by intro-
ducing internal magnetic fluxes F},,, on D7-branes. [Bachas BGKL,AADS]

T-dual to D6-branes at angles in Zo x Zo. [Bert Douglas, Leigh]

i 8} N T —duality
Type IIB
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Magnetizing D-branes

(2N1,2N5,1) 4+ (2N1,1,2N3) 4+ (1,2N5, 2N3)
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Magnetizing D-branes

USp(2N1) x USp( ) x USp(2N3)

(2N1,2N>, 1) + (2N, 1,2N3) + (1,2N5, 2N3)
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Magnetizing D-branes

USp(2N1) x USp(2N>5) x USp(2N3)

(2N1,2N5, 1) 4+ (2N3,1,2N3) +(1,2N>,2N3)
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Magnetizing D-branes

U(N1) x USp(

V1. 2_\_2, 1) —|— 'l-‘__‘ 1. 2_\_.'

2N, D7,’s

ON, D7,’s
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Magnetizing D-branes

[U(N1) x USp( ) x USp(2N3)

g(N1,2N5,1) 4+ g(N1,1,2N3

= |
-

)+ (1,2N5,2N3)

2N, D7,’s

|
[
[
ON, D7,’s |
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Magnetizing D-branes

U(N1) x USp(

g(\

2N, D7,’s

ON, D7,’s

| 2_\::. 1 ,I _|_ ,1T_

) x USp(2N3)

+ 1, 2N7

= |
-

)+

1,2N5,2N3)
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Magnetizing D-branes

U(N1) x USp(

g( N

ON, D7,’s

ON, D7,’s
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Magnetizing D-branes

ON, D7,’s

ON, D7,’s
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Magnetizing D-branes

[

g

2N, D7,’s

2N, D7,’s
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(N1) x USp(

V1,.2N2,1) + gf _'-_ 1.2N3

-
-

) +

) x USp(2N3)

(1,2N5,2N3)
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A Left-Right MSSM Example

e [ he previous example allow us to achieve a semi-realistic spectrum, by
using the identity U'Sp(2) ~ SU(2)

U(4) x SU(2) x SU(2)

g(4.2,1)4+9(4.1,2)4+(1.2,2)
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A Left-Right MSSM Example

e [ he previous example allow us to achieve a semi-realistic spectrum, by

using the identity USp(2) ~ SU(2)

U(4) x SU(2) x SU(2)

9(4,2,1) 4 ¢(4,1.2) + (1.2.2)

e¢ By performing an adjoint Higgsing of U(4), we obtain a Left-Right

MSSM spectrum with g generations of chiral matter

SU@B) x SU(2) xSU(2) xU(1)B—r

Pirsa: 05030099
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T-dual picture

e [ he appearance of chirality is easier to visualize in the intersecting
D-brane picture

betore !

eS|

| |
|
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T-dual picture

e [ he appearance of chirality is easier to visualize in the intersecting
D-brane picture

[ A U [ | i [ [
| I i g | |
before | i | | | |
| - | - | -
' ‘ : : !
| | | | | |
! | | | ! y Y |
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T-dual picture

e [ he appearance of chirality is easier to visualize in the intersecting
D-brane picture

| I _,_,.,-o-""" ﬂ '[\-HH--“""M-.. [
| [ | L | i s . |
- | I |— | L__‘ "l
- S [ ] [ |
arter ; - s ] Ty g
. - o - i L i
| ot { |
| | ,/'—l ™ |
| — |
I | R e ! g N
[ | | - ' [ [ Y “‘“—g
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T-dual picture

e [ he appearance of chirality is easier to visualize in the intersecting
D-brane picture

| ) e~ |
£ETr | | ) S T |
| | .-'"'"F---- | --\-\-\""-.
atter ' ! g | ol |
. ; - : i T !
g F i ~ <
i i = i i ;
| | " . | | e |
[ | I [ | L |
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T-dual picture

e [ he appearance of chirality is easier to visualize in the intersecting
D-brane picture

B ! ! L™ ! Htl
a4 ft+ar ; | I ey [ !
atter | : i - R i ! R“'&_x 5 i

I R - | -

= Tl

| | 7 j |

| | e | -H““'m-___ |

| " % | | ™

e As well as the adjoint Higgsing

| o F P

betore | i | L R T4 |
| - j | | s

; ' T - e, e

| B | ~
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Magnetic Numbers

e Intersecting branes also inspire a description of these models in terms
of topological quantities

N, Number of D — branes

m’.  Number of times wrapped on (T2); i __
= o |2 L4 = Ng.

