Title: Eternal Inflation Multiple Universes and other Dark Matters

Date: Feb 28, 2005 11:00 AM

URL: http://pirsa.org/05020031

Abstract:

Eternal Inflation, Multiple Universes, and other Dark Matters.

Anthony Aguirre
UC Santa Cruz

Inflation

Unsatisfactory features of big bang:

- ** Trans-horizon homogeneity
 - -> "special" initial conditions.
- * Near flatness -> "special" initial conditions.
- * ad-hoc initial density fluctuations.
- ***** Unwanted defects from GUT era.

Inflation now widely accepted as a cure.

Pirsa: 05020031 Page 3/90

Enter Inflation

Flat, homogeneous, FRW

inflation

Quasi-flat, Quasi-homogeneous, Quasi-FRW

Pirsa: 05020031

Page 4/90

Enter Inflation

Problems:

* Still need initial conditions for inflation.

Flat, homogeneous, FRW

inflation

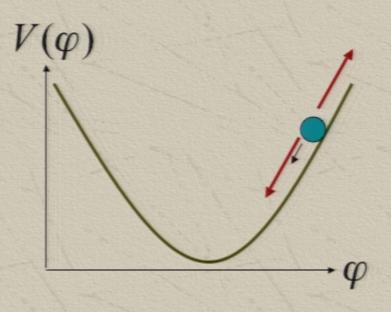
Quasi-flat, Quasi-homogeneous, Quasi-FRW

Enter Inflation

Problems:

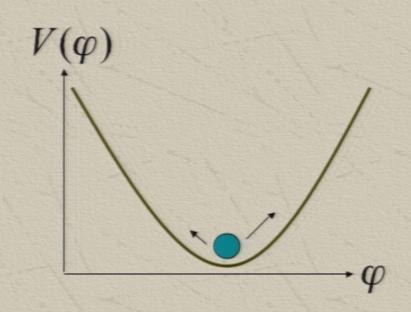
* Still need initial conditions for inflation.

Flat, homogeneous, FRW

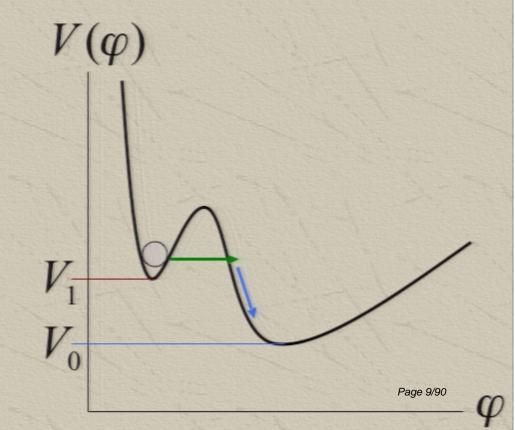

inflation

Quasi-flat, Quasi-homogeneous, Quasi-FRW

* Inflation never ends!


Once started, inflation generically does not end.

* When quantum fluctuations are accounted for, volume loss to lower potential smaller than volume gained from expansion.


Once started, inflation generically does not end.

* Only occasionally does the universe reheat in some region.

This picture can be criticized, but:

- Simple example: double-well potential.
- * Tunneling events \rightarrow bubbles of V_0
- Slow-roll inflation, reheating in bubbles.
- * Inflating bulk endures!

Inflating bulk endures:

Nucleation rate/4-volume

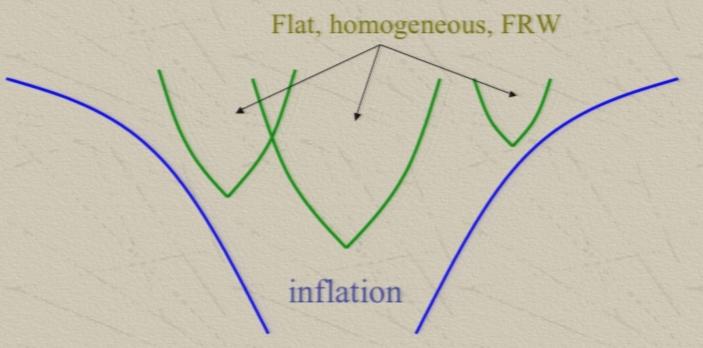
* Inflating fraction:

$$f_{\rm inf} = \exp\left[-\lambda \frac{4\pi(t - t_0)}{3H^{-3}}\right]$$

★ Inflating volume:

Available 4-volume

 $v_{\rm inf} \propto \exp(3Ht) f_{\rm inf} \propto \exp(3 - 4\pi\lambda/3H^4) Ht$


 $^{0031}Grows$ for small $\lambda!$

Note: V_0 does not appear; relative

Flat, homogeneous, FRW

inflation

-> "quasi-steady-state" distribution of thermalized + inflating regions.

Multiverses

- * Inflation: gives rise to many FRW-like regions.

 These "universes" could have different properties.

 and also:
- * String theory: 'Low'-energy physics given by particular minimum in "landscape"?
- Quantum Cosmology: Different decoherent branches of cosmic wavefunction -> different cosmic properties.

Multiverses

"Fundamental theory of cosmology" = (string theory)+(inflation)+(quantum cosmology)?

All three prospective components have same property:
no unique prediction likely!

How do we test such an FTC? Predictions in a multiverse

Assume: ensemble of actually existing "sub-universes". Parameters α_i characterizing sub-universes vary.

Assume: A probability distribution $P(\alpha_i)$ of a randomly chosen baryon (or comoving volume element) residing in a sub-universe characterized by parameters α_i .

Develop: Some way to connect $P(\alpha_i)$ to what we observe.

