Title: Building chiral flux vacua

Date: Mar 08, 2005 11:00 AM

URL: http://pirsa.org/05030099

Abstract:

Pirsa: 05030099

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 2/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 3/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 4/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 5/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 6/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 7/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 8/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 9/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 10/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 11/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 12/232

Fernando Marchesano

University of Wisconsin-Madison

String Theory Seminars
Perimeter Institute, March 8, 2004

Pirsa: 05030099 Page 13/232

Motivation

- Why Fluxes?
- Why D-branes?

Model Building

- Magnetized D-branes
- $\mathcal{N} = 1$ and $\mathcal{N} = 0$ models

MSSM-like vacua

Motivation

- Why Fluxes?
- Why D-branes?

Model Building

- Magnetized D-branes
- $\mathcal{N} = 1$ and $\mathcal{N} = 0$ models

MSSM-like vacua

Motivation

- Why Fluxes?
- Why D-branes?

Model Building

- Magnetized D-branes
- $\mathcal{N} = 1$ and $\mathcal{N} = 0$ models

MSSM-like vacua

Motivation

- Why Fluxes?
- Why D-branes?

Model Building

- Magnetized D-branes
- $\mathcal{N} = 1$ and $\mathcal{N} = 0$ models

MSSM-like vacua

Motivation

- Why Fluxes?
- Why D-branes?

Model Building

- Magnetized D-branes
- $\mathcal{N} = 1$ and $\mathcal{N} = 0$ models

MSSM-like vacua

Motivation

- Why Fluxes?
- Why D-branes?

Model Building

- Magnetized D-branes
- $\mathcal{N} = 1$ and $\mathcal{N} = 0$ models

MSSM-like vacua

Motivation

- Why Fluxes?
- Why D-branes?

Model Building

- Magnetized D-branes
- $\mathcal{N} = 1$ and $\mathcal{N} = 0$ models

MSSM-like vacua

Motivation

- Why Fluxes?
- Why D-branes?

Model Building

- Magnetized D-branes
- $\mathcal{N} = 1$ and $\mathcal{N} = 0$ models

MSSM-like vacua

Motivation

- Why Fluxes?
- Why D-branes?

Model Building

- Magnetized D-branes
- $\mathcal{N} = 1$ and $\mathcal{N} = 0$ models

MSSM-like vacua

D = 4 Compactifications:

- \bullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 23/232

D = 4 Compactifications:

- \bullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 24/232

D = 4 Compactifications:

- \bullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 25/232

D = 4 Compactifications:

- ullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 26/232

D = 4 Compactifications:

- \bullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 27/232

D = 4 Compactifications:

- \bullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 28/232

D = 4 Compactifications:

- \bullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 29/232

D = 4 Compactifications:

- ullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 30/232

D = 4 Compactifications:

- ullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 31/232

D = 4 Compactifications:

- \bullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 32/232

D = 4 Compactifications:

- ullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 33/232

D = 4 Compactifications:

- \bullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

Pirsa: 05030099 Page 34/232

D = 4 Compactifications:

- ullet Standard $\mathcal{N}=1$ Calabi-Yau string compactifications suffer from two well-known problems of string phenomenology
 - Moduli stabilization
 - Supersymmetry breaking

- Generalizations to compactifications with background fluxes may help solving both since
 - Most moduli get lifted by an effective potential
 - SUSY can be broken in a controlled way

Pirsa: 05030099 Page 35/232

Fluxes in Type IIB

 Type IIB flux compactifications provide an interesting framework for realizing these ideas. Introducing a non-trivial 3-form flux

$$G_3 = F_3 - \tau H_3 \qquad \begin{cases} F_3 & \text{RR flux} \\ H_3 & \text{NSNS flux} \\ \tau & \text{complex dilaton} \end{cases}$$

Pirsa: 05030099 Page 36/232

Fluxes in Type IIB

 Type IIB flux compactifications provide an interesting framework for realizing these ideas. Introducing a non-trivial 3-form flux

$$G_3 = F_3 - \tau H_3 \qquad \begin{cases} F_3 & \text{RR flux} \\ H_3 & \text{NSNS flux} \\ \tau & \text{complex dilaton} \end{cases}$$

Pirsa: 05030099 Page 37/232

Fluxes in Type IIB

 Type IIB flux compactifications provide an interesting framework for realizing these ideas. Introducing a non-trivial 3-form flux

$$G_3 = F_3 - \tau H_3 \qquad \begin{cases} F_3 & \text{RR flux} \\ H_3 & \text{NSNS flux} \\ \tau & \text{complex dilaton} \end{cases}$$

- ightarrow Generates a superpotential W which freezes the complex structure moduli and dilaton [Gukov, Vafa, Witten] [Dasgupta, Rajesh, Sethi]
 - → Induces soft terms in gauge theories living on D-branes

[Cámara, Ibáñez, Uranga] [Graña, Grimm, Jockers, Louis] [Lüst, Reffert, Stieberger]

Pirsa: 05030099 Page 38/232

Fluxes in Type IIB

 Type IIB flux compactifications provide an interesting framework for realizing these ideas. Introducing a non-trivial 3-form flux

$$G_3 = F_3 - \tau H_3 \qquad \begin{cases} F_3 & \text{RR flux} \\ H_3 & \text{NSNS flux} \\ \tau & \text{complex dilaton} \end{cases}$$

- ightarrow Generates a superpotential W which freezes the complex structure moduli and dilaton [GVW,DRS]
 - ightarrow Induces soft terms in gauge theories living on D-branes [CIU,GGJL,LRS]
- In addition, this class of supergravity backgrounds
 - Embed the Randall-Sundrum scenario by means of a warped metric
 [Giddings, Kachru, Polchinski]
 - Admit the construction of de Sitter vacua

[Kachru, Kallosh, Linde, Trivedi]

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.

Pirsa: 05030099 Page 40/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.

Pirsa: 05030099 Page 41/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.

Pirsa: 05030099 Page 42/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.

Pirsa: 05030099 Page 43/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.

Pirsa: 05030099 Page 44/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.

Pirsa: 05030099 Page 45/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.

Pirsa: 05030099 Page 46/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.

Pirsa: 05030099 Page 47/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.
- Two known ways to achieve chirality in type IIB flux compactification
 - D-branes at singularities [Cascales, García del Moral, Quevedo, Uranga]

Pirsa: 05030099 Chiral D3-Brane World Page 48/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.
- Two known ways to achieve chirality in type IIB flux compactification
 - D-branes at singularities [Cascales, García del Moral, Quevedo, Uranga]

Pirsa: 05030099 Chiral D3-Brane World Page 49/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.
- Two known ways to achieve chirality in type IIB flux compactification
 - D-branes at singularities [Cascales, García del Moral, Quevedo, Uranga]

Pirsa: 05030099 Chiral D3-Brane World Page 50/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.
- Two known ways to achieve chirality in type IIB flux compactification
 - D-branes at singularities [Cascales, García del Moral, Quevedo, Uranga]

Pirsa: 05030099 Chiral D3-Brane World Page 51/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.
- Two known ways to achieve chirality in type IIB flux compactification
 - D-branes at singularities [Cascales, García del Moral, Quevedo, Uranga]

Pirsa: 05030099 Chiral D3-Brane World Page 52/232

- Type IIB flux compactifications naturally involve D-branes, which yield U(N) gauge theories at low energies.
- In order to get a realistic vacuum, however, we need these gauge theories to be chiral.
- Two known ways to achieve chirality in type IIB flux compactification
 - D-branes at singularities [Cascales, García del Moral, Quevedo, Uranga]

Pirsa: 05030099 Chiral D3-Brane World Page 53/232

 Both types of constructions are based on B-type branes, so they are essentially the same from an stringy point of view.

 However, they look different in a supergravity construction, and in particular in flux model building.

Pirsa: 05030099 Page 54/232

- Both types of constructions are based on B-type branes, so they are essentially the same from an stringy point of view.
- However, they look different in a supergravity construction, and in particular in flux model building.
- D3's at singularities are easier to embed in warped throat constructions in a 'bottom-up' fashion, and the soft terms are easier to understand.
- Magnetized D7's have a richer and more interesting soft-term pattern, and SUSY can be broken while still satisfying supergravity equations of motion.

Pirsa: 05030099 Page 55/232

- Both types of constructions are based on B-type branes, so they are essentially the same from an stringy point of view.
- However, they look different in a supergravity construction, and in particular in flux model building.
- D3's at singularities are easier to embed in warped throat constructions in a 'bottom-up' fashion, and the soft terms are easier to understand.
- Magnetized D7's have a richer and more interesting soft-term pattern, and SUSY can be broken while still satisfying supergravity equations of motion.

Pirsa: 05030099 Page 56/232

- Both types of constructions are based on B-type branes, so they are essentially the same from an stringy point of view.
- However, they look different in a supergravity construction, and in particular in flux model building.
- D3's at singularities are easier to embed in warped throat constructions in a 'bottom-up' fashion, and the soft terms are easier to understand.
- Magnetized D7's have a richer and more interesting soft-term pattern, and SUSY can be broken while still satisfying supergravity equations of motion.

Pirsa: 05030099 Page 57/232

- Much of the flux physics in the literature is based on $\mathcal{N}=1$ vacua, over which we have a better theoretical control.
- However, the gauge sector of these vacua is too simple: no chiral D=4, $\mathcal{N}=1$ flux compactification as above has been found.

