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AdS-invariant boundary conditions

Remarkably, the following class of boundary
conditions are invariant under zll AdS symmetries,

[T.H & K. Maeda '04]

Claim: For all k£ = 0 boundary conditions there exist
smooth asymptotically AdS initial data that evolve to
a singularity which extends to the boundary of AdS in

finite global time.
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Example

The theory with k 7% 0 boundary conditions admits an
O(4)-invariant Euclidesn instanton solution,

_1 et -!.I:‘:I: N2 s ﬂ_
ds® = 2 TP d€ls

and o =

For £ = —1/4, the scalar field profile 1s

and the field equations determine h( o).

The slice through the instanton obtained by restricting
to the equator of the S® defines zero mass, time
symmetric initial data for a Lorentzian solution.
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Evolution

The evolution of these initial data is obtained from the
instanton by analytic continuation.

- pha(0)

collapany
FRW umiverse

phi(0)

Inside the lightcone the solution produces a big crunch

&
/e

singularity, which hits the boundary as t — =/2.
The asymptotic behavior of ¢ is given by

o(r) =2+ + O(r3)

r

where a = a/cost - x ast — x/2.

The field ¢ itself, however tends to a constant at the

boundary, i.€. its value on the lightcone from &(0).
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Dual Field Theory

With 3 = 0 bulk boundary conditions, the dual theory
ic the 2—1 CFT on a stack of M2 branes. This contains
dimension one operators,

One of these operators is dual to our bulk scalar ¢, so

we identify a < (O).
Imposing  different boundary conditons 1
corresponds to adding a multitrace interaction [ W(Q)

to the CFT, such that [Witten '02]

y __ W
B =5
Hence the AdS-invariant boundary conditions 5 = ka“
correspond to adding
S=5+=[0O°

which is a3 marginal deformation.
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Classical Evolution

b e el e - — -
theory evolution that corresponds

e

The multitrace term is not positive definite. Neglecting
the nonabelian structure leads to 17 = 1o° + =5°,

II" —_—
#

The following homogeneous classical solution,

reproduces the time dependence and the scaling with
k of the supergravity solution,

22 (0)ra=—2_

Classically the field theory evolution ends in finite time.
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Quantum Mechanics

The quantum mechanics of unbounded potentials of
this type is well understood.

One constructs a self-adjoint extension of the
Hamiltonian (by carefully specifying its domain) to
ensure probability is not lost at infinity.

This guarantees unitary evolution for all time.

Yet the center of a wave packet follows essentially the
classical trajectory. When it reaches infinity, however,
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Tachyonic Preheating

Not really, since a bounce requires an exactly
homogeneous initial state...

are produced

(

In the full field theory, partic
in great numbers while the field rolls
down and the evolution becomes chaotic
[Kofman et al. "01]

A bounce through the singularity would require the
miraculous conversion of all the gradient energy back
in the homogeneous mode.

In summary, AdS/CFT suggests evolution does not
end, but that generically a bounce does not occur.
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Regularization

To gain further insight we first regularize the field
theory,

However, this regularization changes the bulk boundary
conditions to

and hence potentially modifies the bulk evolution in
the regime where o~ > & /¢, near the singularities.
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Black Holes with Scalar Hair

Writing the metric as

d_qf — —hi'rjr_;_j"’-"r’d.f,l‘: + h~ l{r]dri = rjdﬂg
the field equations read

Jl}-C"_n'f' -+ {:].i - onrh 13 hr] D= Itt:i

1—h—rh,— %Gih = 2V (o)

8= —50%

The scalar asymptotically genencally behaves as,

or)=2+5
Therefore, int

regrating the field equations outward from
the horizon yields a point in the plane for each
combination ( i, at the hornzon.

Repeating for all ¢. gives a curve
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Black Holes with Scalar Hair

Some of the curves 3(R.__a) are

Given a choice of boundary conditions S(a), the hairy
black holes are given by the intersection points,

- Jl"_a- wls 3
# s o LE | — {

Hence with our modified boundary conditions 3,
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Some of the curves 5(H..a) are
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Hence with our modified boundary conditions 3

FrL ¥

)

there are two branches of hairy black holes.







‘Regularized” AdS Cosmologies

The mass of the hairy black holes:

The second branch contains a zero mass black hole.

R N

which is the natural endstate of evolution (with 3,
boundary conditions) of our initial data.

Support for this comes from
hm, .56, — ¢

Hence we recover the big crunch of the original AdS
cosmology (with 3 conditions) as the limit of a specific
class of zero mass hairy black holes.
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Holographic Cosmology

We have recently constructed supergravity solutions
where smooth asymptoticauy AdS initial data emerge

from a big bang in the past and evolve to a big crunch
in the future.

[T.-H & G. Horowitz "04]
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The dual gauge theory evolution should give 3 fully

quantum gravity description of the singularities.
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Back to the Dual Field Theory

From the curves B(R. @) one can construct the
effective potential for (@ in field thEﬂry duals with
arbitrary deformations | (O). It is given by
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® The extrema of 1. are in  one-to-one
correspondence with bl’ack holas of size R, that
QbE}r __J’ — II'F: -'_,-._- } — ) = R +— 0

® The mass of each black hole is given by the valye
of Vi (a) at the corresponding extremum,
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Back to the Dual Field Theory

From the curves G(H.,«x) one can construct the
effective potential for (O) in field theory duals with
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Back to the Dual Field eory

From the curves S(H.,a) one can construct the
effective potential for (O) in field theory duals with
arbitrary deformations W (O). It is given by
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e The extrema of Vp (o are in one-to-one
correspondence with black holes of size R. that
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e The mass of each black hole is given by the value
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Black Holes with Scalar Hair

Some of the curves 3( .. ) are

Given a choice of boundary conditions 3(a), the hairy
black holes are given by the intersection points,
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Hence with our modified boundary conditions 3,,,,

there are two branches of hairy black holes.




Back to the Dual Field Theory
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Hairy Black Holes in Field Theory

In our regularized field theory we obtain (for R. =1)

This provides a natural dual interpretation of the hairy
black holes: Schwarschild-AdS black holes are dual
to finite energy states in the usual a = 0 vacuum,
while the upper/lower branches of hairy black holes
correspond to excited states in the two nontrivial

vacua, respectively the local maximum and the global
minimum of V.

Thus the field theory description resolves this example
of black hole non-uniqueness!
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Dual Field Theory Evolution of
Regularized AdS Cosmologies

We understand the formation of 2 hairy black hole in
the bulk as thermalization in the new global minimum
of the field theory.

A rare fluctuation from this thermal state that causes
the field to roll up the potential, dual to the sudden
evaporation of the black hole, describes the emergence
of the instanton initial data from the past singularnty.

We conjecture this qualitative picture of the dual
evolution continues to hold when ¢ — (0.

We are working towards a more concrete description
of the field theory state dual to the singularities in the
onginal AdS cosmologies...
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Conjectures on Cosmology

e Cosmological singularities are no endpoints of
evolution. The evolution continues in some dual
(perhaps holographic) theory, but there is no
immedizate transition through singularities (at least
generically) that connects two semiclassical regions.

Cosmological singularities are in some sense generic
states in gquantum gravity. What we percieve as
the big bang is an exceedingly rare fluctuation that
gives rise to semiclassical spacetime.
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