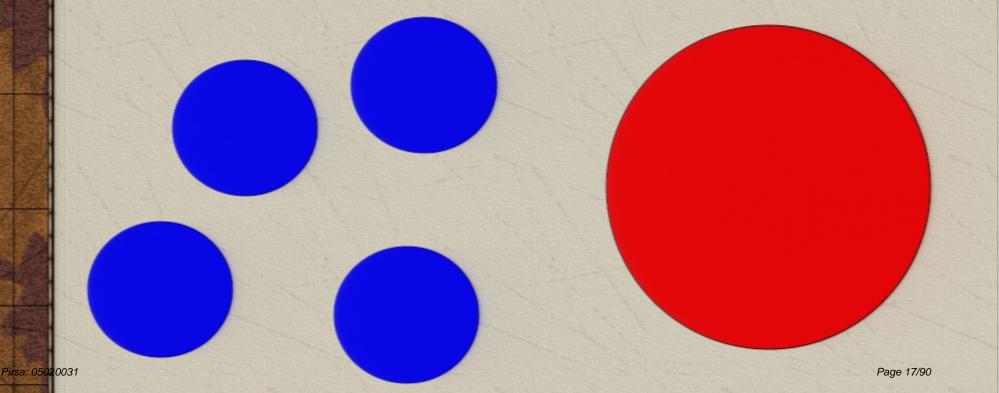
Predictions in a multiverse

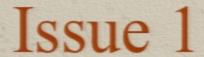
Issue 1:

Is there a unique prescription to connect $P(\alpha_i)$ to what we observe?

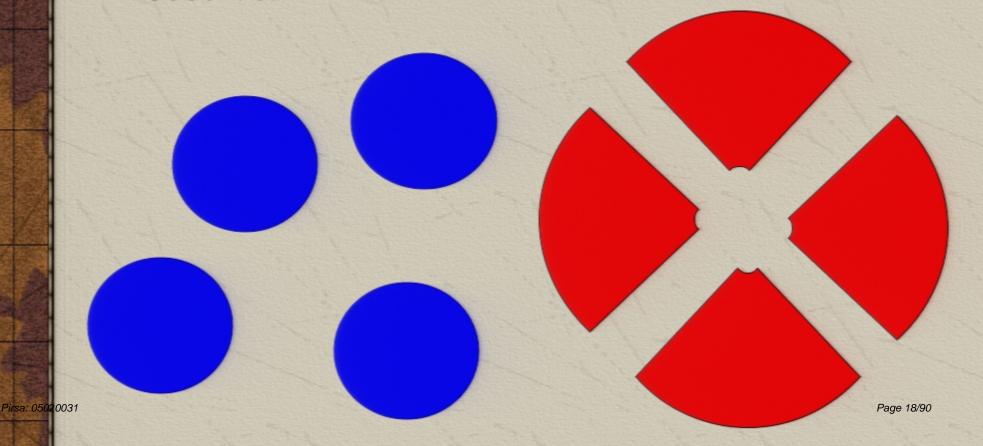
Issue 2:

What role is played by the "Anthropic principle"?


Issue 3:


In eternal inflation, does $P(\alpha_i)$ even make sense?

Pirsa: 05020031 Page 16/90


Issue 1

There is *no* unique way to connect $P(\alpha_i)$ to what we observe.

There is *no* unique way to connect $P(\alpha_i)$ to what we observe.

Issue 1

There is *no* unique way to connect $P(\alpha_i)$ to what we observe.

Three basic approaches (See Aguirre & Tegmark 04):

- ** "Bottom-up": compare our universe to "most typical" in ensemble (weight by universe? By volume? By baryon?)
- ** "Top-down": compare our universe to most typical universe matching previous observations.

 (Why accept today what was a wrong prediction yesterday?)
- * "Anthropic": compare to most typical observed universe (what the <bleep> is an observer?)

Pirsa: 05020031 Page 19/90

Example: assume there are many (N >> 1) independent dark components, governed by $P(\eta_i)$, $\eta_i = \Omega_{DM,i}/\Omega_b$

Dark matter candidates

- * Lightest stable supersymmetric particle
- * Axions
- * Kaluza-Klein particles
- ₩ Q-balls
- * Heavy neutrinos
- * Primordial black holes * Brane-world DM
- ***** Mirror matter

- ***** Cryptons
- * LIMPs
- ***** Monopoles
- ***** Quark nuggets
- ****** CHAMPS
- ₩ D-Matter

Etcetera...

Example: assume there are many (N >> 1) independent dark components, governed by

$$P(\eta_i), \ \eta_i = \Omega_{DM,i} / \Omega_b$$

Example: assume there are many (N >> 1) independent dark components, governed by

$$P(\eta_i), \ \eta_i = \Omega_{DM,i} / \Omega_b$$

Bottom up:

Unlikely for any two to have comparable density.

Example: assume there are many (N >> 1) independent dark components, governed by

$$P(\eta_i), \ \eta_i = \Omega_{DM,i} / \Omega_b$$

Bottom up:

Fine-tuning for any two to have comparable density.

Anthropic or top down:

Natural for many to have comparable density!

The top-down approach.

- ** Condition on all known data, predict unknown: limit to subset of universes with $\alpha_i = \alpha_{i,obs}$ for already-observed parameters.
- \divideontimes Within this subset, find $P(\alpha_k)$ for others.
- ***** Prediction for η_i ? Observationally, $\eta \equiv \sum \eta_i = 6$.
 - If $P(\eta_i)$ peaks at $\eta_i << 6$ fine.
 - For rest, maximize product $\prod_{i} P(\eta_i)$ subject to $\eta = 6$.
 - Suppose $P(\eta_i) \propto \eta_i^{\beta_i}$, then $\eta_i = \beta_i / \sum_i \beta_j$

* Prediction: many components of similar density

Purpose of Anthropic Arguments:

** To provide an (otherwise lacking) explanation of the particular values of some set of parameters, relative to the wide range of values it seems that they could have assumed.