ny Units of magnetic flux on (T<); 2 JT2 a ‘{
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Magnetic Numbers

e Intersecting branes also inspire a description of these models in terms
of topological quantities
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m’  Number of times wrapped on (T2), L
Units of magnetic flux on (T?),
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Magnetic Numbers

e Intersecting branes also inspire a description of these models in terms

of topological quantities

N, Number of D — branes
m’  Number of times wrapped on (T?); o T
nt Units of magnetic flux on (T2), } 2 'JIT,Z' B
(T?)1  (T?2 (T3
s - N (nl.ml) (n2.m2) (n3.m2)
D - K (1.0) (n2.m2) (n3.m3)
D51 — Ng (nk.m}) (1.0) (1.0)
o N (1.0) (1.0) (1,0)

e | he orientifold action maps these numbers as

SN : (Hi!) = (ué,—_.-,-;l'llj

Pirsa: 05030099
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e In this notation,

Pirsa: 05030099

Magnetic Numbers 11

our previous Left-Right example reads

| Na | (el.ml) | (n2.m2) | (n3,m3)
' No=6| (1,00 | (9,1) | (9,-1)
| r—2] @1 . (1.0) (0. —1)
Iin=2] @D | @ ]| (O

Ny=2] o) | 1 | (6.-1)
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Magnetic Numbers 11

e In this notation, our previous Left-Right example reads

| No | (nl.m)) | 02, m2) | (n3,m3)
N.=6| (1.0) (g9.1) (g.—1)

'N,=2| (0.1) (1.,0) | (0,-1)

'N.=2]| (0,1) | (0,-1) | (1,0

' Nyg=2| (1,0) | (¢.1) | (g9.-1)

e [ he chiral spectrum can be computed by means of the intersection

product

Lo = [Qal - [Qs] = Ty (némi, — miyn})

Pirsa: 05030099
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Adding Background Fluxes

¢ We now want to include a background 3-form flux G5 = F3 — 7Hs5.
[t must satisfy
— Bianchi identities: dF3 = dH3 =0
— Quantization conditions: s F3, [ H3 € Z v I € H3(Xg.Z)
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Adding Background Fluxes

e We now want to include a background 3-form flux G35 = F3 — 7Hs3.
[t must satisfy
— Bianchi identities: dF3 = dH3 =0
— Quantization conditions: 5 F3, [ H3 € Z v ¥ € H3(Xs.Z)
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Adding Background Fluxes

e We now want to include a background 3-form flux G3 = F3 — 7Hs3.
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— Bianchi identities: dF3 =dH3 =20
— Quantization conditions: | F3, [ H3 € Z VX € H3(Xs,Z)
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Adding Background Fluxes

e We now want to include a background 3-form flux G3 = F3 — 7Hs.
[t must satisfy
— Bianchi identities: dF3 =dH3 =20
— Quantization conditions: fsF3, [ H3 € Z VI € H3(Xs.2Z)
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Adding Background Fluxes

e We now want to include a background 3-form flux G3 = F3 — 7Hs3.
[t must satisfy
— Bianchi identities: dF3 = dH3 =0
— Quantization conditions: fsF3, H3 € 4, VX eHi(XsZ)
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Adding Background Fluxes

e We now want to include a background 3-form flux G5 = F3 — 7H3.
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Adding Background Fluxes

e We now want to include a background 3-form flux G3 = F3 — 7Hs.
[t must satisfy
— Bianchi identities: dF3 =dH3 =0
— Quantization conditions: S5 F3, H3 € Z VI € H3(Xs.Z)
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Adding Background Fluxes

e We now want to include a background 3-form flux G5 = F3 — 7H3.
[t must satisfy
— Bianchi identities: dF3 =dH3 =0
— Quantization conditions: fsF3, H3 € 4, VX eHi(XsZ)
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Quantization conditions

e It is easier to characterize fluxes in the covering space T2 x T2 x TZ2.
T®/(Z> x Z>) contains 3-cycles whose volume is 1/4 of those in T®,
hence

fZ F3~ JIZ H3 = AE VX c H3(T®,Z)

e [ he orientifold modding 2R adds an extra factor of 2, unless 2 con-
tains an odd number of exotic O3-planes (i.e., O3's with positive ten-
sion and/or RR charge) L i

... but there are no exotic O-planes in our construction.
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Quantization conditions

e It is easier to characterize fluxes in the covering space T2 x T2 x TZ2.
T®/(Z> x Z>) contains 3-cycles whose volume is 1/4 of those in T®,
hence

JIZ F3~ JIZ H3 c Ak VX € H3(T®, Z)

e [ he orientifold modding 2R adds an extra factor of 2, unless 2. con-
tains an odd number of exotic O3-planes (i.e., O3's with positive ten-
sion and/or RR charge) . s
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Adding Background Fluxes

¢ We now want to include a background 3-form flux G3 = F3 — 7H3.
[t must satisfy
— Bianchi identities: dF3 =dH3 =0
— Quantization conditions: fsF3, [ H3 € 82, VX cHx(TSZ)

It also carries a D3-brane charge given by

Niux = Jre H3 A F3
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Adding Background Fluxes

