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Quantum Mechanics
— state evolution 1s deterministic
— state ‘measurement’ i1s indeterminsitic

» QM only determunes the (correct) probabilities for measurement

outcomes for physical systems

— QM 1s tundamentally a probabilistic theory

What 1s meant by the term ‘probability” here-
— objective property of the physical systemr:

— ‘subjective’ state of knowledge of the physical system?
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Overview
the formalism of quantum mechanics (QMN)
probability theory
— Kolmogorov probability theory
— relative frequency mterpretation (RFT)

— Bayesian degree of beliet interpretation (DBI)

illtelpretationS of quantum pmbab ilit;*

— state vector as representing the state ot a ph}'giml system —
relative fLeuzp_wncy interpretation of pLC'l}ﬂlf}ﬂitiﬁS
— state vector as representing state ot kncfﬂ'lft:lge of a system —
d@gwe of beliet mterpretation of pb:»lmbilitieg
ullphcanoﬂ&.-
— the standard QM tormalism accommodates a RFI

— DBIs requite a generalized theotry of measurement (POVMIs)
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— quantum states are Lepmgent@;ﬂ bj; vectors 111 a ccqnplez:
Hilbett space H — the space of possible states of a system

— the vector representing the state ‘a>15 called the state
vector

— H has an associated mner product < | > , which maps pairs
of vectors to complex numbers

* the mner product projects one vector onto another. where the
number obtaned 1s the length’ of the projected vector

— physical observables ate represented by Hermutian operators A

that acton H
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— these operators determune a (complete) set ot
(orthonormal) basis vectors |ai> (eigenvectors) and
associated (teal) values tor physical observables
(ergenvalues)

* these exgenvectors are the possible observable states corresponding
to the grven observable

— this enables the state vector to be stated in terms of this
basis of eigenvectors
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Quantum Mechanics

Basic Mathematical Structure

this expansion makes < al> the projection ot |CL’> along
the basis vector ‘al>

@) = anf‘ai> =Zi:(<af a>}af> = Z‘ai><ai ‘a')

E

- - i - -
the projection operator Ha; = ‘a ><a ‘ projects a grven

state onto the basis vector ‘a3>
these projection operators are i 1-1 correspondence with
(pute) states and so we can use projection operators to
represent quantum states

p=|a)a|

this i1s the density operator representation of (pure) states




(Quantum State Vectors




(Quantum State Vectors

4
3
)




(Quantum State Vectors

s
3
)




(Quantum State Vectors

4
3
)

|O,’> T F & F T =FT ]

1
)




(Quantum State Vectors




(Quantum State Vectors




Quantum Mechanics

MNeasurements
— a state vector ‘cx> s, 111 general, in a superposition of

measurable states of an observable




Quantum Mechanics

Measurements
— a state vector ‘cx> s, 111 general, in a superposition of
measurable states of an observable
— when a measurement 1s made on a system, the system 1S

;11*\1';1}'5 tound to be 1n one of the eigenstates of the

i




Quantum Mechanics

Measurements
— a state vector ‘cx> s, 111 general, in a superposition of
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— when a measurement 1s made on a 5}*9tr:111, the 5}*5&?111 1S
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Quantum Mechanics

Measurements
— 2 state vector ‘cx> s, 111 general, in a superposition of
measurable states of an observable

— when a measurement 1s made on a 5}*9t6111, the 5}*5&?111 1S
;11*\1';1}'5 tound to be in one of the eigenstates of the

observable 4
@)=3c,|a')—>|d")

— the modulus squared ot the coetticients C . 1s the

probability that the system will be tound mn the state al>
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Quantum Mechanics

NMeasurements

— the expectation value (statistical average) is detined to be
(4)=(a|4|a)

— 1n terms of the dfn:s-it}' operator we have that

(4) =tr(p4)
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Kolmogorov’s Axioms for Probability
— based on measure theory
— enables probability to be detined tor tinite and infinite
sample spaces
: tundamental object 1s a probability space (Q,FjP)
composed ot:
e aset {). the sample space
« a O-field FFof subsets of ()
e 1 real-valued set O-additive set function P on F*
: the tunction P takes values n [( 1]
3 P (Q) =
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Kolmogorov’s Axioms for Probability
— to add conditional probabilities there 1s the additional
AX10M;

t pg|ay-FPANB)
P4)