Pirsa: 05020031 Page 27/90

Purpose of Anthropic Arguments:

- ** To provide an (otherwise lacking) explanation of the particular values of some set of parameters, relative to the wide range of values it seems that they could have assumed.
- * To reconcile the observed values of a set of parameters with the (very different) values that might be expected on some fundamental grounds.

Pirsa: 05020031 Page 28/90

Purpose of Anthropic Arguments:

- ** To provide an (otherwise lacking) explanation of the particular values of some set of parameters, relative to the wide range of values it seems that they could have assumed.
- * To reconcile the observed values of a set of parameters with the (very different) values that might be expected on some fundamental grounds.

Pirsa: 05020031 Page 29/90

Purpose of Anthropic Arguments:

- ** To provide an (otherwise lacking) explanation of the particular values of some set of parameters, relative to the wide range of values it seems that they could have assumed.
- * To reconcile the observed values of a set of parameters with the (very different) values that might be expected on some fundamental grounds.
- ** To explain why the observed parameter values appear 'fine-tuned' for life.

Method of (weak) anthropic arguments: the 'anthropic program'

* Calculate $\Sigma(\alpha_i)$, the probability a particular set of values for the parameters α_i will be observed, accounting for the fact that only certain values allow observers.

Pirsa: 050<mark>2</mark>0031 Page 31/90

Method of (weak) anthropic arguments: the 'anthropic program'

* Calculate $\Sigma(\alpha_i)$, the probability a particular set of values for the parameters α_i will be observed, accounting for the fact that only certain values allow observers.

Pirsa: 05020031 Page 32/90

Method of (weak) anthropic arguments: the 'anthropic program'

- * Calculate $\Sigma(\alpha_i)$, the probability a particular set of values for the parameters α_i will be observed, accounting for the fact that only certain values allow observers.
- * If this probability is concentrated near values similar to those we observe, then we can claim to have 'explained' the observed values.

Essential Ingredients of Cosmological Anthropic Arguments

- 1. Multiverse
- 2. Probability distribution $P(\alpha_i)$

Essential Ingredients of Cosmological Anthropic Arguments

3. A definition of what constitutes an 'observer' capable of measuring the values of the parameters α_i in a subuniverse.

Essential Ingredients of Cosmological Anthropic Arguments

3. A definition of what constitutes an 'observer' capable of measuring the values of the parameters α_i in a subuniverse.

3. A definition of what constitutes an 'observer' capable of measuring the values of the parameters α_i in a subuniverse.

4. A computation of the number $\chi(\alpha_i)$ of observers per baryon (or per comoving volume element) that would arise in a universe with parameters α_i .

Assume observers are similar to us. How do you count them?

Galaxies? Not clearly necessary.

Stars maybe?

5. The assumption that we inhabit a universe with parameters values at or near the values that would be observed by a typical randomly chosen observer (the 'principle of mediocrity').

5. The assumption that we inhabit a universe with parameters values at or near the values that would be observed by a typical randomly chosen observer (the 'principle of mediocrity').

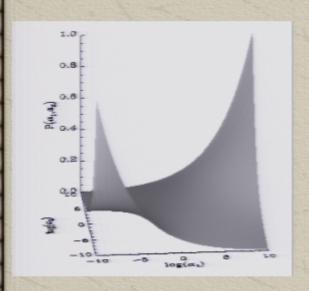
Of course, we should keep in mind that improbable things occur all the time.

Pirsa: 05020031 Page 40/90

5. The assumption that we inhabit a universe with parameters values at or near the values that would be observed by a typical randomly chosen observer (the 'principle of mediocrity').

Of course, we should keep in mind that improbable things occur all the time.

News Release


Woodbury Couple Claims \$564,633 Gopher 5® Jackpot

FEBRUARY 13, 2001 — Brian and Donna Herian of Woodbury received an early Valentine's Day treat yesterday afternoon—the couple claimed the \$564,633 Gopher 5 ackpot from the Feb. 6 drawing.

Gopher 5 is Minnesota's own cash lotto, where players pick five numbers from 1 to 12 for a chance to win a jackpot of at least \$100,000. The odds of matching all five numbers are 1 in 850,668...

Pirsa: 05020031 Page 41/90

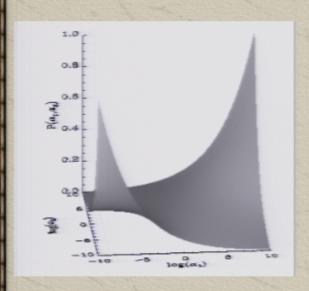
Combine a-priori probabilities $P(\alpha_i)$ with 'anthropic factor' $\chi(\alpha_i)$ to obtain probability distribution $\Sigma(\alpha_i)$ of observed parameters:

 $P(\alpha_i)$

5. The assumption that we inhabit a universe with parameters values at or near the values that would be observed by a typical randomly chosen observer (the 'principle of mediocrity').

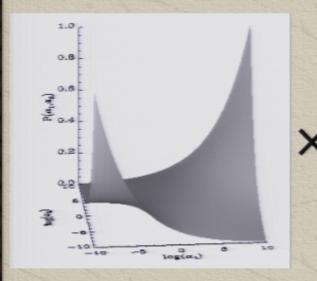
Of course, we should keep in mind that improbable things occur all the time.