¢ We now want to include a background 3-form flux G3 = F3 — 7H3.
[t must satisfy
— Bianchi identities: dF3 = dH3 =0
— Quantization conditions: [ F3, s H3 € 84, VX <H3TSZ)

It also carries a D3-brane charge given by

\‘T'Iu " ..||.?I'6 HB FB
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Adding Background Fluxes

¢ We now want to include a background 3-form flux G3 = F3 — 7H3.
[t must satisfy
— Bianchi identities: dF3 = dH3 =20
— Quantization conditions: 5 F3, [ H3 € 8Z VI € H3(TS, Z)

It also carries a D3-brane charge given by

Vilux = .||.?I'6 H3 A F3

Pirsa: 05030099 Page 122/232



Adding Background Fluxes

¢ We now want to include a background 3-form flux G3 = F3 — 7H3.
[t must satisfy
— Bianchi identities: dF3 = dH3 =0
— Quantization conditions: [ F3, [ H3 € 824, VXIcHTSZ)

It also carries a D3-brane charge given by

A flux — ._JII?]_“'ﬁ H3 A F3

Pirsa: 05030099 Page 123/232



Adding Background Fluxes

¢ We now want to include a background 3-form flux G5 = F3 — 7H3.

[t must satisfy

— Bianchi identities: dF3 = dH3 =

— Quantization conditions: ¢ F3. [x H3

It also carries a D3-brane charge given by

\T'Iur-. — .JIITI'6 H3 A F3

e We choose a constant ISD flux of the form

I’._}'B = (_;123 rf?lrf_tzrf.‘_:g—l—(}flig ff_‘_:lrf.T_:Q:f_‘_:g —I—{f}'lzﬁd:lrkgffg—l—f jj—J f!.T_Zl-FEEl‘E?}

Pirsa: 05030099
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

Np3 = 64 S & :
d e Y NoninZnd < 0w Cat
Nfjux = n-64. ner} L R . O T Gy E
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

l

No3z = 64 i _
—~ Yo Nanln2n3 <0 for G3 &=
Nfjuyx = n-64, neN a’a’ta - 370
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

“\_( )3 = 64 = & i _
LI - — \ v Tl i e ¥ 2 - ':‘_J -T. :
Nfuyx = n-64, ne N } 2uaiValgNaNag for G5 0
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

‘\_{_}3 — 64
*\"_flurq — n-64 ncN
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

Noz = 64 & i _
: % Y NonlnZn3 <0 e
*\'flu;n — n-64, ncN } i Lo o for G3 0
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

:\_{‘ } “3 — 6 4 1 3 2 =
b o Y Nanln2n3 <0 for G3 #
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

Nosz = 64 - S :
g — Nanin<n> < 0 T £
RNy — =-64 mcN } LT e e a for G3 O
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

:\_(_}3 — 64
Nfjuyx = n-64, neN
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

No3z = 64 i . _
— Y Nanin<n> <0 LR
‘\ﬂl_l',n — n-64. ne N } - e lta for ( c )]

Pirsa: 05030099 Page 133/232



Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

i — N ,L.I.”I_”:” ' .::| f r r_-'.; —
Nfiyx = n-64, n€N - "a"a b - i

l

:\_(_}3 — 64 } =
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

> aN _1;;L;_1" + 5N 1% = =N

il

e In the present context we have

“\_(_}3 — 64
Nfjux = n-64, ne N

e [ he obvious way to cancel RR tadpoles is then to introduce a large
number of D3-branes

— SUSY badly broken
— NSNS tadpoles
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

. |

“\_(_}3 — GOd e . _
[ | — ‘\_- \.'I . |'-|_. I = ':‘_H_.f f (_T' :
Nfjux = n-64. neN } - == or G3 =0

e [ he obvious way to cancel RR tadpoles is then to introduce a large
number of D3-branes

— SUSY badly broken
— NSNS tadpoles
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

> _N _1;;;;_1" + =INj5 — —

e In the present context we have

‘\*(_}3 — 64
‘\*ﬂm — n-64 "cN

e [ he obvious way to cancel RR tadpoles is then to introduce a large
number of D3-branes

— SUSY badly broken
— NSNS tadpoles
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Tadpoles

e In order to build a consistent D-brane model, RR tadpoles must cancel.
In particular, D3-brane tadpoles read

e In the present context we have

Npo3 = 64 | 1.2 3
Nfjux = n-64, neN Ay s

e [he obvious way to cancel RR tadpoles is then to introduce a large
number of D3-branes

— SUSY badly broken
— NSNS tadpoles
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Adding D9 — DS-branes

e We may instead consider adding D9 — D9-brane pairs in our theory

e [ hese objects are usually non-BPS stable objects which break SUSY
but, by introducing suitable magnetic fluxes