Pirsa: 05030099 Page 58/232

- Much of the flux physics in the literature is based on $\mathcal{N}=1$ vacua, over which we have a better theoretical control.
- However, the gauge sector of these vacua is too simple: no chiral D=4, $\mathcal{N}=1$ flux compactification as above has been found.

Pirsa: 05030099 Page 59/232

- Much of the flux physics in the literature is based on $\mathcal{N}=1$ vacua, over which we have a better theoretical control.
- However, the gauge sector of these vacua is too simple: no chiral D=4, $\mathcal{N}=1$ flux compactification as above has been found.

Pirsa: 05030099 Page 60/232

- Much of the flux physics in the literature is based on $\mathcal{N}=1$ vacua, over which we have a better theoretical control.
- However, the gauge sector of these vacua is too simple: no chiral D=4, $\mathcal{N}=1$ flux compactification as above has been found.

Pirsa: 05030099 Page 61/232

- Much of the flux physics in the literature is based on $\mathcal{N}=1$ vacua, over which we have a better theoretical control.
- However, the gauge sector of these vacua is too simple: no chiral D=4, $\mathcal{N}=1$ flux compactification as above has been found.
- The aim of this talk is to describe the first examples of such vacua.
- In particular, we find $\mathcal{N}=1$ and $\mathcal{N}=0$ chiral flux vacua solving the supergravity equations, by means of magnetized D-branes.
- Moreover, these vacua are not only chiral, but also yield gauge theories remarkably close to the MSSM.

Pirsa: 05030099 Page 62/232

- Much of the flux physics in the literature is based on $\mathcal{N}=1$ vacua, over which we have a better theoretical control.
- However, the gauge sector of these vacua is too simple: no chiral D=4, $\mathcal{N}=1$ flux compactification as above has been found.
- The aim of this talk is to describe the first examples of such vacua.
- In particular, we find $\mathcal{N}=1$ and $\mathcal{N}=0$ chiral flux vacua solving the supergravity equations, by means of magnetized D-branes.
- Moreover, these vacua are not only chiral, but also yield gauge theories remarkably close to the MSSM.

Talk based on:

F. M. and Gary Shiu

"Building MSSM Flux Vacua", hep-th/0409132

"MSSM vacua from Flux compactification", hep-th/0408059

Pirsa: 05030099

General Flux Vacua

- There is a wide class of type IIB flux compactifications yielding D=4 Minkowski vacua. [DRS,GKP]
- The necessary ingredients are:
 - A (warped) compact Calabi-Yau background metric X_6
 - O3-planes (and O7-planes) localized in X_6
 - D-branes filling M_4 and not breaking supersymmetry
 - A 3-form flux G_3 on X_6 such that

$$*_6G_3 = iG_3$$

Pirsa: 05030099 Page 64/232

General Flux Vacua

- There is a wide class of type IIB flux compactifications yielding D=4 Minkowski vacua. [DRS,GKP]
- The necessary ingredients are:
 - A (warped) compact Calabi-Yau background metric X_6
 - O3-planes (and O7-planes) localized in X_6
 - D-branes filling M_4 and not breaking supersymmetry
 - A 3-form flux G_3 on X_6 such that

$$*_6G_3 = iG_3$$

Two possibilities

- $-G_3$ is a (2,1)-form $\Rightarrow \mathcal{N}=1$
- $-G_3$ contains a (0,3) component $\Rightarrow \mathcal{N} = 0$

Pirsa: 05030099 Page 65/232

 \bullet A simple example of ${\rm CY}_3$ is given by a $T^6/(Z_2\times Z_2)$ orbifold

$$T^6 = T^2 \times T^2 \times T^2$$

$$\theta:(z_1,z_2,z_3)\mapsto(-z_1,-z_2,z_3)$$

$$\omega:(z_1,z_2,z_3)\mapsto(z_1,-z_2,-z_3)$$

Pirsa: 05030099 Page 66/232

 \bullet A simple example of ${\rm CY}_3$ is given by a $T^6/(Z_2\times Z_2)$ orbifold

$$T^6 = T^2 \times T^2 \times T^2$$

$$\theta:(z_1,z_2,z_3)\mapsto(-z_1,-z_2,z_3)$$

$$\omega:(z_1,z_2,z_3)\mapsto(z_1,-z_2,-z_3)$$

Pirsa: 05030099 Page 67/232

 \bullet A simple example of CY_3 is given by a $T^6/(Z_2\times Z_2)$ orbifold

$$T^6 = T^2 \times T^2 \times T^2$$

$$\theta:(z_1,z_2,z_3)\mapsto(-z_1,-z_2,z_3)$$

$$\omega:(z_1,z_2,z_3)\mapsto(z_1,-z_2,-z_3)$$

Pirsa: 05030099 Page 68/232

 \bullet A simple example of CY_3 is given by a $T^6/(Z_2\times Z_2)$ orbifold

$$T^6 = T^2 \times T^2 \times T^2$$

$$\theta:(z_1,z_2,z_3)\mapsto(-z_1,-z_2,z_3)$$

$$\omega:(z_1,z_2,z_3)\mapsto(z_1,-z_2,-z_3)$$

Pirsa: 05030099 Page 69/232

General Flux Vacua

- There is a wide class of type IIB flux compactifications yielding D=4 Minkowski vacua. [DRS,GKP]
- The necessary ingredients are:
 - A (warped) compact Calabi-Yau background metric X_6
 - O3-planes (and O7-planes) localized in X_6
 - D-branes filling M_4 and not breaking supersymmetry
 - A 3-form flux G_3 on X_6 such that

$$*_6G_3 = iG_3$$

Two possibilities

- $-G_3$ is a (2,1)-form $\Rightarrow \mathcal{N}=1$
- $-G_3$ contains a (0,3) component $\Rightarrow \mathcal{N} = 0$

Pirsa: 05030099 Page 70/232

 \bullet A simple example of CY_3 is given by a $T^6/(Z_2 \times Z_2)$ orbifold

$$T^6 = T^2 \times T^2 \times T^2$$

$$\theta:(z_1,z_2,z_3)\mapsto(-z_1,-z_2,z_3)$$

$$\omega:(z_1,z_2,z_3)\mapsto(z_1,-z_2,-z_3)$$

Pirsa: 05030099 Page 71/232

 \bullet A simple example of ${\rm CY}_3$ is given by a $T^6/(Z_2\times Z_2)$ orbifold

$$T^6 = T^2 \times T^2 \times T^2$$

$$\theta:(z_1,z_2,z_3)\mapsto(-z_1,-z_2,z_3)$$

$$\omega:(z_1,z_2,z_3)\mapsto(z_1,-z_2,-z_3)$$

Pirsa: 05030099 Page 72/232

 \bullet A simple example of CY_3 is given by a $T^6/(Z_2\times Z_2)$ orbifold

$$T^6 = T^2 \times T^2 \times T^2$$

$$\theta:(z_1,z_2,z_3)\mapsto(-z_1,-z_2,z_3)$$

$$\omega:(z_1,z_2,z_3)\mapsto(z_1,-z_2,-z_3)$$

Pirsa: 05030099 Page 73/232

 \bullet A simple example of ${\rm CY}_3$ is given by a $T^6/(Z_2\times Z_2)$ orbifold

$$T^6 = T^2 \times T^2 \times T^2$$

$$\theta:(z_1,z_2,z_3)\mapsto(-z_1,-z_2,z_3)$$

$$\omega:(z_1,z_2,z_3)\mapsto(z_1,-z_2,-z_3)$$

Pirsa: 05030099 Page 74/232

 \bullet A simple example of CY_3 is given by a $T^6/(Z_2\times Z_2)$ orbifold

$$T^6 = T^2 \times T^2 \times T^2$$

$$\theta:(z_1,z_2,z_3)\mapsto(-z_1,-z_2,z_3)$$

$$\omega:(z_1,z_2,z_3)\mapsto(z_1,-z_2,-z_3)$$

Pirsa: 05030099 Page 75/232

• A simple example of CY_3 is given by a $T^6/(Z_2 \times Z_2)$ orbifold

$$T^{6} = T^{2} \times T^{2} \times T^{2}$$

$$\theta : (z_{1}, z_{2}, z_{3}) \mapsto (-z_{1}, -z_{2}, z_{3})$$

$$\omega : (z_{1}, z_{2}, z_{3}) \mapsto (z_{1}, -z_{2}, -z_{3})$$

ullet By further quotienting by the orientifold action $\Omega \mathcal{R}$

$$\Omega$$
: World-sheet parity $\mathcal{R}: (z_1, z_2, z_3) \mapsto (-z_1, -z_2, -z_3)$

we introduce O3-planes and O7-planes at \mathbb{Z}_2 fixed points.

 \bullet A simple example of CY_3 is given by a $T^6/(Z_2 \times Z_2)$ orbifold

$$T^{6} = T^{2} \times T^{2} \times T^{2}$$

$$\theta : (z_{1}, z_{2}, z_{3}) \mapsto (-z_{1}, -z_{2}, z_{3})$$

$$\omega : (z_{1}, z_{2}, z_{3}) \mapsto (z_{1}, -z_{2}, -z_{3})$$

ullet By further quotienting by the orientifold action $\Omega\mathcal{R}$

$$\Omega$$
: World-sheet parity $\mathcal{R}: (z_1, z_2, z_3) \mapsto (-z_1, -z_2, -z_3)$

we introduce O3-planes and O7-planes at \mathbf{Z}_2 fixed points.