Pﬂf)bﬂbﬂit}-‘* The(j)fy

Probability Space m Quantum Mechanics




Pf(ﬁ)bflbﬂit}f* Tl]@(:)f}f*

Probability Space m Quantum Mechanics

— the sample space ) 1s observable relative and s the set of

eigenvectors ot an observable A




Pf(ﬁ)bflbﬂit}f* The(j)f}-*

Probability Space m Quantum Mechanics
— the sample space ) 1s observable relative and s the set of
eigenvectors ot an observable A
- P assigns probabilities to eigenvectors a‘i> and to subsets
of € such that

P(Q)=P, U‘a) =ZPa0ai>)=Z‘<ai a>2 1

z
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Interpretations of Probability

Relative Frequency Interpretation (RFI)
— probability nterpreted as the relative trequency (statistical
stabilization) ot measurement outcomes
consitder an mbnite sequence of measurements on quantum
systems i the same state ‘O,’> then the relative trequency of
] . AN
measurements ot the 5}'5t6111 to be 1n the state |@ )1s
. N (ai)
f =hm—
— R—>m b4
on this mnterpretation of the probability, the probability just
s thus relative trequency f .
i = 10 [ F‘Ll C11( j\, faI “
a pb:»penmty 111tﬁ‘LPL€[’ﬂl’1C'11 *-m:ﬂ_lld, o1 tc»p of tlturs, seek some
propetty of the physical system that 1s responsible tor the
observed trequency, but we do not have access to any such
properties
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— probability 1s considered to be the rational degtee of beliet
in the occurrence of a particular event FE given a body ot
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P(E|H)

— this 1s a prescuptive interpretation and so 1s considered as
an epistemic interpretation, rather that subjective

— characteustic of this interpretation s that a change in
background information changes the probability

— to see how this works formally, consider a partition H; of

the sample space, then we have
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Interpretations of Probability

Bavesian Degree of Belief Interpretation (DBI)
— subsequent to experiment one of the possibilities Hk
obtains, and then the resulting probability 1s
P(E|H;)
— the updating of the probabilities is called Bavesian

conditionalization

P(E)=Y P(H)P(E|H,)—>P(E|H,)
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Interpretations of Quantum Probability

* probabilities come into QM from the features of
measurement of quantum systems and so are mtimately

connected with the measurement problem
thus, the way that the probability 1s interpreted 1s
intimately connected with how QM 1s mnterpreted

* how QM 1s nterpreted turns on the interpretation of

the state vector
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Q1: does |a> represent an actual physical systemr

— if one answers YES to this question then one must give a
physical interpretation of the QM formalism, which leads
to an objective interpretation of the probability

— such illl’ﬁ].’p].’ﬁl’;l[’iiirll-‘s must, 1 some sense, be realist
interpretations

— the most pressing task tor such interpretations s to explain

what 11;11}1}6115' in the measurement P Lo
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Interpretations of Quantum Probability

Q2.1: does | 0!> provide a description of an mdvidual
svstem

— answering YES vields the individual interpretations (I)

— on such an illl’ﬁLPLﬁl’;ll’iCrll linear 51_1pr:~1p':»5itic»115 of
measurable states are physical, and so a mechanism tor
Ltf‘{:{]_l{fti*:*ll must l:“f‘ gﬁfﬁ‘ll

. 11*3—*_‘*}11;11).‘52:" interpretations, such as the Everett relative-state and 1ts
denvatives. avord this 1ssue. in PJ.‘lllL‘lPlE‘

* ludden vanable interpretations, such as Bohmian mechanics restore
determumism
+.‘1:+11;11:n:‘~:e mterpretations. such as GRW and CSL provide 1;13*11;11111&11

reduction mechamisms
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* QP: what does PaQaj ) represent:

— relative trequency of a1>f1_'12+111 measurements on an
umaginary pure ensemble characterized by |a>

— this 1s so because actual measurements on an approxumation
of such an ensemble is necessary to determune the
probabilities empirically

— tor (I) the probability 1s a relative trequency, albeit an

inmgin;uy relative tlm:luem:}*
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[nterpretations of Quantum Probability

* what happens if we answer NO to Q2.1¢
— this yields the statistical interpretations (SI)
* probability of measunng particular properties on an individual system