— They preserve \' =1
— They carry D3-brane charge
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Adding D9 — DS-branes

e We may instead consider adding D9 — DO9-brane pairs in our theory

e [ hese objects are usually non-BPS stable objects which break SUSY
but, by introducing suitable magnetic fluxes

— They preserve \' =1
— They carry D3-brane charge
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The D9 — DO mirror system

e Let us consider the magnetic numbers

C 8l s8¢ v 1)

e In the mirror picture

01+ 6>+63 = 0 mod 2«
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The D9 — D9 mirror system

e Let us consider the magnetic numbers

£ i) 2 1) % 1) - = = = = =

e In the mirror picture
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The D9 — D9 mirror system

e Let us consider the magnetic numbers

(-1.1)(—-1.1)(—-1.1) - = = = = =

e In the mirror picture
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The D9 — D9 mirror system

e Let us consider the magnetic numbers

£ R0 Ty & 0 - = = = = =

e In the mirror picture
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The D9 — D9 mirror system

e Let us consider the magnetic numbers

(1 2)(11)(21121) Cx )¢ = )¢ = 3

e In the mirror picture
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The D9 — D9 mirror system

e Let us consider the magnetic numbers

(1.2 11)( 11) (L B¢t BHEE 9

e In the mirror picture
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The D9 — D9 mirror system

e Let us consider the magnetic numbers

(—1,1)(—1,1)(—1,1) (—1,-1)(—1,-1)(—1,-1)

e In the mirror picture
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The D9 — D9 mirror system

e Let us consider the magnetic numbers

Sl e = A - = = = = =

e In the mirror picture

™ ; ™ : =
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The D9 — D9 mirror system

e Let us consider the magnetic numbers

(-1,1)(~1,1)(~1,1) €1 B¢ B¢ 9

e In the mirror picture

A : ™ ™
E | | |
i i
| | |
» » | » '
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The D9 — D9 mirror system

e Let us consider the magnetic numbers

£ 1.8 . 1) 1 8 - = = = = =

e In the mirror picture
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D9’s and K-theory 1

e A D9 — D9 pair carries a non-trivial Z> K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.

U

D9 — D9’s must come in pairs

Pirsa: 05030099 Page 151/232



D9’s and K-theory 1

e A D9 — D9 pair carries a non-trivial Zo K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.
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DO’s and K-theory 1

e A D9 — D9 pair carries a non-trivial Z> K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.

|}

L

D9 — D9’s must come in pairs
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D9’s and K-theory 1

e A D9 — D9 pair carries a non-trivial Zo K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.

|}

L
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DO’s and K-theory 1

e A D9 — D9 pair carries a non-trivial Z> K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.
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D9’s and K-theory 1

e A D9 — D9 pair carries a non-trivial Z> K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.

U
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D9’s and K-theory 1

e A D9 — D9 pair carries a non-trivial Z> K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.

U

D9 — D9’s must come in pairs

Pirsa: 05030099 Page 157/232



DO9’s and K-theory 1

e A D9 — D9 pair carries a non-trivial Z> K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.

|}
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DO’s and K-theory 1

e A D9 — D9 pair carries a non-trivial Z> K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.

|}

¥

D9 — D9’s must come in pairs
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D9’s and K-theory 1

e A D9 — D9 pair carries a non-trivial Z> K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.

|}

¥

D9 — D9’s must come in pairs
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D9’'s and K-theory 1

e A D9 — D9 pair carries a non-trivial Z> K-theory charge, invisible to
homology.

e We need to globally cancel this charge in order to have a consistent
model.

U

D9 — D9’s must come in pairs

e [ hese torsion charges cannot be computed by factorizing one-loop
open string amplitudes, nor by looking at chiral anomalies in the low
energy spectrum.

e [hey can be detected, however, by analizing global anomalies in the
worldvolume of D-brane probes. In the present case, they demonstrate
as Witten's SU(2) anomaly.
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D9’s and K-theory 11

e A non trivial NSNS flux H3 modifies the spacetime K-theory group to

a twisted version Ky e

b K[H] Is not well understood in case [H] is non-torsion. We can work

out the set of allowed D-branes by means of an alternative definition
based on D-brane decays via instanton processes.
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DO’'s and K-theory 1

A D9 — D9 pair carries a non-trivial Z>» K-theory charge, invisible to
homology.

We need to globally cancel this charge in order to have a consistent
model.

[

D9 — D9’s must come In pairs

These torsion charges cannot be computed by factorizing one-loop
open string amplitudes, nor by looking at chiral anomalies in the low
energy spectrum.

They can be detected, however, by analizing global anomalies in the
worldvolume of D-brane probes. In the present case, they demonstrate
as Witten’'s SU(2) anomaly.
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D9’s and K-theory II

e A non trivial NSNS flux Hg modifies the spacetime K-theory group to

a twisted version f\[,u-.

e Kig) is not well understood in case [H] is non-torsion. We can work
out the set of allowed D-branes by means of an alternative definition
based on D-brane decays via instanton processes.