 \bullet A simple example of CY_3 is given by a $T^6/(Z_2 \times Z_2)$ orbifold

$$T^{6} = T^{2} \times T^{2} \times T^{2}$$

$$\theta : (z_{1}, z_{2}, z_{3}) \mapsto (-z_{1}, -z_{2}, z_{3})$$

$$\omega : (z_{1}, z_{2}, z_{3}) \mapsto (z_{1}, -z_{2}, -z_{3})$$

ullet By further quotienting by the orientifold action $\Omega\mathcal{R}$

$$\Omega$$
: World-sheet parity $\mathcal{R}: (z_1, z_2, z_3) \mapsto (-z_1, -z_2, -z_3)$

we introduce O3-planes and O7-planes at \mathbb{Z}_2 fixed points.

- Absence of tadpole divergences requires that we add D-branes in our compactification.
- The simplest way to cancel O-plane charges is to consider D3 and D7-branes parallel to the O3 and O7-planes.

Pirsa: 05030099 Page 79/232

- Absence of tadpole divergences requires that we add D-branes in our compactification.
- The simplest way to cancel O-plane charges is to consider D3 and D7-branes parallel to the O3 and O7-planes.

Pirsa: 05030099 Page 80/232

- Absence of tadpole divergences requires that we add D-branes in our compactification.
- The simplest way to cancel O-plane charges is to consider D3 and D7-branes parallel to the O3 and O7-planes.

Pirsa: 05030099 Page 81/232

- Absence of tadpole divergences requires that we add D-branes in our compactification.
- The simplest way to cancel O-plane charges is to consider D3 and D7-branes parallel to the O3 and O7-planes.

Pirsa: 05030099 Page 82/232

- Absence of tadpole divergences requires that we add D-branes in our compactification.
- The simplest way to cancel O-plane charges is to consider D3 and D7-branes parallel to the O3 and O7-planes.

Pirsa: 05030099 Page 83/232

- Absence of tadpole divergences requires that we add D-branes in our compactification.
- The simplest way to cancel O-plane charges is to consider D3 and D7-branes parallel to the O3 and O7-planes.
 [Berkooz and Leigh]
- This theory is however non-chiral. We may achieve chirality by introducing internal magnetic fluxes $F_{\mu\nu}$ on D7-branes. [Bachas, BGKL, AADS]
- \bullet T-dual to D6-branes at angles in $Z_2 \times Z_2$.

[Berkooz, Douglas, Leigh] [Cvetič, Shiu, Uranga]

Pirsa: 05030099 Page 84/232

$$USp(2N_1) \times USp(2N_2) \times USp(2N_3)$$

 $(2N_1, 2N_2, 1) + (2N_1, 1, 2N_3) + (1, 2N_2, 2N_3)$

$$USp(2N_1) \times USp(2N_2) \times USp(2N_3)$$

 $(2N_1, 2N_2, 1) + (2N_1, 1, 2N_3) + (1, 2N_2, 2N_3)$

$$USp(2N_1) \times USp(2N_2) \times USp(2N_3)$$

 $(2N_1, 2N_2, 1) + (2N_1, 1, 2N_3) + (1, 2N_2, 2N_3)$

$$U(N_1) \times USp(2N_2) \times USp(2N_3)$$

 $g(N_1, 2N_2, 1) + g(\overline{N}_1, 1, 2N_3) + (1, 2N_2, 2N_3)$

$$2N_1 D7_1$$
's
$$\int F = g$$

$$F$$

$$-F$$

$$U(N_1) \times USp(2N_2) \times USp(2N_3)$$

 $g(N_1, 2N_2, 1) + g(\overline{N}_1, 1, 2N_3) + (1, 2N_2, 2N_3)$

$$U(N_1) \times USp(2N_2) \times USp(2N_3)$$

 $g(N_1, 2N_2, 1) + g(\overline{N}_1, 1, 2N_3) + (1, 2N_2, 2N_3)$

$$U(N_1) \times USp(2N_2) \times USp(2N_3)$$

$$g(N_1, 2N_2, 1) + g(\overline{N}_1, 1, 2N_3) + (1, 2N_2, 2N_3)$$

$$U(N_1) \times USp(2N_2) \times USp(2N_3)$$

 $g(N_1, 2N_2, 1) + g(\overline{N}_1, 1, 2N_3) + (1, 2N_2, 2N_3)$

$$U(N_1) \times USp(2N_2) \times USp(2N_3)$$

 $g(N_1, 2N_2, 1) + g(\overline{N}_1, 1, 2N_3) + (1, 2N_2, 2N_3)$

• The previous example allow us to achieve a semi-realistic spectrum, by using the identity $USp(2) \simeq SU(2)$

$$U(4) \times SU(2) \times SU(2)$$

$$g(4,2,1) + g(\overline{4},1,2) + (1,2,2)$$

Pirsa: 05030099 Page 94/232

• The previous example allow us to achieve a semi-realistic spectrum, by using the identity $USp(2) \simeq SU(2)$

$$U(4) \times SU(2) \times SU(2)$$

$$g(4,2,1) + g(\overline{4},1,2) + (1,2,2)$$

Pirsa: 05030099 Page 95/232

• The previous example allow us to achieve a semi-realistic spectrum, by using the identity $USp(2) \simeq SU(2)$

$$U(4) \times SU(2) \times SU(2)$$

$$g(4,2,1) + g(\overline{4},1,2) + (1,2,2)$$

• The previous example allow us to achieve a semi-realistic spectrum, by using the identity $USp(2) \simeq SU(2)$

$$U(4) \times SU(2) \times SU(2)$$

$$g(4,2,1) + g(\overline{4},1,2) + (1,2,2)$$

Pirsa: 05030099 Page 97/232

• The previous example allow us to achieve a semi-realistic spectrum, by using the identity $USp(2) \simeq SU(2)$

$$U(4) \times SU(2) \times SU(2)$$

 $g(4,2,1) + g(\overline{4},1,2) + (1,2,2)$

ullet By performing an adjoint Higgsing of U(4), we obtain a Left-Right MSSM spectrum with g generations of chiral matter

[Cremades, Ibáñez, F.M.]

$$SU(3) \times SU(2) \times SU(2) \times U(1)_{B-L}$$

 $g(3,2,1)_{1/3} + g(\overline{3},1,2)_{-1/3}$
 $g(1,2,1)_1 + g(1,1,2)_{-1}$
 $(1,2,2)$

Pirsa: 05030099 Page 98/232

 The appearance of chirality is easier to visualize in the intersecting D-brane picture

Pirsa: 05030099 Page 99/232

 The appearance of chirality is easier to visualize in the intersecting D-brane picture

Pirsa: 05030099 Page 100/232

 The appearance of chirality is easier to visualize in the intersecting D-brane picture

Pirsa: 05030099 Page 101/232

 The appearance of chirality is easier to visualize in the intersecting D-brane picture

Pirsa: 05030099 Page 102/232

 The appearance of chirality is easier to visualize in the intersecting D-brane picture

Pirsa: 05030099 Page 103/232

 The appearance of chirality is easier to visualize in the intersecting D-brane picture

after

As well as the adjoint Higgsing

before

Magnetic Numbers

 Intersecting branes also inspire a description of these models in terms of topological quantities

```
 \begin{array}{ll} N_a & \text{Number of D-branes} \\ m_a^i & \text{Number of times wrapped on } (\mathbf{T}^2)_i \\ n_a^i & \text{Units of magnetic flux on } (\mathbf{T}^2)_i \end{array} \right\} \quad \frac{m_a^i}{2\pi} \int_{\mathbf{T}_i^2} F_a^i = n_a^i.
```

Pirsa: 05030099 Page 105/232

Magnetic Numbers

 Intersecting branes also inspire a description of these models in terms of topological quantities

```
 \begin{array}{ll} N_a & \text{Number of D-branes} \\ m_a^i & \text{Number of times wrapped on } (\mathbf{T}^2)_i \\ n_a^i & \text{Units of magnetic flux on } (\mathbf{T}^2)_i \end{array} \right\} \quad \frac{m_a^i}{2\pi} \int_{\mathbf{T}_i^2} F_a^i = n_a^i.
```

Pirsa: 05030099 Page 106/232

Magnetic Numbers

 Intersecting branes also inspire a description of these models in terms of topological quantities

$$\begin{array}{ll} N_a & \text{Number of D-branes} \\ m_a^i & \text{Number of times wrapped on } (\mathbf{T}^2)_i \\ n_a^i & \text{Units of magnetic flux on } (\mathbf{T}^2)_i \end{array} \right\} \quad \frac{m_a^i}{2\pi} \int_{\mathbf{T}_i^2} F_a^i = n_a^i.$$

$$(T^2)_1$$
 $(T^2)_2$ $(T^2)_3$
 $D9 \rightarrow N_a$ (n_a^1, m_a^1) (n_a^2, m_a^2) (n_a^3, m_a^3)
 $D7_1 \rightarrow N_a$ $(1,0)$ (n_a^2, m_a^2) (n_a^3, m_a^3)
 $D5_1 \rightarrow N_a$ (n_a^1, m_a^1) $(1,0)$ $(1,0)$
 $D3 \rightarrow N_a$ $(1,0)$ $(1,0)$ $(1,0)$