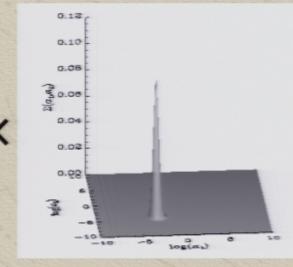
News Release


Woodbury Couple Claims \$564,633 Gopher 5® Jackpot

FEBRUARY 13, 2001 — Brian and Donna Herian of Woodbury received an early Valentine's Day treat yesterday afternoon — the couple claimed the \$564,633 Gopher 5 ackpot from the Feb. 6 drawing.

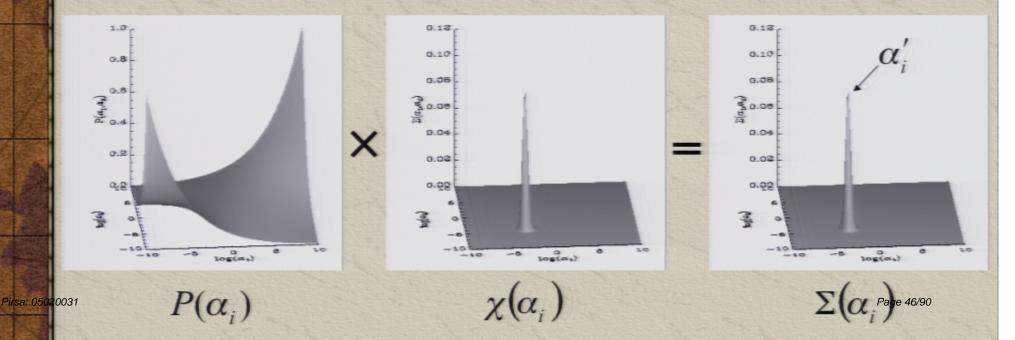
Gopher 5 is Minnesota's own cash lotto, where players pick five numbers from 1 to 42 for a chance to win a jackpot of at least \$100,000. The odds of matching all five numbers are 1 in 850,668...


Pirsa: 05020031 Page 43/90


Combine a-priori probabilities $P(\alpha_i)$ with 'anthropic factor' $\chi(\alpha_i)$ to obtain probability distribution $\Sigma(\alpha_i)$ of observed parameters:

 $P(\alpha_i)$

Combine a-priori probabilities $P(\alpha_i)$ with 'anthropic factor' $\chi(\alpha_i)$ to obtain probability distribution $\Sigma(\alpha_i)$ of observed parameters:



 $P(\alpha_i)$

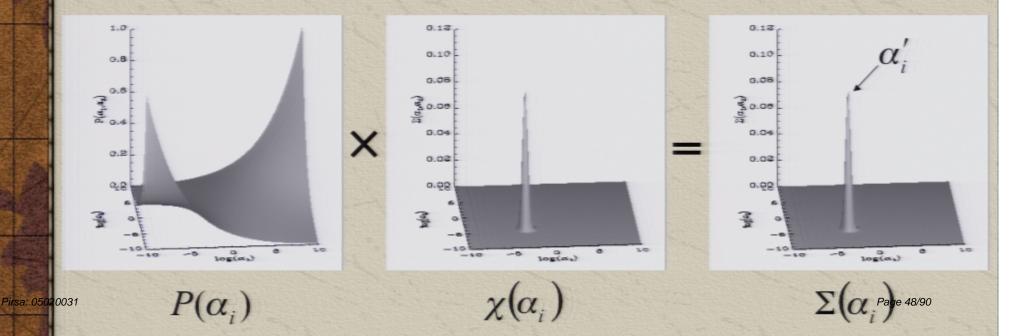
Pirsa: 05020031

 $\chi(\alpha_i)$

Combine a-priori probabilities $P(\alpha_i)$ with 'anthropic factor' $\chi(\alpha_i)$ to obtain probability distribution $\Sigma(\alpha_i)$ of observed parameters:

What forms can "anthropic factor" take?

1. δ-function:


Great! $P(\alpha)$ doesn't matter!

"Classic" idea of anthropic principle: we live in the (unique) type of universe allowing life.

(or: Disaster! We can learn nothing about $P(\alpha)$!)

Combine a-priori probabilities $P(\alpha_i)$ with 'anthropic factor' $\chi(\alpha_i)$ to obtain probability distribution $\Sigma(\alpha_i)$ of observed parameters:

What forms can "anthropic factor" take?

1. δ-function:

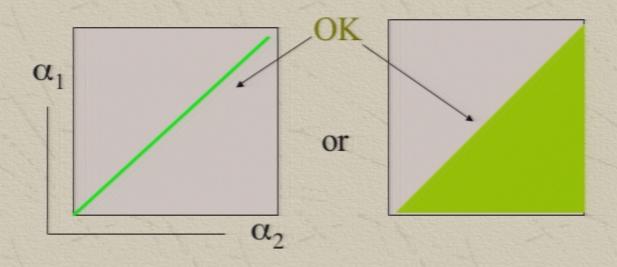
Great! $P(\alpha)$ doesn't matter!

"Classic" idea of anthropic principle: we live in the (unique) type of universe allowing life.

(or: Disaster! We can learn nothing about $P(\alpha)$!)

2. Θ-function: just force minimal or maximal value.

Consider maximal probability subject to this.


Example: cosmological constant arguments (Weinberg et al.; Vilenkin, Garriga et al.)

Predict: A small but nonzero.

(similar argument for small, nonzero v mass; see Tegmark & Vilenkin).

Problem: arguments change if multiple parameters vary.

Pirsa: 05020031 Page 50/90

3. Degeneracies in anthropic factor $\chi(\alpha)$.

These are inevitable. e.g:

Multiple dark matters: (recall Issue 1.)