Pirsa: 05030099
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D9’s and K-theory 11

e A non trivial NSNS flux Hg modifies the spacetime K-theory group to

d t‘-.-""."'igt‘%d "-.-"":—h.'r"SiG” J'r\[l,r_{‘.‘ - S

e Kip) is not well understood in case |H] is non-torsion. We can work
out the set of allowed D-branes by means of an alternative definition
based on D-brane decays via instanton processes.

i) Hs5 affects a D-brane wrapping W only if its pullback is non-trivial
in .

— Trivial for D3's and D7's

— Non-trivial for D9's

it) This Freed-Witten anomaly on D9's can be cured by introducing
(fractional) D5's ending on the D9 — D9 pair.
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Summary

We have analized type IIB flux compactification in one of the simplest
Calabi-Yau in the market, namely T®/(Z> x Z>), with (h11.ho1) = (3.51).
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Summary

We have analized type IIB flux compactification in one of the simplest
Calabi-Yau in the market, namely T®/(Z> x Z>), with (h11.ho1) = (3.51).

The BPS-like objects that we can play with are:
- O7 and O3-planes

- Magnetized D7-branes — MSSM-like spectrum

(o

- Magnetized D9 — D9 pairs — D3 charge

- Constant ISD G5 fluxes
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D9’s and K-theory 11

e A non trivial NSNS flux H3z modifies the spacetime K-theory group to

a twisted version f\[.u?r e

e Kyg) is not well understood in case |H] is non-torsion. We can work
out the set of allowed D-branes by means of an alternative definition
based on D-brane decays via instanton processes.

1) H3 affects a D-brane wrapping W only if its pullback is non-trivial
in W.

— Trivial for D3's and D7's

— Non-trivial for D9's

i1) This Freed-Witten anomaly on D9's can be cured by introducing
(fractional) D5's ending on the D9 — D9 pair.
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Summary

We have analized type IIB flux compactification in one of the simplest
Calabi-Yau in the market, namely T®/(Z> x Z5), with (h11.ho1) = (3.51).
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Tadpole conditions

In order to construct a consistent string theory vacuum we need to satisfy
Gauss’ law or RR tadpole conditions in the internal dimensions
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Tadpole conditions

In order to construct a consistent string theory vacuum we need to satisfy
Gauss’' law or RR tadpole conditions in the internal dimensions

e From supergravity e.o.m. we obtain the homological constraints

3
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Tadpole conditions

In order to construct a consistent string theory vacuum we need to satisfy
Gauss’ law or RR tadpole conditions in the internal dimensions

e From supergravity e.o.m. we obtain the homological constraints

Y . Nanln2n2 4+ SNg,x = 16
Y Namlm2nl = —16
E Nom] rﬁm_% = —16
Y NanlmZ2m] = -—16

e From analizing SL (2) D-brane probes we obtain the extra constraints

Y Naomlm2m3 = 4Z
Y Nanln2m] c 4Z
N Nanlm2nl = 4Z
E.. Nam’ nfnf = 47
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Tadpole conditions

In order to construct a consistent string theory vacuum we need to satisfy
Gauss’ law or RR tadpole conditions in the internal dimensions

e From supergravity e.o.m. we obtain the homological constraints

E.. '\"_u”.l. ”.:1”.?: _|_ %_""-_ﬂuf — 16
>, NamlmZnd = —16
E,, -Y.,i’T:'Ilj r!%nﬁ i
E” _""'r_.,i":'l% ;f?'g%;rn_‘:'l =

[

e From analizing SL (2) D-brane probes we obtain the extra constraints

Y NomlmZm2 e 47Z
Y. Nang n’m> = 4Z
Y NanlmZnl < 4Z
Y Namln2n? <= 4Z
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T he model

e An example of all the above is given by the magnetic numbers

Na | (ni.m) (n3.m2)| (n3,m3)
No=6 | (1.0) (9.1) | (g.-1)
N,=2 | (0.1) (1,0) | (0.-1)
Ne=2| (0,1) @ (0,-1) | (1,0)
Ng=2| (1,0) (9;1) | (go—1)
Na=—21 (2D | (3D} (41
No—2] (21) | (2D | ( 213
8Np3 | (1.0) (1.0) | (1.0)

which contains the Left-Right MSSM system described before
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T he model 11