The orientifold action maps these numbers as

$$\Omega \mathcal{R}$$
: $(n_a^i, m_a^i) \mapsto (n_a^i, -m_a^i)$

Magnetic Numbers II

• In this notation, our previous Left-Right example reads

N_{α}	$(n_{\alpha}^1, m_{\alpha}^1)$	$(n_{\alpha}^2, m_{\alpha}^2)$	$(n_{\alpha}^3, m_{\alpha}^3)$
$N_a = 6$	(1,0)	(g, 1)	(g, -1)
$N_{b} = 2$	(0,1)	(1,0)	(0, -1)
$N_c = 2$	(0,1)	(0, -1)	(1,0)
$N_d = 2$	(1,0)	(g, 1)	(g, -1)

Pirsa: 05030099 Page 108/232

Magnetic Numbers II

• In this notation, our previous Left-Right example reads

N_{α}	$(n^1_{\alpha}, m^1_{\alpha})$	$(n_{\alpha}^2, m_{\alpha}^2)$	$(n_{\alpha}^3, m_{\alpha}^3)$
$N_a = 6$	(1,0)	(g, 1)	(g, -1)
$N_{b} = 2$	(0,1)	(1,0)	(0, -1)
$N_c = 2$	(0,1)	(0, -1)	(1,0)
$N_{d} = 2$	(1,0)	(g, 1)	(g, -1)

 The chiral spectrum can be computed by means of the intersection product

$$I_{ab} = [Q_a] \cdot [Q_b] = \prod_{i=1}^{3} (n_a^i m_b^i - m_a^i n_b^i)$$

Pirsa: 05030099 Page 109/232

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities: $dF_3 = dH_3 = 0$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{Z}$, $\forall \Sigma \in H_3(\mathbf{X}_6, \mathbf{Z})$

Pirsa: 05030099

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities: $dF_3 = dH_3 = 0$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{Z}$, $\forall \Sigma \in H_3(\mathbf{X}_6, \mathbf{Z})$

Pirsa: 05030099 Page 111/232

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities: $dF_3 = dH_3 = 0$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{Z}$, $\forall \Sigma \in H_3(\mathbf{X}_6, \mathbf{Z})$

Pirsa: 05030099 Page 112/232

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities: $dF_3 = dH_3 = 0$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{Z}$, $\forall \Sigma \in H_3(\mathbf{X}_6, \mathbf{Z})$

Pirsa: 05030099

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities: $dF_3 = dH_3 = 0$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{Z}$, $\forall \Sigma \in H_3(\mathbf{X}_6, \mathbf{Z})$

Pirsa: 05030099 Page 114/232

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities: $dF_3 = dH_3 = 0$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{Z}$, $\forall \Sigma \in H_3(\mathbf{X}_6, \mathbf{Z})$

Pirsa: 05030099 Page 115/232

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities: $dF_3 = dH_3 = 0$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{Z}$, $\forall \Sigma \in H_3(\mathbf{X}_6, \mathbf{Z})$

Pirsa: 05030099 Page 116/232

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities: $dF_3 = dH_3 = 0$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{Z}$, $\forall \Sigma \in H_3(\mathbf{X}_6, \mathbf{Z})$

Pirsa: 05030099 Page 117/232

Quantization conditions

• It is easier to characterize fluxes in the covering space $T^2 \times T^2 \times T^2$. $T^6/(Z_2 \times Z_2)$ contains 3-cycles whose volume is 1/4 of those in T^6 , hence

$$\int_{\Sigma} F_3$$
, $\int_{\Sigma} H_3 \in \mathbf{4Z}$, $\forall \Sigma \in H_3(\mathbf{T}^6, \mathbf{Z})$

• The orientifold modding $\Omega \mathcal{R}$ adds an extra factor of 2, unless Σ contains an odd number of exotic O3-planes (i.e., O3's with positive tension and/or RR charge) [Frey, Polchinski]

... but there are no exotic O-planes in our construction.

Pirsa: 05030099 Page 118/232

Quantization conditions

• It is easier to characterize fluxes in the covering space $T^2 \times T^2 \times T^2$. $T^6/(Z_2 \times Z_2)$ contains 3-cycles whose volume is 1/4 of those in T^6 , hence

$$\int_{\Sigma} F_3$$
, $\int_{\Sigma} H_3 \in \mathbf{4Z}$, $\forall \Sigma \in H_3(\mathbf{T}^6, \mathbf{Z})$

• The orientifold modding $\Omega \mathcal{R}$ adds an extra factor of 2, unless Σ contains an odd number of exotic O3-planes (i.e., O3's with positive tension and/or RR charge)

[Frey, Polchinski]

... but there are no exotic O-planes in our construction.

Pirsa: 05030099 Page 119/232

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities:
$$dF_3 = dH_3 = 0$$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{8Z}$, $\forall \Sigma \in H_3(\mathbf{T}^6, \mathbf{Z})$

It also carries a D3-brane charge given by

$$N_{\text{flux}} = \int_{\mathbf{T}^6} H_3 \wedge F_3$$

Pirsa: 05030099 Page 120/232

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities:
$$dF_3 = dH_3 = 0$$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{8Z}$, $\forall \Sigma \in H_3(\mathbf{T}^6, \mathbf{Z})$

It also carries a D3-brane charge given by

$$N_{\text{flux}} = \int_{\mathbf{T}^6} H_3 \wedge F_3$$

Pirsa: 05030099 Page 121/232

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities:
$$dF_3 = dH_3 = 0$$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{8Z}$, $\forall \Sigma \in H_3(\mathbf{T}^6, \mathbf{Z})$

It also carries a D3-brane charge given by

$$N_{\text{flux}} = \int_{\mathbf{T}^6} H_3 \wedge F_3$$

Pirsa: 05030099 Page 122/232

• We now want to include a background 3-form flux $G_3 = F_3 - \tau H_3$. It must satisfy

- Bianchi identities:
$$dF_3 = dH_3 = 0$$

– Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{8Z}$, $\forall \Sigma \in H_3(\mathbf{T}^6, \mathbf{Z})$

It also carries a D3-brane charge given by

$$N_{\text{flux}} = \int_{\mathbf{T}^6} H_3 \wedge F_3$$

Pirsa: 05030099 Page 123/232

- We now want to include a background 3-form flux $G_3 = F_3 \tau H_3$. It must satisfy
 - Bianchi identities: $dF_3 = dH_3 = 0$
 - Quantization conditions: $\int_{\Sigma} F_3$, $\int_{\Sigma} H_3 \in \mathbf{8Z}$, $\forall \Sigma \in H_3(\mathbf{T}^6, \mathbf{Z})$

It also carries a D3-brane charge given by

$$N_{\text{flux}} = \int_{\mathbf{T}^6} H_3 \wedge F_3$$

We choose a constant ISD flux of the form

$$G_3 = G_{\bar{1}23} \, d\overline{z}_1 dz_2 dz_3 + G_{1\bar{2}3} \, dz_1 d\overline{z}_2 dz_3 + G_{12\bar{3}} \, dz_1 dz_2 d\overline{z}_3 + G_{\bar{1}\bar{2}\bar{3}} \, d\overline{z}_1 d\overline{z}_2 d\overline{z}_3$$
 SUSY breaking

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

In the present context we have

$$N_{O3} = 64$$

 $N_{flux} = n \cdot 64, n \in \mathbb{N}$ $\Rightarrow \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} < 0 \text{ for } G_{3} \neq 0$

Pirsa: 05030099 Page 125/232

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O3}}$$

In the present context we have

$$N_{O3}=64$$
 $N_{flux}=n\cdot 64,\ n\in \mathbb{N}$ \Rightarrow $\sum_{\alpha}N_{\alpha}n_{\alpha}^{1}n_{\alpha}^{2}n_{\alpha}^{3}<0$ for $G_{3}\neq 0$

Pirsa: 05030099 Page 126/232

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

In the present context we have

$$N_{O3}=64$$
 $N_{flux}=n\cdot 64,\ n\in \mathbb{N}$ \Rightarrow $\sum_{\alpha}N_{\alpha}n_{\alpha}^{1}n_{\alpha}^{2}n_{\alpha}^{3}<0$ for $G_{3}\neq 0$

Pirsa: 05030099 Page 127/232

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

In the present context we have

$$N_{O3} = 64$$

 $N_{flux} = n \cdot 64, n \in \mathbb{N}$ $\Rightarrow \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} < 0 \text{ for } G_{3} \neq 0$

Pirsa: 05030099 Page 128/232

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

In the present context we have

$$N_{O3}=64$$
 $N_{flux}=n\cdot 64,\ n\in \mathbb{N}$ \Rightarrow $\sum_{\alpha}N_{\alpha}n_{\alpha}^{1}n_{\alpha}^{2}n_{\alpha}^{3}<0$ for $G_{3}\neq 0$

Pirsa: 05030099 Page 129/232

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

In the present context we have

$$N_{O3} = 64$$

 $N_{flux} = n \cdot 64, n \in \mathbb{N}$ $\Rightarrow \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} < 0 \text{ for } G_{3} \neq 0$