Only total η_{DM} is anthropically important.

As for top-down, maximize probability $\prod_{i} P(\eta_i)$ subject to constraint on η .

Pirsa: 05020031 -> Multiple components of similar density. (if AP forces negative).

Degeneracies in anthropic factor $\chi(\alpha)$.

-> Multiple components of similar density

Moreover, same argument can be applied to dark energy, or density perturbations.

This is awful:

AP, devised to explain coincidences, predicts there should be more. The "preposterous universe" should get *even* worse!

This is great:

The AP, as a methodology, makes a general prediction.

Pirsa: 05020031 Page 52/90

Degeneracies in anthropic factor $\chi(\alpha)$.

Degeneracies also undermine anthropic arguments: e.g.

High Λ truncates structure formation at some density.

But, high perturbation amplitude Q speeds up structure formation.

or:

High Q makes halos denser -> stellar collisions.

But, lower baryon density can compensate.

Pisa: 0502 0031 Is this a serious problem?

Parameters specifying a big-bang cosmology

- * Q: the amplitude of primordial perturbations
- $*\eta_{\gamma}$: the photon-to-baryon ratio
- * η_{DM} : the dark matter-to-baryon mass ratio
- * η_L : the lepton-to-baryon ratio
- R: the curvature scale
- * Λ : the cosmological constant

Can any or all of these be very different without preventing the formation of observers like us ? (AAAQ1)

Hot Cosmologies: Variations on ours

For HBB-like cosmologies, Tegmark & Rees (1997) have worked out constraints. Let η_{DM} be fixed, then:

* For sufficient cooling:
$$\frac{Q}{10^{-6}} \ge \left(\frac{\eta_{\gamma}}{10^{9}}\right)^{\frac{1}{3}}$$

To avoid stellar encounters:
$$\frac{Q}{10^{-4}} \le \left(\frac{\eta_{\gamma}}{10^{9}}\right)^{8/7}$$

***** To avoid too-early Λ-domination:
$$\frac{\Lambda}{\Lambda_{OBS}} \le 10 \left(\frac{\eta_{\gamma}}{10^9}\right)^{-4} \left(\frac{Q}{10^{-5}}\right)^3$$

Note the degeneracy between Q and η_γ .

But let's go far-out: A Cold Cosmology

The 'hot big bang' assumes $\eta_{\gamma} \approx 10^9$ since (at least) the nucleosynthesis epoch.

Consider, though, a cosmology in which $\eta_{\gamma} \approx 1$.

Pirsa: 0502 0031 Page 56/90

A Cold Cosmology

- ** Nucleosynthesis: High density allows primordial heavy elements (tune using η_{γ} , η_{L}).
- **** Structure formation: low early Jeans mass:**

$$M_J = (\eta_L + \eta_\gamma)^2$$

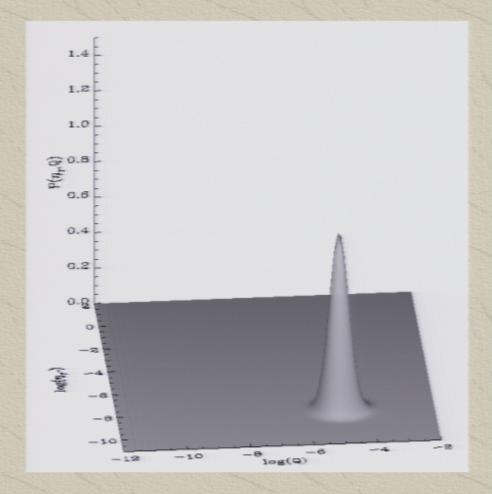
A Cold Cosmology: two scenarios

Supermassive first stars:

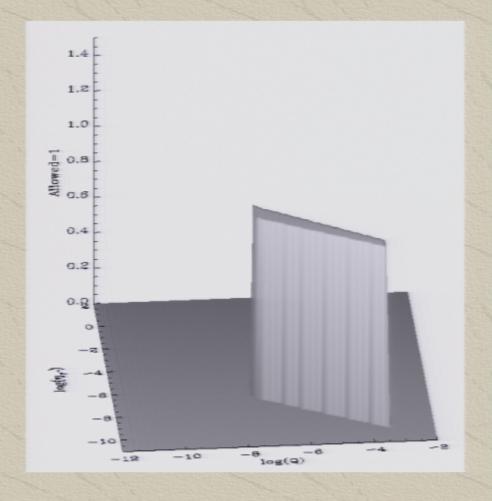
- Radiation at Eddington limit # First stars in dense clusters. creates CBR, ionizes gas.
- Galaxies form later, as in HBB, with remnants of VMOs as dark matter.
- Seems as likely to form observers as our universe.

$$Q_8 > 1$$
 $\eta_{DM} \approx 0$

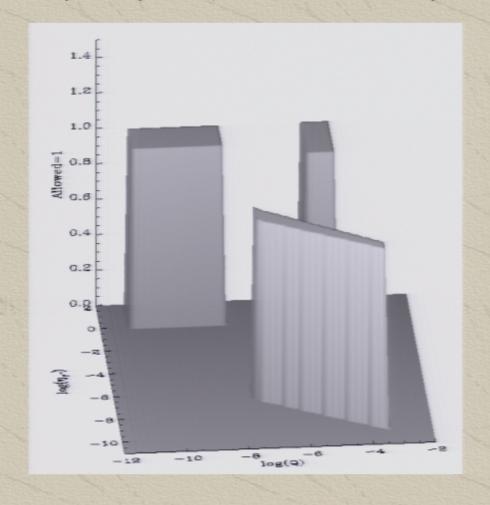
Solar mass first stars:

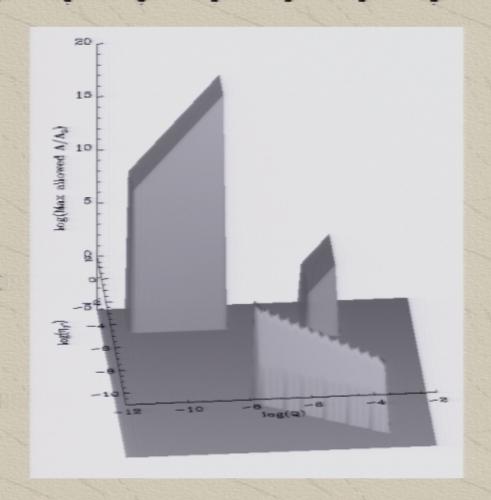

- Subsequent hierarchical structure formation
- * Stellar encounters would doom protoplanetary disks, but stars are evaporated first.

$$10^{-3} \le Q_8 \le 1,$$


$$\eta_{DM} \approx 0 - few$$

Huge Λ, 1/R possib Page 58/90


- pprox Consider Q, η_{γ} .
- Recall hope (?) of sharply peaked χ.


- pprox Consider Q, η_{γ} .
- Recall hope of sharply peaked χ.
- But near HBB, degeneracy allows different values.

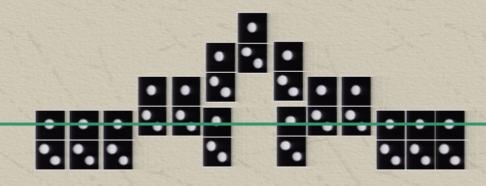
- * Consider Q, η_{γ} .
- Recall hope of sharply peaked χ.
- But near HBB, degeneracy allows different values.
- * CBB allows *very* different values.

- \star Consider Q, η_{γ} .
- Recall hope of sharply peaked
 ∠.
- But near HBB, degeneracy allows different values.
- * CBB allows *very* different values.
- * This in turn allows extremely different values of, e.g., Λ or R.

Pirsa: 0502 0031

Issue 3

* Even if we know the physical theory, can we compute P?


Consider semi-eternal inflation, ask innocent questions, e.g.:

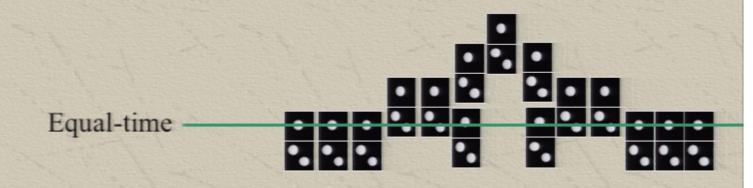
What is the cosmic time since the big-bang (Guth)? Any observer: *finite*, but typical time: *infinite*.

What is the average age (since reheating) of an observer? Tiny! Equal-time slice is youth-dominated.

Pirsa: 0502 0031 Page 63/90

Idea:

Equal-time

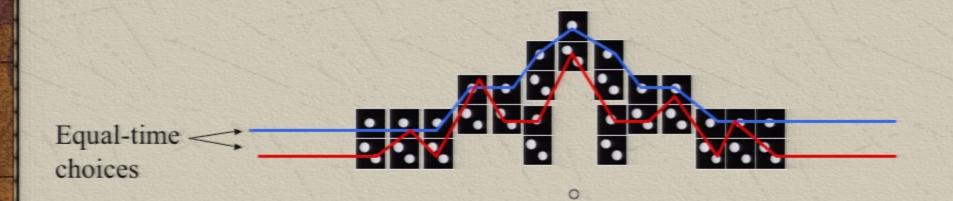

0

0

Page 64/90

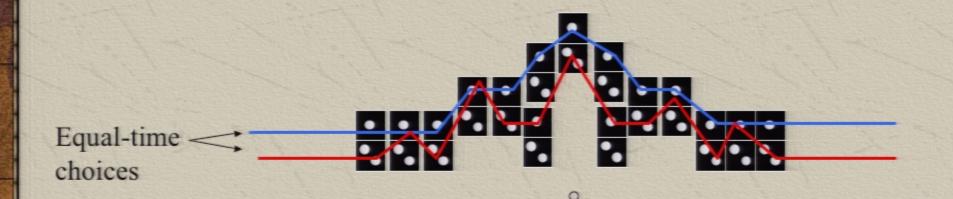
Idea:

(Guth): Imagine that universe is dominos. At each instance, you line up 2 1's for each 2. Twice as many 1s as 2s at each time. 1s are twice as probable!



Well-meaning people disagree:

- (Guth): Imagine that universe is dominos. At each instance, you line up 2 1's for each 2. Twice as many 1s as 2s at each time. 1s are twice as probable!
- * (Aguirre): But you know by construction that each 2 comes with a 1: the probabilities must be equal!
- ₩ (Guth): no.
- * (Aguirre): yes.


Well-meaning people disagree:

*Also: time slices can be drawn to include all 1's, or all 2's, or a mix

Well-meaning people disagree:

*Also: time slices can be drawn to include all 1's, or all 2's, or a mix

Semi-eternal Inflation

In fact it is much worse than this suggests:

- 1. Each bubble universe is infinite.
- 2. Nearly-infinite number of bubble universes at each time.
- 3. Infinitely many times.