¢ RR tadpoles are satisfied if
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T he model

e An example of all the above is given by the magnetic numbers

Ne | k) | (2ymd) | oy md)
Na=6| (1.0) (¢.1) | (g.-1)
Ny=2| (0,1) (1.0) | (0.-1)
Ne=2| (0.1) (0.-1) | (1,0)
Ng=2 | (1,0) (9.1) | (9.-1)
Npp=2| (-2.1) (-3.1) | (-4.1)
Npp=2| (-2,1) | (-4,1) | (-3,1)
8Nps | (1.0) (1,0) | (1,0)

which contains the Left-Right MSSM system described before

e This D-brane system preserves \" = 1 supersymmetry if we impose

Az = A3
tan—1(A4;/2) + tan=1(A45/3) + tan~1(A3/4) ==
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T he model 11

e RR tadpoles are satisfied if

g2+ Nps+4n =14 (g <3)
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T he model 11

e RR tadpoles are satisfied if

_H’j g 3 \frg + 4n = 14 (.U’ <3
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T he model 11

e RR tadpoles are satisfied if
g°+ Np3 + 4n = 14

which admits several solutions

o m—3 ] = K ‘\'_DB —
_———— g — 2z, *\_D?} = _
e 1l — 1. [ = BT :\_Dg ==

e n =0, (] = = ‘\_5}3 = _

(g <3)
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T he model 11

¢ RR tadpoles are satisfied if
g°+ Np3+4n =14

which admits several solutions
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(g <3)
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T he model 11

¢ RR tadpoles are satisfied if
,H’E + Np3+4n =14 (g <3)

which admits several solutions

en=3, g=1, Npg3=1 = N =1 chiral flux compactification

® |l = 2 g =— i ‘\_E}B ekl
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T he model 11

¢ RR tadpoles are satisfied if
g2+ Np3 + 4n = 14 (g < 3)

which admits several solutions
en=3, g=1, Npz3=1 = N =1 chiral flux compactification

® Jl = v i g =— > i :"'._17_—_;3 == {8
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T he model 11

e RR tadpoles are satisfied if
Iij.fj -'I- .\‘.-I}B + 4!! — 14 (.‘f E 3)

which admits several solutions

® |l = 3 [ = 1_. .\.j_—}'a =1

® |l = 2 g = 7 i ‘\'?DB =

8 F_% (fFlf!_hzh'{_"g _I_ f!.f:lf!?j”l:g _I_ fr{_"ll’f_‘zf!_‘_g)

N =1 chiral flux compactification
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The model 11

¢ RR tadpoles are satisfied if
”j + Np3+4n = 14 (g < 3)

which admits several solutions

-
-
(8]

I

g N

en—3E ¢—3 Npg—31 = 3gea N— 'T%'QTT"I[]Et'f_ftiTI-CﬂtiC'H
e N -.—— 0, — " N 5

L
LY
LY
N

ﬂxf}_g = 2(dz1dzodz3 + dz1dz2dz23 + dz1dz2dz3 + « -’Tl";;"_"'"'-’?'?; )
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T he model 11

¢ RR tadpoles are satisfied if

”j + Np3+4n =14 (g < 3)

which admits several solutions

® Il
e i
® I
® I

g

g

g

g

— 1, ‘\_}'_'_.}3 —

—7F Ny —1

A

=3, Np3=1 = 3-gen. \' = Q_flux compactification

— 3_, ‘\_5}3 =1 x\

L
Y
LY
n

2 (ff.T_:lff.‘_:grrl.‘_:g - - H'.‘_:lf!'?jff.‘_:g - - ff.‘_:lff.'_:sz?:g - - -'.-"Tl--.;;'T'_‘--'."T'}; l
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T he model 11

¢ RR tadpoles are satisfied if

which admits several solutions

g

g

|
-

—1, Npy

i’ | *\_DB —

=3, Np3=1 = 3-gen. N = Q_flux compactification

— 3, ‘\'_DB = .

L
Y
LY
N

2 (dz1dzod23 + dz1dz2d=z3 + dz1dz2dz3 + :.I‘Tl--.;%'_‘-:."T":; )
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T he spectrum

e [he low energy gauge group of these models is given by

SU(3) x SU(2) x SU(2) x U(1)g_y x [U(1) x USp(8Np3)],

U1y = % [U(1)a+U1)4] —2[UQ)p,—U1)4,]
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The spectrum

The low energy gauge group of these models is given by
SU(3) x SU(2) x SU(2) xU(1)p_r x [U(1) x USp(8Np3)l,

U(1) = 1[U(1)a+ U(1)g] = 2[U(1)p, —U(1)4,]

The extra pairs of D9 — D9's induce extra chiral matter beyond the
Left-Right spectrum

Most of these chiral exotics dissappear after giving a v.e.v. to some
scalar fields in the hidden sector

In terms of D-brane physics, this can be understood as the process of
D-brane/gauge bundle recombination

h 1 + h ~ — h
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Higgsing away chiral exotics

e Let us consider a Pati-Salam spectrum in the case g =3, Ny =5

Sector | Matter

) < SU(2)

[USp(30) | Qu |

{ab)

(ac)
(bcC)

I
i
2

2)

= '\__ln_..' '|__||_..'