Pirsa: 05030099 Page 130/232

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

In the present context we have

$$N_{O3}=64$$
 $N_{flux}=n\cdot 64,\ n\in \mathbf{N}$ \Rightarrow $\sum_{\alpha}N_{\alpha}n_{\alpha}^{1}n_{\alpha}^{2}n_{\alpha}^{3}<0$ for $G_{3}\neq 0$

Pirsa: 05030099 Page 131/232

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

In the present context we have

$$N_{O3} = 64$$

 $N_{flux} = n \cdot 64, n \in \mathbb{N}$ $\Rightarrow \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} < 0 \text{ for } G_{3} \neq 0$

Pirsa: 05030099 Page 132/232

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

In the present context we have

$$N_{O3}=64$$
 $N_{flux}=n\cdot 64,\ n\in \mathbb{N}$ $\Rightarrow \sum_{\alpha}N_{\alpha}n_{\alpha}^{1}n_{\alpha}^{2}n_{\alpha}^{3}<0 \text{ for } G_{3}\neq 0$

Pirsa: 05030099 Page 133/232

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

In the present context we have

$$N_{O3}=64$$
 $N_{flux}=n\cdot 64,\ n\in \mathbb{N}$ \Rightarrow $\sum_{\alpha}N_{\alpha}n_{\alpha}^{1}n_{\alpha}^{2}n_{\alpha}^{3}<0$ for $G_{3}\neq 0$

Pirsa: 05030099 Page 134/232

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

$$N_{O3} = 64$$

 $N_{flux} = n \cdot 64, n \in \mathbb{N}$ $\Rightarrow \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} < 0 \text{ for } G_{3} \neq 0$

- ullet The obvious way to cancel RR tadpoles is then to introduce a large number of $\overline{D3}$ -branes
 - SUSY badly broken
 - NSNS tadpoles

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

$$N_{O3} = 64$$

 $N_{flux} = n \cdot 64, n \in \mathbb{N}$ $\Rightarrow \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} < 0 \text{ for } G_{3} \neq 0$

- \bullet The obvious way to cancel RR tadpoles is then to introduce a large number of $\overline{D3}$ -branes
 - SUSY badly broken
 - NSNS tadpoles

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

$$N_{O3} = 64$$

 $N_{flux} = n \cdot 64, n \in \mathbb{N}$ $\Rightarrow \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} < 0 \text{ for } G_{3} \neq 0$

- \bullet The obvious way to cancel RR tadpoles is then to introduce a large number of $\overline{D3}$ -branes
 - SUSY badly broken
 - NSNS tadpoles

In order to build a consistent D-brane model, RR tadpoles must cancel.
 In particular, D3-brane tadpoles read

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = \frac{1}{4} N_{\text{O}3}$$

$$N_{O3} = 64$$

 $N_{flux} = n \cdot 64, n \in \mathbb{N}$ $\Rightarrow \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} < 0 \text{ for } G_{3} \neq 0$

- \bullet The obvious way to cancel RR tadpoles is then to introduce a large number of $\overline{D3}$ -branes
 - SUSY badly broken
 - NSNS tadpoles

Adding $D9 - \overline{D9}$ -branes

- We may instead consider adding $D9 \overline{D9}$ -brane pairs in our theory
- These objects are usually non-BPS stable objects which break SUSY but, by introducing suitable magnetic fluxes
 - ightarrow They preserve $\mathcal{N}=1$
 - \rightarrow They carry $\overline{D3}$ -brane charge

Pirsa: 05030099 Page 139/232

Adding $D9 - \overline{D9}$ -branes

- We may instead consider adding $D9 \overline{D9}$ -brane pairs in our theory
- These objects are usually non-BPS stable objects which break SUSY but, by introducing suitable magnetic fluxes
 - ightarrow They preserve $\mathcal{N}=1$
 - \rightarrow They carry $\overline{D3}$ -brane charge

Pirsa: 05030099 Page 140/232

• Let us consider the magnetic numbers

$$(-1,1)(-1,1)(-1,1)$$

$$\theta_1 + \theta_2 + \theta_3 \equiv 0 \mod 2\pi$$

• Let us consider the magnetic numbers

$$(-1,1)(-1,1)(-1,1)$$
 $(-1,-1)(-1,-1)(-1,-1)$

• Let us consider the magnetic numbers

$$(-1,1)(-1,1)(-1,1)$$
 $(-1,-1)(-1,-1)(-1,-1)$

• Let us consider the magnetic numbers

$$(-1,1)(-1,1)(-1,1)$$
 $(-1,-1)(-1,-1)(-1,-1)$

• Let us consider the magnetic numbers

$$(-1,1)(-1,1)(-1,1)$$
 $(-1,-1)(-1,-1)(-1,-1)$

• Let us consider the magnetic numbers

$$(-1,1)(-1,1)(-1,1)$$
 $(-1,-1)(-1,-1)(-1,-1)$

• Let us consider the magnetic numbers

$$(-1,1)(-1,1)(-1,1)$$
 $(-1,-1)(-1,-1)(-1,-1)$

• Let us consider the magnetic numbers

$$(-1,1)(-1,1)(-1,1)$$
 $(-1,-1)(-1,-1)(-1,-1)$

• Let us consider the magnetic numbers

$$(-1,1)(-1,1)(-1,1)$$
 $(-1,-1)(-1,-1)(-1,-1)$

• Let us consider the magnetic numbers

$$(-1,1)(-1,1)(-1,1)$$
 $(-1,-1)(-1,-1)(-1,-1)$

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 \Downarrow

 $D9 - \overline{D9}$'s must come in pairs

Pirsa: 05030099 Page 151/232

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 \Downarrow

 $D9 - \overline{D9}$'s must come in pairs

Pirsa: 05030099 Page 152/232

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 \Downarrow

 $D9 - \overline{D9}$'s must come in pairs

Pirsa: 05030099 Page 153/232

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 \Downarrow

 $D9 - \overline{D9}$'s must come in pairs

Pirsa: 05030099 Page 154/232

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 \Downarrow

 $D9 - \overline{D9}$'s must come in pairs

Pirsa: 05030099 Page 155/232

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 \Downarrow

 $D9 - \overline{D9}$'s must come in pairs

Pirsa: 05030099 Page 156/232

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 \Downarrow

 $D9 - \overline{D9}$'s must come in pairs

Pirsa: 05030099 Page 157/232

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 \Downarrow

 $D9 - \overline{D9}$'s must come in pairs

Pirsa: 05030099 Page 158/232

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 $\downarrow \downarrow$

 $D9 - \overline{D9}$'s must come in pairs

Pirsa: 05030099

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 \Downarrow

 $D9 - \overline{D9}$'s must come in pairs

Pirsa: 05030099 Page 160/232

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

 \Downarrow

$D9 - \overline{D9}$'s must come in pairs

- These torsion charges cannot be computed by factorizing one-loop open string amplitudes, nor by looking at chiral anomalies in the low energy spectrum.
- They can be detected, however, by analizing global anomalies in the worldvolume of D-brane probes. In the present case, they demonstrate as Witten's SU(2) anomaly.

Pirsa: 05030099

Page 161/232

- A non trivial NSNS flux H_3 modifies the spacetime K-theory group to a twisted version $K_{[H]}$.
- K_[H] is not well understood in case [H] is non-torsion. We can work out the set of allowed D-branes by means of an alternative definition based on D-brane decays via instanton processes.

[Maldacena, Moore, Seiberg]

Pirsa: 05030099 Page 162/232

- A $D9 \overline{D9}$ pair carries a non-trivial \mathbf{Z}_2 K-theory charge, invisible to homology.
- We need to globally cancel this charge in order to have a consistent model.

$D9 - \overline{D9}$'s must come in pairs

- These torsion charges cannot be computed by factorizing one-loop open string amplitudes, nor by looking at chiral anomalies in the low energy spectrum.
- They can be detected, however, by analizing global anomalies in the worldvolume of D-brane probes. In the present case, they demonstrate as Witten's SU(2) anomaly.

Pirsa: 05030099

Page 163/232

- A non trivial NSNS flux H_3 modifies the spacetime K-theory group to a twisted version $K_{[H]}$.
- K_[H] is not well understood in case [H] is non-torsion. We can work out the set of allowed D-branes by means of an alternative definition based on D-brane decays via instanton processes.

[Maldacena, Moore, Seiberg]

Pirsa: 05030099 Page 164/232

- ullet A non trivial NSNS flux H_3 modifies the spacetime K-theory group to a twisted version $K_{[H]}$.
- K_[H] is not well understood in case [H] is non-torsion. We can work out the set of allowed D-branes by means of an alternative definition based on D-brane decays via instanton processes.

[Maldacena, Moore, Seiberg]

- i) H_3 affects a D-brane wrapping W only if its pullback is non-trivial in W.
 - → Trivial for D3's and D7's
 - → Non-trivial for D9's
- ii) This Freed-Witten anomaly on D9's can be cured by introducing (fractional) D5's ending on the $D9 \overline{D9}$ pair.