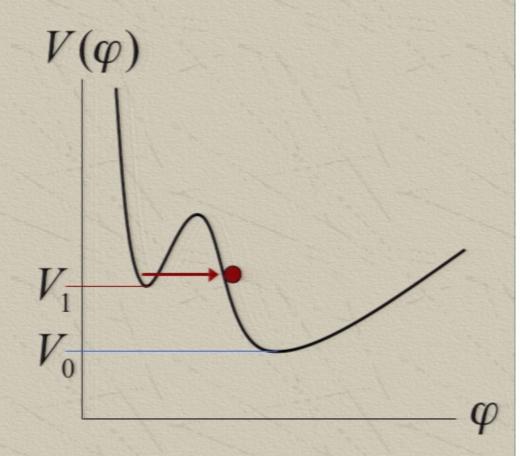
Semi-eternal Inflation

Some work has been done toward removing this ambiguity (Linde & Mezluhmian; Vilenkin et al.)

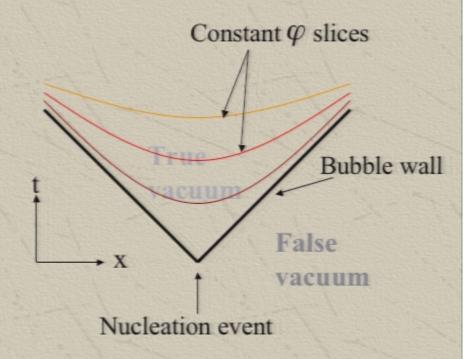
My contention: these are partly connected with cosmological boundary conditions.

Tough to talk about in semi-eternal inflation due to:

- Initial cosmological singularity
- · Infinite inflation between any observer and big-bang.


Semi-eternal Inflation

Some funny features of semi-eternal inflation may go away, and the boundary conditions be specified if inflation, as well as having no end, had no beginning (AA & S. Gratton 2003)


Pirsa: 05020031 Page 71/90

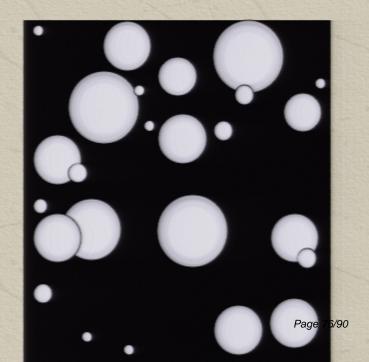
Steady-State eternal inflation

Let's analyze the double-well case.

- Let's analyze the double-well case.
- Bubbles -> infinite open FRW universes.

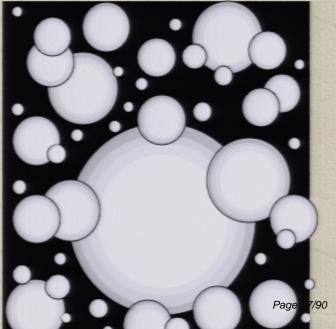
- Let's analyze the double-well case.
- Bubbles -> infinite open FRW universes.
- * These form at constant rate λ /(unit 4-volume).
- * At each time, some bubble distribution.

Inflating region



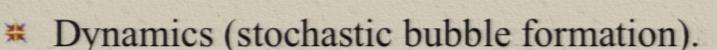
Strategy: make state approached by semieternal inflation exact.

Pirsa: 050<mark>2</mark>0031 Page 75/90



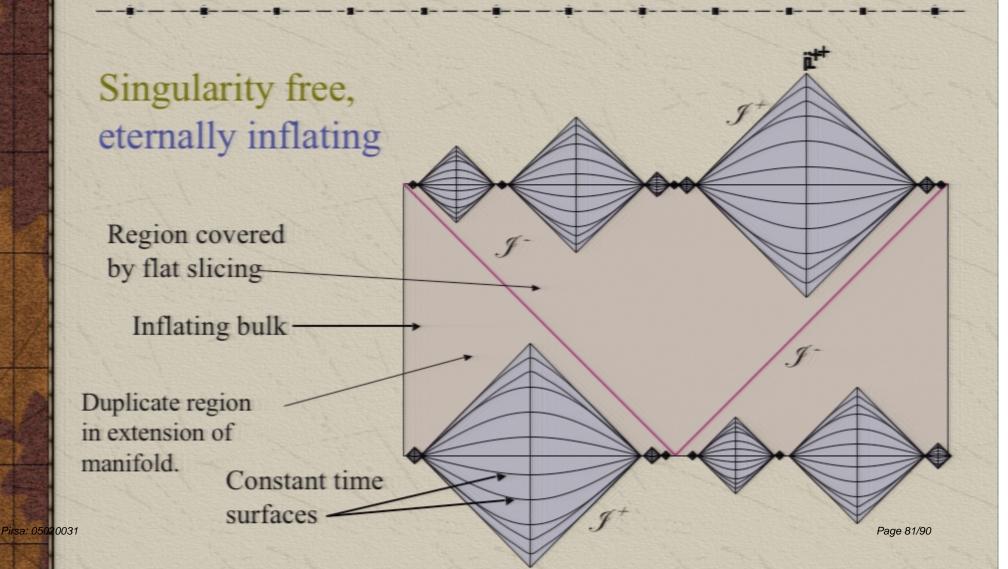
- # Flat spatial sections.
- * Consider bubbles formed between t₀ and t.

- * Flat spatial sections.
- Consider bubbles formed between to and t.


- # Flat spatial sections.
- * Consider bubbles formed between t₀ and t.
- * Send $t_0 \rightarrow -\infty$.
- * Inflation endures.