2)
)
)

(ah’)

(aho)

(bhq)

o
L .
ﬁﬁwwﬁﬁ“ewﬁ

>3(1.1.1)
106(1.1.1)

(1.1.1) x [40]

(1,1,1) x |[40]

OO O O OO O O Of =
O = ) 8] [
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Higgsing away chiral exotics

e Let us consider a Pati-Salam spectrum in the case g =3, Ny =5

| Sector | Matter | SU(4) x SU(2) x SU(2) < [USp(40)] [ O, | OQn | @
(ab) | ET 3(4.2,1) 1 0 1/3
{(ac) | Fg 3(4.1.2) — 0 -1
(bc) | H {1, 2 7) @ ] a 0
(bh) 2(1.2.1) o | -1 2
(ch) 21 1.7) 0 | +1 —2

f'flf?fz s III—I—/I'!_{E — h

e | he PS sector does not get affected by this process
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Higgsing away chiral exotics

e Let us consider a Pati-Salam spectrum in the case g =3, Ny =5

| Sector | Matter | SU(4) x SU(2) x SU(2) x [USp(40)] | Q. | O Q
(ab) | ET 3(4.2.1) 1 0 1/3
lac) | B 3(4.1.2) - X7 0 ] 13
(b} | H {12 D) g ] o] a

| (bh) N1 T 1) 0| -1 2

|  (ch) N1.12) 0 | +1 —2

h1h5 ~ hy+h5 — h

e | he PS sector does not get affected by this process
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T he Effect of Fluxes

e Besides chiral exotics, these models also present non-chiral matter be-
vond the MSSM, like

— Adjoints of SU(3), U(1)
— Singlets of SU(2)

e [ hese fields are associated to positions/Wilson lines of D-branes, i.e.,
they are open string moduli
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T he Effect of Fluxes
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T he Effect of Fluxes

e Besides chiral exotics, these models also present non-chiral matter be-
vond the MSSM, like

— Adjoints of SU(3), U(1)
— Singlets of SU(2)

e [ hese fields are associated to positions/Wilson lines of D-branes, i.e.,
they are open string maoduli
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T he Effect of Fluxes

Besides chiral exotics, these models also present non-chiral matter be-
vond the MSSM, like

— Adjoints of SU(3), U(1)
— Singlets of SU(2)

These fields are associated to positions/Wilson lines of D-branes, i.e.,
they are open string moduli

Non-trivial G3 fluxes generically lift those moduli, and hence they diss-
apear from the massless spectrum

In the simple model above, however, non-geometrical moduli as D7-
brane Wilson lines are not lifted k- GRS
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T he Effect of Fluxes II

e In addition, \" = 0 ISD fluxes induce soft SUSY-breaking terms on
D7-branes gauge groups, as well as in the chiral spectrum

MSSM + soft terms induced by G-
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e In addition, \" = 0 ISD fluxes induce soft SUSY-breaking terms on
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T he Effect of Fluxes

Besides chiral exotics, these models also present non-chiral matter be-
vond the MSSM, like

— Adjoints of SU(3), U(1)
— Singlets of SU(2)

These fields are associated to positions/Wilson lines of D-branes, i.e.,
they are open string moduli

Non-trivial G3 fluxes generically lift those moduli, and hence they diss-
apear from the massless spectrum

In the simple model above, however, non-geometrical moduli as D7-
brane Wilson lines are not lifted " i e
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T he Effect of Fluxes

Besides chiral exotics, these models also present non-chiral matter be-
vond the MSSM, like

— Adjoints of SU(3), U(1)
— Singlets of SU(2)

These fields are associated to positions/Wilson lines of D-branes, i.e.,
they are open string moduli

Non-trivial G3 fluxes generically lift those moduli, and hence they diss-
apear from the massless spectrum

In the simple model above, however, non-geometrical moduli as D7-
brane Wilson lines are not lifted 0 S
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Higgsing away chiral exotics

e Let us consider a Pati-Salam spectrum in the case g =3, Ny =5

| Sector [ Matter | SU(4) x SU(Q) xSU(2) x[USp(40)] [ Q. [ On | @
(ab) Fr 3(4.2,1) f & § 0 1/:
(ac) | Fr 3(4.1.2) - X5 — =
(bc) | H 12 2 ! a 0
(bh) | | (1.2 1) ajaxj 3
(ch) | ' 21 1.72) 0 | +1 —2

h1h5 ~ hy+h5 — h

e | he PS sector does not get affected by this process
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Higgsing away chiral exotics

e Let us consider a Pati-Salam spectrum in the case g =3, Ny =05

Sector | Matter SU(4) x SU(2) x SU(2) x [USp(40)] | Q. | Qx, Qs )