Cascales, Page 165/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

Pirsa: 05030099 Page 166/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

Pirsa: 05030099 Page 167/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

Pirsa: 05030099 Page 168/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

Pirsa: 05030099 Page 169/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

Pirsa: 05030099 Page 170/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

Pirsa: 05030099 Page 171/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

Pirsa: 05030099 Page 172/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

The BPS-like objects that we can play with are:

- O7 and O3-planes
- Magnetized D7-branes → MSSM-like spectrum
- Magnetized $D9 \overline{D9}$ pairs \rightarrow $\overline{D3}$ charge
- Constant ISD G₃ fluxes

Pirsa: 05030099 Page 173/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

The BPS-like objects that we can play with are:

- O7 and O3-planes
- Magnetized D7-branes → MSSM-like spectrum
- Magnetized $D9 \overline{D9}$ pairs \rightarrow $\overline{D3}$ charge
- Constant ISD G₃ fluxes

Pirsa: 05030099 Page 174/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

The BPS-like objects that we can play with are:

- O7 and O3-planes
- Magnetized D7-branes → MSSM-like spectrum
- Magnetized $D9 \overline{D9}$ pairs \rightarrow $\overline{D3}$ charge
- Constant ISD G₃ fluxes

Pirsa: 05030099 Page 175/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

The BPS-like objects that we can play with are:

- O7 and O3-planes
- Magnetized D7-branes → MSSM-like spectrum
- Magnetized $D9 \overline{D9}$ pairs \rightarrow $\overline{D3}$ charge
- Constant ISD G₃ fluxes

Pirsa: 05030099 Page 176/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

The BPS-like objects that we can play with are:

- O7 and O3-planes
- Magnetized D7-branes → MSSM-like spectrum
- Magnetized $D9 \overline{D9}$ pairs \rightarrow $\overline{D3}$ charge
- Constant ISD G₃ fluxes

Pirsa: 05030099 Page 177/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

The BPS-like objects that we can play with are:

- O7 and O3-planes
- Magnetized D7-branes → MSSM-like spectrum
- Magnetized $D9 \overline{D9}$ pairs \rightarrow $\overline{D3}$ charge
- Constant ISD G₃ fluxes

Pirsa: 05030099 Page 178/232

- ullet A non trivial NSNS flux H_3 modifies the spacetime K-theory group to a twisted version $K_{[H]}$.
- K_[H] is not well understood in case [H] is non-torsion. We can work out the set of allowed D-branes by means of an alternative definition based on D-brane decays via instanton processes.

[Maldacena, Moore, Seiberg]

- i) H_3 affects a D-brane wrapping W only if its pullback is non-trivial in W.
 - → Trivial for D3's and D7's
 - → Non-trivial for D9's
- ii) This Freed-Witten anomaly on D9's can be cured by introducing (fractional) D5's ending on the $D9 \overline{D9}$ pair.

Cascales, Page 179/232

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

Pirsa: 05030099 Page 180/232

D9's and K-theory II

- ullet A non trivial NSNS flux H_3 modifies the spacetime K-theory group to a twisted version $K_{[H]}$.
- K_[H] is not well understood in case [H] is non-torsion. We can work out the set of allowed D-branes by means of an alternative definition based on D-brane decays via instanton processes.

[Maldacena, Moore, Seiberg]

- i) H_3 affects a D-brane wrapping W only if its pullback is non-trivial in W.
 - → Trivial for D3's and D7's
 - → Non-trivial for D9's
- ii) This Freed-Witten anomaly on D9's can be cured by introducing (fractional) D5's ending on the $D9 \overline{D9}$ pair.

Cascales, Page 181/232

Summary

We have analized type IIB flux compactification in one of the simplest Calabi-Yau in the market, namely $\mathbf{T}^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$, with $(h_{11}, h_{21}) = (3, 51)$.

Pirsa: 05030099 Page 182/232

In order to construct a consistent string theory vacuum we need to satisfy Gauss' law or RR tadpole conditions in the internal dimensions

Pirsa: 05030099 Page 183/232

In order to construct a consistent string theory vacuum we need to satisfy Gauss' law or RR tadpole conditions in the internal dimensions

Pirsa: 05030099 Page 184/232

In order to construct a consistent string theory vacuum we need to satisfy Gauss' law or RR tadpole conditions in the internal dimensions

Pirsa: 05030099 Page 185/232

In order to construct a consistent string theory vacuum we need to satisfy Gauss' law or RR tadpole conditions in the internal dimensions

• From supergravity e.o.m. we obtain the homological constraints

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = 16$$

$$\sum_{\alpha} N_{\alpha} m_{\alpha}^{1} m_{\alpha}^{2} n_{\alpha}^{3} = -16$$

$$\sum_{\alpha} N_{\alpha} m_{\alpha}^{1} n_{\alpha}^{2} m_{\alpha}^{3} = -16$$

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} m_{\alpha}^{2} m_{\alpha}^{3} = -16$$

Pirsa: 05030099 Page 186/232

In order to construct a consistent string theory vacuum we need to satisfy Gauss' law or RR tadpole conditions in the internal dimensions

• From supergravity e.o.m. we obtain the homological constraints

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = 16$$

$$\sum_{\alpha} N_{\alpha} m_{\alpha}^{1} m_{\alpha}^{2} n_{\alpha}^{3} = -16$$

$$\sum_{\alpha} N_{\alpha} m_{\alpha}^{1} n_{\alpha}^{2} m_{\alpha}^{3} = -16$$

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} m_{\alpha}^{2} m_{\alpha}^{3} = -16$$

 \bullet From analizing SU(2) D-brane probes we obtain the extra constraints

$$\begin{array}{rcl} \sum_{\alpha} N_{\alpha} m_{\alpha}^{1} m_{\alpha}^{2} m_{\alpha}^{3} & \in & 4\mathbf{Z} \\ \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} m_{\alpha}^{3} & \in & 4\mathbf{Z} \\ \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} m_{\alpha}^{2} n_{\alpha}^{3} & \in & 4\mathbf{Z} \\ \sum_{\alpha} N_{\alpha} m_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} & \in & 4\mathbf{Z} \end{array}$$

In order to construct a consistent string theory vacuum we need to satisfy Gauss' law or RR tadpole conditions in the internal dimensions

• From supergravity e.o.m. we obtain the homological constraints

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} + \frac{1}{2} N_{\text{flux}} = 16$$

$$\sum_{\alpha} N_{\alpha} m_{\alpha}^{1} m_{\alpha}^{2} n_{\alpha}^{3} = -16$$

$$\sum_{\alpha} N_{\alpha} m_{\alpha}^{1} n_{\alpha}^{2} m_{\alpha}^{3} = -16$$

$$\sum_{\alpha} N_{\alpha} n_{\alpha}^{1} m_{\alpha}^{2} m_{\alpha}^{3} = -16$$

 \bullet From analizing SU(2) D-brane probes we obtain the extra constraints

$$\begin{array}{rcl} \sum_{\alpha} N_{\alpha} m_{\alpha}^{1} m_{\alpha}^{2} m_{\alpha}^{3} & \in & 4\mathbf{Z} \\ \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} n_{\alpha}^{2} m_{\alpha}^{3} & \in & 4\mathbf{Z} \\ \sum_{\alpha} N_{\alpha} n_{\alpha}^{1} m_{\alpha}^{2} n_{\alpha}^{3} & \in & 4\mathbf{Z} \\ \sum_{\alpha} N_{\alpha} m_{\alpha}^{1} n_{\alpha}^{2} n_{\alpha}^{3} & \in & 4\mathbf{Z} \end{array}$$

The model

• An example of all the above is given by the magnetic numbers

N_{α}	$(n_{\alpha}^1, m_{\alpha}^1)$	$(n_{\alpha}^2, m_{\alpha}^2)$	$(n_{\alpha}^3, m_{\alpha}^3)$
$N_a = 6$	(1,0)	(g, 1)	(g, -1)
$N_b = 2$	(0,1)	(1,0)	(0,-1)
$N_c = 2$	(0,1)	(0, -1)	(1,0)
$N_d = 2$	(1,0)	(g, 1)	(g, -1)
$N_{h1} = 2$	(-2,1)	(-3, 1)	(-4, 1)
$N_{h2} = 2$	(-2,1)	(-4, 1)	(-3,1)
$8N_{D3}$	(1,0)	(1,0)	(1,0)

which contains the Left-Right MSSM system described before

Pirsa: 05030099 Page 189/232

• RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

Pirsa: 05030099 Page 190/232

The model

• An example of all the above is given by the magnetic numbers

N_{α}	$(n^1_{\alpha}, m^1_{\alpha})$	$(n_{\alpha}^2, m_{\alpha}^2)$	$(n_{\alpha}^3, m_{\alpha}^3)$
$N_a = 6$	(1,0)	(g, 1)	(g, -1)
$N_b = 2$	(0,1)	(1,0)	(0,-1)
$N_c = 2$	(0,1)	(0, -1)	(1,0)
$N_d = 2$	(1,0)	(g, 1)	(g, -1)
$N_{h1} = 2$	(-2,1)	(-3, 1)	(-4, 1)
$N_{h2} = 2$	(-2,1)	(-4, 1)	(-3,1)
$8N_{D3}$	(1,0)	(1,0)	(1,0)

which contains the Left-Right MSSM system described before

ullet This D-brane system preserves $\mathcal{N}=1$ supersymmetry if we impose

$$A_2 = A_3$$

 $\tan^{-1}(A_1/2) + \tan^{-1}(A_2/3) + \tan^{-1}(A_3/4) = \pi$

RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

Pirsa: 05030099 Page 192/232

RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

Pirsa: 05030099 Page 193/232

RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

•
$$n = 3$$
, $g = 1$, $N_{D3} = 1$

•
$$n = 2$$
, $g = 2$, $N_{D3} = 2$

•
$$n = 1$$
, $g = 3$, $N_{D3} = 1$

•
$$n = 0$$
, $g = 3$, $N_{D3} = 5$

RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

•
$$n = 3$$
, $g = 1$, $N_{D3} = 1$

•
$$n = 2$$
, $g = 2$, $N_{D3} = 2$

•
$$n = 1$$
, $g = 3$, $N_{D3} = 1$

•
$$n = 0$$
, $g = 3$, $N_{D3} = 5$

RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

•
$$n = 3$$
, $g = 1$, $N_{D3} = 1$ \Rightarrow $\mathcal{N} = 1$ chiral flux compactification