1s undefined, so QM tells us nothing about expenments on single

particles
* How, then, do we answer (QP?
— relative frequency of a > from measurements on an infinite
pure ensemble characterized bj;|a>
— thus 1s an 1dealization, since all physical ensembles are finite

¢ conclusion:

— answering YES to Q1 leads to an ohjective relative trequency
mterpretation of the probability P, a‘))
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— the impressive empirical accuracy of QM lead one to consider
t11;1t|af> represents our state ot knowledge of a system

— any such illtﬁ‘LpLﬁt;]ﬁOll 1s mstrumentalist

. km:}wledge of what sort of ph}*rsical SVS tem-
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Q2.2: Does |€Z> represent knowledge of an indrvidual

physical systemr-

— answering YES to this question leads to the tollowing
interpretations
» the Copenhagen Interpretation (CI) takes the state vector to

represent our state of knowledge of a physical system. which naturally
changes 1n a discontinuous way upon measurement
the Information Theoretic Interpretation (I'TT) takes the state
vector to represent our state ot knowledge of the combmnation of a
physical system and the anallary measurement apparatus
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Interpretations of Quantum Probability

* QP: what does PaQaj >) represent?

— the natural response 1s that the probability represents a
rational degree of beliet grven that the updating ot our
knowledge 1s highly suggestive ot Bayesian
conditionalization

— the ‘teduction of the state vector’

‘cx>:anI. af> iy ak>

1s so similar to Bavesfan condittonalization

P(E)=Y P(H)P(E|H,)~>P(E|H,)
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— I will only compare the mdividual RFIs and DBIs, so we will

not consider (SI) here
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Implications. ..

* Relative Frequency Interpretation of (I)
— as we saw, for an mtmnite sequence of measurements on
quantum systems i the same state 0!> . the Lel;ltﬁ*e_tlm:luencjr

5 - . E §
of measurements ot the 5}'5&?111 to be i the state|@ ) 1s

N(a')

P(a))= 7, =tim

R—»aQ H

— this makes Paqczi» the proportion of the members ot an
mnfinite ensemble of systems in the same state measured to be a1>
=Y ) _ . _ _
— thus, Paqa >) 1s an zdeally observable quantity associated with
the operator Ha" , or more propetly, it 1s the expectation
value of |
e Ha“

Paqai >): (a1, |a)=tr(pl))
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— as we saw, state reduction

@)=Y e, [a) )

1s suggestive of Bayesian conditionalization

L
[

P(E)=Y P(H)P(E|H,)~> P(E|H,)
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. Bn}*eﬁian Degree of Belieft Intelpremtions

— as we saw, state reduction

@)=c,[a) )

1s suggestive of Bayesian conditionalization
P(E)=Y P(H )P(E | H,)—> P(E | H,)

but this does not work because the state vector, the

e1genvectors and the coethicients are not a pb:»bnbihtieg
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. Bn}*eﬁian Degree of Belief Interpremtions

=

— this suggests the move to the density operator representation,

but we have

p=Yle, I, +Ye,c/|a )|

=]

p=Yc, [T, =Y Rla)n,

as We require
* thus, QM formally does not accommodate a DBI
* this 1s a problem for (C) since there 1s nothing more to

the measurement formalism than this
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* Bayesian Degree of Belief Interpretations
— there 1s a way out tor the (I'TT), however, since this

mterpretation considerers measurements on an ancillary
quantum state (measutement device) entangled with the
quantum state
treating this required a generalization ot the measurement
tormalism trom projection operators to general positive
operator-valued measures (POVN\Is)

— POVNDMIs satisty a generalized version ot the probability rule

P(d) =tr(pE,)
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. Bn}*eﬁian Degree of Belief Intelpretations

— using this tormalism, as 1s shown in (Fuchs 2002) we have

7 Zp(d)ﬁd = Py
d

which 1s formally analogous to conditionalization but at this
pomt it does not agree with QM, though the turther (unitary)
adjustment

Pz >V, '5d'Vd'*
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updating one’s beliets
— one may note that there 1s not a complete tormal
correspondence between Bayesian conditionalization and
quantum Bayesian conditionalization
* the density operators are not formally identical to conditional
probabilities. but they are the generators ot conditional probabilities
» this can be considered as another difference between the classical and

quantum versions of condittonalization