(ab) Fr 3(4.2,1) 1 0] 0 1/3
(ac Fr 3(4.1.2) —x§ i 2 | 13
(bc) H 1,2 F) 0 8] 0 0
(ah’) 6(4.1.1) —1] -1 0 5/3
(ah2) 6{4.1,.1) 1 0 -1 —-5/3
(bh1) 8(1.2.1) = 0 2
(bh2) 6(1.2.1) 0 0 -1 —
(ch1) a6{l1, 1, 2) 0 -1 0 2
(cho 8(1, 1, ) 0 0 -1 -
(h1h] 23(1,1.1 | O -2 0 4
(hoh5) | 23(1,1,1) 0| 0 -2 2
(h1R) | 196(1.1.1) BB 1 0
(fh1) | (1.1.1) x [40] 0 | -1 0 2
(fha) | (1.1.1) < [40] 0 a3 =
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T he Effect of Fluxes

Besides chiral exotics, these models also present non-chiral matter be-
vond the MSSM, like

— Adjoints of SU(3), U(1)
— Singlets of SU(2)

These fields are associated to positions/Wilson lines of D-branes, i.e.,
they are open string moduli

Non-trivial G3 fluxes generically lift those moduli, and hence they diss-
apear from the massless spectrum

In the simple model above, however, non-geometrical moduli as D7-
brane Wilson lines are not lifted i S
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T he Effect of Fluxes II

e In addition, \" = 0 ISD fluxes induce soft SUSY-breaking terms on
D7-branes gauge groups, as well as in the chiral spectrum

MSSM + soft terms induced by G

Page 225/232



T he Effect of Fluxes II

e In addition, \" = 0 ISD fluxes induce soft SUSY-breaking terms on
D7-branes gauge groups, as well as in the chiral spectrum

MSSM + soft terms induced by G

Page 226/232



T he Effect of Fluxes II

e In addition, \" = 0 ISD fluxes induce soft SUSY-breaking terms on
D7-branes gauge groups, as well as in the chiral spectrum

MSSM + soft terms induced by G

e However, the soft terms are of the same order of magnitude as the
moduli masses = spoils Asymptotic Freedom

4

Solution: D-branes Wrapping rigid cycles
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T he Effect of Fluxes II

e In addition, \" = 0 ISD fluxes induce soft SUSY-breaking terms on
D7-branes gauge groups, as well as in the chiral spectrum

MSSM + soft terms induced by G

e However, the soft terms are of the same order of magnitude as the
moduli masses = spoils Asymptotic Freedom

Solution: D-branes Wrapping rigid cycles
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T he Effect of Fluxes II

e In addition, \" = 0 ISD fluxes induce soft SUSY-breaking terms on
D7-branes gauge groups, as well as in the chiral spectrum

MSSM + soft terms induced by G-

e However, the soft terms are of the same order of magnitude as the
moduli masses = spoils Asymptotic Freedom

Solution: D-branes Wl‘ElDDiﬂQ rigid cycles
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Type IIB recipe for chiral flux vacua

Let us describe the strategy that we have followed:

Choose a CY3 background that admits O3-planes and/or O7-planes

Introduce B-type D-branes such that they preserve \" = 1 supersymme-
try in this backaround. Try to build a chiral (semi-realistic) spectrum
form them.

Introduce ISD 3-form fluxes. Look at the effects that it creates on the
metric background and on the D-branes.

Look for new BPS-like objects that need to be introduced to build
tadpole-free models as, e.g. D9— D9 pairs, and analize their properties.
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Conclusions

e We have constructed \" =1 and \" = 0 chiral four-dimensional vacua
of flux compactification by means of magnetized D-branes.

e Even in the \' = 0 case (first order) NSNS tadpoles cancel, so the
iInstabilities associated with them are not present.

e In addition, these models admit a low energy spectrum remarkably close
to the MISSM, with 3 generations of chiral matter.

e In the \V = 0O case, SUSY is broken by the flux, which not only lifts
moduli but also induces soft terms in the MSSM sector.

e We have analyzed some phenomenological features of these models,
like the Higgsing processes, which can be understood in terms of D-
rsa: 050300 ANE physics. Page 231/232



What have we learnt?

D =4 N\ = 1 chiral Minkowski vacua with fluxes can indeed be con-
structed. \" = 0O chiral models as well, and without first order NSNS
tadpoles.

Their construction is remarkably simple compared to most chiral string
vacua, while still being quite close to realistic physics.

This simplicity encourages to extend this construction to most involved
CY geometries. We expect the appealing features to survive, while
including new ones (warped throats, etc.)

A Kkey ingredient in these constructions is the presence of magnetised
D9 — D9 pairs. It would be interesting to study the properties of these
objects in general flux compactifications.

Not only do these D9 — D9 pairs help finding flux vacua, but also new
N = 1 vacua, like in Z> x Z- orientifolds with ‘brane supersymmetry
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