•
$$n = 2$$
, $g = 2$, $N_{D3} = 2$

•
$$n = 1$$
, $g = 3$, $N_{D3} = 1$

•
$$n = 0$$
, $g = 3$, $N_{D3} = 5$

•
$$n=0$$
, $g=3$, $N_{D3}=5$
$$G_3=\frac{8}{\sqrt{3}}e^{-\frac{\pi i}{6}}(d\overline{z}_1dz_2dz_3+dz_1d\overline{z}_2dz_3+dz_1dz_2d\overline{z}_3)$$

RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

•
$$n = 3$$
, $g = 1$, $N_{D3} = 1$ \Rightarrow $\mathcal{N} = 1$ chiral flux compactification

•
$$n = 2$$
, $g = 2$, $N_{D3} = 2$

•
$$n = 1$$
, $g = 3$, $N_{D3} = 1$

•
$$n = 0$$
, $g = 3$, $N_{D3} = 5$

•
$$n=0$$
, $g=3$, $N_{D3}=5$
$$G_3=\frac{8}{\sqrt{3}}e^{-\frac{\pi i}{6}}(d\overline{z}_1dz_2dz_3+dz_1d\overline{z}_2dz_3+dz_1dz_2d\overline{z}_3)$$

RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

which admits several solutions

•
$$n = 3$$
, $g = 1$, $N_{D3} = 1$ \Rightarrow $\mathcal{N} = 1$ chiral flux compactification

•
$$n = 2$$
, $g = 2$, $N_{D3} = 2$

•
$$n = 1$$
, $g = 3$, $N_{D3} = 1$

•
$$n = 0$$
, $g = 3$, $N_{D3} = 5$

•
$$n=0$$
, $g=3$, $N_{D3}=5$
$$G_3=\frac{8}{\sqrt{3}}e^{-\frac{\pi i}{6}}(d\overline{z}_1dz_2dz_3+dz_1d\overline{z}_2dz_3+dz_1dz_2d\overline{z}_3)$$

RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

which admits several solutions

•
$$n = 3$$
, $g = 1$, $N_{D3} = 1$

•
$$n = 2$$
, $g = 2$, $N_{D3} = 2$

•
$$n = 1$$
, $g = 3$, $N_{D3} = 1 \Rightarrow 3$ -gen. $\mathcal{N} = 0$ flux compactification

•
$$n = 0$$
, $g = 3$, $N_{D3} = 5$

$$G_3 = 2\left(d\overline{z}_1dz_2dz_3 + dz_1d\overline{z}_2dz_3 + dz_1dz_2d\overline{z}_3 + d\overline{z}_1d\overline{z}_2d\overline{z}_3\right)$$

RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

which admits several solutions

•
$$n = 3$$
, $g = 1$, $N_{D3} = 1$

•
$$n = 2$$
, $g = 2$, $N_{D3} = 2$

•
$$n = 1$$
, $g = 3$, $N_{D3} = 1 \Rightarrow 3$ -gen. $\mathcal{N} = 0$ flux compactification

•
$$n = 0$$
, $g = 3$, $N_{D3} = 5$

$$G_3 = 2\left(d\overline{z}_1dz_2dz_3 + dz_1d\overline{z}_2dz_3 + dz_1dz_2d\overline{z}_3 + d\overline{z}_1d\overline{z}_2d\overline{z}_3\right)$$

RR tadpoles are satisfied if

$$g^2 + N_{D3} + 4n = 14 \qquad (g \le 3)$$

which admits several solutions

•
$$n = 3$$
, $g = 1$, $N_{D3} = 1$

•
$$n = 2$$
, $g = 2$, $N_{D3} = 2$

•
$$n = 1$$
, $g = 3$, $N_{D3} = 1 \Rightarrow 3$ -gen. $\mathcal{N} = 0$ flux compactification

•
$$n = 0$$
, $g = 3$, $N_{D3} = 5$

$$G_3 = 2\left(d\overline{z}_1dz_2dz_3 + dz_1d\overline{z}_2dz_3 + dz_1dz_2d\overline{z}_3 + d\overline{z}_1d\overline{z}_2d\overline{z}_3\right)$$

The spectrum

• The low energy gauge group of these models is given by

$$SU(3) \times SU(2) \times SU(2) \times U(1)_{B-L} \times [U(1)' \times USp(8N_{D3})],$$
$$U(1)' = \frac{1}{g} [U(1)_a + U(1)_d] - 2 [U(1)_{h_1} - U(1)_{h_2}]$$

Pirsa: 05030099 Page 202/232

The spectrum

The low energy gauge group of these models is given by

$$SU(3) \times SU(2) \times SU(2) \times U(1)_{B-L} \times [U(1)' \times USp(8N_{D3})],$$
$$U(1)' = \frac{1}{g} [U(1)_a + U(1)_d] - 2 [U(1)_{h_1} - U(1)_{h_2}]$$

- ullet The extra pairs of $D9-\overline{D9}$'s induce extra chiral matter beyond the Left-Right spectrum
- Most of these chiral exotics dissappear after giving a v.e.v. to some scalar fields in the hidden sector
- In terms of D-brane physics, this can be understood as the process of D-brane/gauge bundle recombination

$$h_1 + h'_2 \rightarrow h$$

Higgsing away chiral exotics

 \bullet Let us consider a Pati-Salam spectrum in the case g = 3, N_f = 5

Sector	Matter	$SU(4) \times SU(2) \times SU(2) \times [USp(40)]$	Q_a	Q_{h_1}	Q_{h_2}	Q'
(ab)	F_L	3(4, 2, 1)	1	0	0	1/3
(ac)	F_R	$3(\bar{4},1,2)$	-1	0	0	-1/3
(bc)	H	(1, 2, 2)	0	0	0	0
(ah'_1)		$6(\overline{4}, 1, 1)$	-1	-1	0	5/3
(ah_2)		6(4, 1, 1)	1	0	-1	-5/3
(bh_1)		8(1, 2, 1)	0	-1	0	2
(bh_2)		6(1, 2, 1)	0	0	-1	-2
(ch_1)		6(1,1,2)	0	-1	0	2
(ch_2)		8(1,1,2)	0	0	-1	-2
$(h_1h'_1)$		23(1,1,1)	0	-2	0	4
$(h_2h'_2)$		23(1,1,1)	0	0	-2	-4
(h_1h_2')		196(1,1,1)	0	1	1	0
(fh_1)		$(1,1,1) \times [40]$	0	-1	0	2
(fh_2)		$(1,1,1) \times [40]$	0	0	-1	-2

Pirsa: 05030099 Page 204/232

Higgsing away chiral exotics

 \bullet Let us consider a Pati-Salam spectrum in the case g= 3, $N_f=$ 5

Sector	Matter	$SU(4) \times SU(2) \times SU(2) \times [USp(40)]$	Q_a	Q_h	Q'
(ab)	F_L	3(4,2,1)	1	0	1/3
(ac)	F_R	3(4,1,2)	-1	0	-1/3
(bc)	H	(1,2,2)	0	0	0
(bh)		2(1,2,1)	0	-1	2
(ch)		2(1,1,2)	0	+1	-2

$$\langle h_1 h_2' \rangle \simeq h_1 + h_2' \rightarrow h$$

• The PS sector does not get affected by this process

Pirsa: 05030099 Page 205/232

Higgsing away chiral exotics

 \bullet Let us consider a Pati-Salam spectrum in the case g= 3, $N_f=$ 5

Sector	Matter	$SU(4) \times SU(2) \times SU(2) \times [USp(40)]$	Q_a	Q_h	Q'
(ab)	F_L	3(4,2,1)	1	0	1/3
(ac)	F_R	3(4,1,2)	-1	0	-1/3
(bc)	H	(1,2,2)	0	0	0
(bh)		2(1,2,1)	0	-1	2
(ch)		2(1,1,2)	0	+1	-2

$$\langle h_1 h_2' \rangle \simeq h_1 + h_2' \rightarrow h$$

• The PS sector does not get affected by this process

Pirsa: 05030099 Page 206/232

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli

Pirsa: 05030099 Page 207/232

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli

Pirsa: 05030099 Page 208/232

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli

Pirsa: 05030099 Page 209/232

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli

Pirsa: 05030099 Page 210/232

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli

Pirsa: 05030099 Page 211/232

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli

Pirsa: 05030099 Page 212/232

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli
- Non-trivial G_3 fluxes generically lift those moduli, and hence they dissapear from the massless spectrum
- In the simple model above, however, non-geometrical moduli as D7brane Wilson lines are not lifted [Cámara, Ibáñez, Uranga]

Pirsa: 05030099 Page 213/232

• In addition, $\mathcal{N}=0$ ISD fluxes induce soft SUSY-breaking terms on D7-branes gauge groups, as well as in the chiral spectrum