Strategy: make state

annroached by semimodel has:

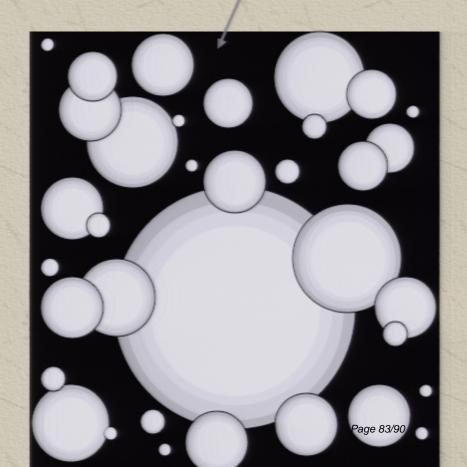


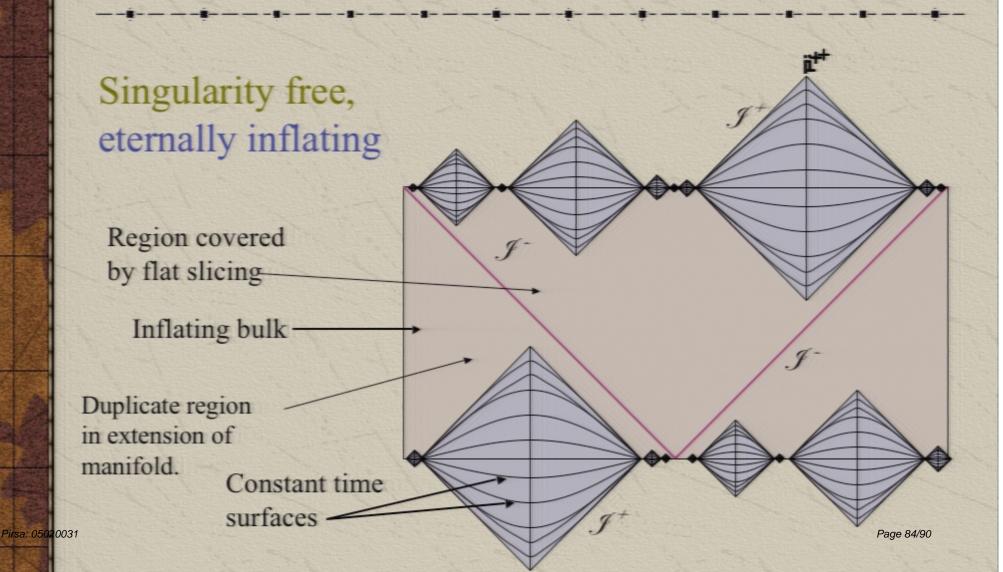
- * "boundary" conditions. These can be posed as:
 - Inflaton field in false vacuum on an infinite null surface J.
 - * Other (classical) fields are at minima on J.
 - * Weyl curvature = 0 on \mathcal{F} .

Like any theory describing a physical system, this model has:

- Dynamics (stochastic bubble formation).
- * "boundary" conditions. These can be posed as:
 - Inflaton field in false vacuum on an infinite null surface J.
 - * Other (classical) fields are at minima on J.
 - * Weyl curvature = 0 on \mathcal{F} .

Penrose diagram for truly eternal inflation.


- * Flat spatial sections.
- * Consider bubbles formed between t₀ and t.
- * Send $t_0 \rightarrow -\infty$.
- * Inflation endures.



- Let's analyze the double-well case.
- Bubbles -> infinite open FRW universes.
- * These form at constant rate λ /(unit 4-volume).
- * At each time, some bubble distribution.

Inflating region

Penrose diagram for truly eternal inflation.

Nice properties (vs. inflation or semi-eternal inflation):

- No cosmological singularity.
- No horizon problem: all points on boundary surface are at small ($< H^{-1}$) distance from each other.
- Simple B.C.s based on physical principle.
- Funny aspects of semi-eternal inflation resolved:
 - Time since big-bang infinite, for any and all observers.
 - There is a particular time-slicing such that all times exactly equal on cosmological level.

Pirsa: 05020031 Page 85/90

If there is a multiverse, there is an unavoidable, ambiguous, important choice about how to make predictions to compare to observations: Conditionalization problem.

Pirsa: 0502 0031 Page 86/90

- * If there is a multiverse, there is an unavoidable, ambiguous, important choice about how to make predictions to compare to observations: Conditionalization problem.
- * In top-down, anthropic approach, **not surprising** to observe *new coincidences*.

- * If there is a multiverse, there is an unavoidable, ambiguous, important choice about how to make predictions to compare to observations: Conditionalization problem.
- * In top-down, anthropic approach, **not surprising** to observe *new coincidences*.
- * The "anthropic factor" is not a δ -function; it does *not* suffice to produce at least one universe like ours; the *a-priori* probabilities are important: Degeneracy Problem.

Pirsa: 05020031 Page 88/90

- * If there is a multiverse, there is an unavoidable, ambiguous, important choice about how to make predictions to compare to observations: Conditionalization problem.
- * In top-down, anthropic approach, **not surprising** to observe *new coincidences*.
- The "anthropic factor" is not a δ -function; it does *not* suffice to produce at least one universe like ours; the *a-priori* probabilities are important: **Degeneracy Problem.**
- * It is not clear how to compute probabilities in infinite ensembles: Measure problem.

Pirsa: 05020031 Page 89/90

- * If there is a multiverse, there is an unavoidable, ambiguous, important choice about how to make predictions to compare to observations: Conditionalization problem.
- * In top-down, anthropic approach, **not surprising** to observe *new coincidences*.
- The "anthropic factor" is not a δ -function; it does *not* suffice to produce at least one universe like ours; the *a-priori* probabilities are important: **Degeneracy Problem.**
- * It is not clear how to compute probabilities in infinite ensembles: Measure problem.
- * Past-eternal inflation appears possible. It may aid in resolving some probability issues, and clarifying role of cosmological boundary conditions.