1

MSSM + soft terms induced by G_3

[Lüst, Reffert, Stieberger] [Ibáñez, Font]

Pirsa: 05030099 Page 214/232

• In addition, $\mathcal{N}=0$ ISD fluxes induce soft SUSY-breaking terms on D7-branes gauge groups, as well as in the chiral spectrum

1

MSSM + soft terms induced by G_3

[Lüst, Reffert, Stieberger] [Ibáñez, Font]

Pirsa: 05030099 Page 215/232

• In addition, $\mathcal{N}=0$ ISD fluxes induce soft SUSY-breaking terms on D7-branes gauge groups, as well as in the chiral spectrum

1

MSSM + soft terms induced by G_3

[Lüst, Reffert, Stieberger] [Ibáñez, Font]

Pirsa: 05030099 Page 216/232

• In addition, $\mathcal{N}=0$ ISD fluxes induce soft SUSY-breaking terms on D7-branes gauge groups, as well as in the chiral spectrum

1

MSSM + soft terms induced by G_3

[Lüst, Reffert, Stieberger] [Ibáñez,Font]

Pirsa: 05030099 Page 217/232

• In addition, $\mathcal{N}=0$ ISD fluxes induce soft SUSY-breaking terms on D7-branes gauge groups, as well as in the chiral spectrum

1

MSSM + soft terms induced by G_3

[Lüst, Reffert, Stieberger] [Ibáñez,Font]

Pirsa: 05030099 Page 218/232

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli
- Non-trivial G_3 fluxes generically lift those moduli, and hence they dissapear from the massless spectrum
- In the simple model above, however, non-geometrical moduli as D7brane Wilson lines are not lifted [Cámara, Ibáñez, Uranga]

Pirsa: 05030099 Page 219/232

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli
- Non-trivial G_3 fluxes generically lift those moduli, and hence they dissapear from the massless spectrum
- In the simple model above, however, non-geometrical moduli as D7brane Wilson lines are not lifted [Cámara, Ibáñez, Uranga]

Pirsa: 05030099

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli
- Non-trivial G_3 fluxes generically lift those moduli, and hence they dissapear from the massless spectrum
- In the simple model above, however, non-geometrical moduli as D7brane Wilson lines are not lifted [Cámara, Ibáñez, Uranga]

Pirsa: 05030099 Page 221/232

Higgsing away chiral exotics

 \bullet Let us consider a Pati-Salam spectrum in the case g= 3, $N_f=$ 5

Sector	Matter	$SU(4) \times SU(2) \times SU(2) \times [USp(40)]$	Q_a	Q_h	Q'
(ab)	F_L	3(4,2,1)	1	0	1/3
(ac)	F_R	3(4,1,2)	-1	0	-1/3
(bc)	H	(1,2,2)	0	0	0
(bh)		2(1,2,1)	0	-1	2
(ch)		2(1,1,2)	0	+1	-2

$$\langle h_1 h_2' \rangle \simeq h_1 + h_2' \rightarrow h$$

• The PS sector does not get affected by this process

Pirsa: 05030099 Page 222/232

Higgsing away chiral exotics

 \bullet Let us consider a Pati-Salam spectrum in the case g = 3, N_f = 5

Sector	Matter	$SU(4) \times SU(2) \times SU(2) \times [USp(40)]$	Q_a	Q_{h_1}	Q_{h_2}	Q'
(ab)	F_L	3(4, 2, 1)	1	0	0	1/3
(ac)	F_R	$3(\bar{4},1,2)$	-1	0	0	-1/3
(bc)	H	(1, 2, 2)	0	0	0	0
(ah'_1)		$6(\overline{4}, 1, 1)$	-1	-1	0	5/3
(ah_2)		6(4, 1, 1)	1	0	-1	-5/3
(bh_1)		8(1,2,1)	0	-1	0	2
(bh_2)		6(1, 2, 1)	0	0	-1	-2
(ch_1)		6(1,1,2)	0	-1	0	2
(ch_2)		8(1,1,2)	0	0	-1	-2
$(h_1h'_1)$		23(1,1,1)	0	-2	0	4
$(h_2h'_2)$		23(1,1,1)	0	0	-2	-4
$(h_1h'_2)$		196(1,1,1)	0	1	1	0
(fh_1)		$(1,1,1) \times [40]$	0	-1	0	2
(fh_2)		$(1,1,1) \times [40]$	0	0	-1	-2

Pirsa: 05030099 Page 223/232

- Besides chiral exotics, these models also present non-chiral matter beyond the MSSM, like
 - Adjoints of SU(3), U(1)
 - Singlets of SU(2)
- These fields are associated to positions/Wilson lines of D-branes, i.e., they are open string moduli
- Non-trivial G_3 fluxes generically lift those moduli, and hence they dissapear from the massless spectrum
- In the simple model above, however, non-geometrical moduli as D7brane Wilson lines are not lifted [Cámara, Ibáñez, Uranga]

Pirsa: 05030099 Page 224/232

• In addition, $\mathcal{N}=0$ ISD fluxes induce soft SUSY-breaking terms on D7-branes gauge groups, as well as in the chiral spectrum

MSSM + soft terms induced by G_3

[Lüst, Reffert, Stieberger] [Ibáñez,Font]

Pirsa: 05030099 Page 225/232

• In addition, $\mathcal{N}=0$ ISD fluxes induce soft SUSY-breaking terms on D7-branes gauge groups, as well as in the chiral spectrum

1

MSSM + soft terms induced by G_3

[Lüst, Reffert, Stieberger] [Ibáñez, Font]

Pirsa: 05030099 Page 226/232

• In addition, $\mathcal{N}=0$ ISD fluxes induce soft SUSY-breaking terms on D7-branes gauge groups, as well as in the chiral spectrum

1

MSSM + soft terms induced by G_3

[Lüst, Reffert, Stieberger] [Ibáñez, Font]

 However, the soft terms are of the same order of magnitude as the moduli masses ⇒ spoils Asymptotic Freedom

1

Solution: D-branes wrapping rigid cycles

[Blumenhagen, Cvetič, F.M., Shiu]

Pirsa: 05030099 Page 227/232

• In addition, $\mathcal{N}=0$ ISD fluxes induce soft SUSY-breaking terms on D7-branes gauge groups, as well as in the chiral spectrum

1

MSSM + soft terms induced by G_3

[Lüst, Reffert, Stieberger]
[Ibáñez,Font]

 However, the soft terms are of the same order of magnitude as the moduli masses ⇒ spoils Asymptotic Freedom

1

Solution: D-branes wrapping rigid cycles

[Blumenhagen, Cvetič, F.M., Shiu]

Pirsa: 05030099

• In addition, $\mathcal{N}=0$ ISD fluxes induce soft SUSY-breaking terms on D7-branes gauge groups, as well as in the chiral spectrum

1

MSSM + soft terms induced by G_3

[Lüst, Reffert, Stieberger] [Ibáñez,Font]

 However, the soft terms are of the same order of magnitude as the moduli masses

spoils Asymptotic Freedom

1

Solution: D-branes wrapping rigid cycles

[Blumenhagen, Cvetič, F.M., Shiu]

Pirsa: 05030099 Page 229/232

Type IIB recipe for chiral flux vacua

Let us describe the strategy that we have followed:

- Choose a CY₃ background that admits O3-planes and/or O7-planes
- Introduce B-type D-branes such that they preserve $\mathcal{N}=1$ supersymmetry in this background. Try to build a chiral (semi-realistic) spectrum form them.
- Introduce ISD 3-form fluxes. Look at the effects that it creates on the metric background and on the D-branes.
- Look for new BPS-like objects that need to be introduced to build tadpole-free models as, e.g. $D9-\overline{D9}$ pairs, and analize their properties.

Pirsa: 05030099 Page 230/232

Conclusions

- We have constructed $\mathcal{N}=1$ and $\mathcal{N}=0$ chiral four-dimensional vacua of flux compactification by means of magnetized D-branes.
- \bullet Even in the $\mathcal{N}=0$ case (first order) NSNS tadpoles cancel, so the instabilities associated with them are not present.
- In addition, these models admit a low energy spectrum remarkably close to the MSSM, with 3 generations of chiral matter.
- In the $\mathcal{N}=0$ case, SUSY is broken by the flux, which not only lifts moduli but also induces soft terms in the MSSM sector.
- We have analyzed some phenomenological features of these models, like the Higgsing processes, which can be understood in terms of D-

What have we learnt?

- D=4 $\mathcal{N}=1$ chiral Minkowski vacua with fluxes can indeed be constructed. $\mathcal{N}=0$ chiral models as well, and without first order NSNS tadpoles.
- Their construction is remarkably simple compared to most chiral string vacua, while still being quite close to realistic physics.
- This simplicity encourages to extend this construction to most involved CY geometries. We expect the appealing features to survive, while including new ones (warped throats, etc.)
- A key ingredient in these constructions is the presence of magnetised $D9 \overline{D9}$ pairs. It would be interesting to study the properties of these objects in general flux compactifications.
- Not only do these $D9-\overline{D9}$ pairs help finding flux vacua, but also new $\mathcal{N}=1$ vacua, like in $\mathbf{Z}_2\times\mathbf{Z}_2$ orientifolds with 'brane supersymmetry

Pirsa: 05030099 reaking'.