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The cosmological constant problem

QFT tells us the vacuum has a huge energy. GR tells us
everything gravitates.
% Fine-tuning problem:
x Why is the observed CC so small (but not exactly
Zero)?

x Even if it were small, why should its value be stable
to quantum corrections?

* Coincidence problem:
x Why is its value so close to the matter density foday?




The cosmological constant problem

Theorists never run out of ideas:
* Quintessence?
* K-essence?
* Modified gravity?
% Anthropic principle???
% Extra dimensions, ?
i




Codimension-2 branes

What's the big deal anyway?

% Codimension 2 gives conical singularity

deficit angle is A8 = T




Codimension-2 branes

Suppose we find a static solution for braneworld with a
given tension T

ds* = @*(r)(~de’ + d&°) +dr’ + B (r)ds"

L

Can find new solution for tension 7" by rescaling
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Codimension-2 branes

Actually...

% In Einstein-Hilbert gravity,
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where 37 is the field strength from a bulk two-form.




6D Supergravity

The relevant part of the action:
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6D Supergravity

The relevant part of the action:
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If we have ®“ = cst and ¢ = cst, then this is just like the
E-H action, with »(®) playing the role of the bulk CC. But...

there is one more equation of motion for ¢.




6D Supergravity

The relevant part of the action:
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Einstein-Hilbert gravity

In E-H gravity, we can see easily that static solutions

depend of a fine tuning of the brane tensions. (Vinet, Cline
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Let’s start with As and F” tuned to give a static solution, for
a given set of brane tensions.
Now let’s change one of the tensions slightly...



Einstein-Hilbert gravity

In E-H gravity, we can see easily that static solutions

depend of a fine tuning of the brane tensions. (Vinet, Cline
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Let’s start with A; and F2 tuned to give a static solution, for

a given set of brane tensions.
Now let’s change one of the tensions slightly...

* The deficit angle changes at that brane, so the volume
of the internal space changes.
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Six dimensional supergravity

>arriga, Porrati 04 claim that the same reasoning shows
that self—tunlng falls IS supergravity too.




Six dimensional supergravity
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sarriga, Porrati 04 claim that the same reasoning shows
that self-tuning falls IS supergravity too.

But wait... What happens to the enforced tuning As = =777
V(o1,00) =€ 7 (ke ™" —2Ke 7' + 2A6)

* Static dilaton, radion = V = 0,0V/0a; = 0.

* |If we change the constants £ and K, 0o — o0
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% Gibbons, Guven, Pope '03 found all solutions to 6d
supergrawty with an axmlly symmetric static internal
space, a static dilaton, a bulk two-form and a maximally
symmetric external space.




Why am 1 still talking?

= =

sibbons, Guven, Pope 03 found all solutions to 6d
supergravity with an axially symmetric static internal
space, a static dilaton, a bulk two-form and a maximally
symmetric external space.

% They showed that the only solutions are ones where the
external space Is static.
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General solution

W-dz'dz, + a"W°dr- + a~df",
W-e"

gA2> cosh A (r —7)

4gA; cosh do(r — 1)
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General solution

ds = W-dz'dz, + a"W°dr- + a°df",

e’ = W-e
Wi _ gA2 cosh A (r —7)
B 4gAi; cosh do(r — 1)
c = ii;e_* cosh” Ai{r — r1) cosh Aa(r — r2)
A5 = Al+ A

)
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When A; # 0, the singularities at the branes are not conical,
i.e. ds3 ~ dr’ + kr’~"1d§*.



The hope

Starting from a static solution with conical singularities how
does the system react to perturbing the tensions?




Codimension-2 branes

Questions we’'d like to answer




Codimension-2 branes

Questions we’'d like to answer

* What happens if we put more general matter on the
brane? (i.e. p # —p)

* Do we recover FRW cosmology?




Codimension-2 branes

For codimension-1 branes,

/

/\ |

Codimension—1
brane. tension T

the discontinuities in gy’ and g;;” allow us to have branes
with arbitrary equations of state (p # —p).




Codimension-2 branes

Since in 2D




Codimension-2 branes

Since in 2D

o(r)

V2(In(r)) =

27T’
For codimension-2 branes, the 2D delta function in T

must match with terms like V-{In(g,,.)) in G,




Thick branes

Simple regularization scheme: replace §-function brane by
a step function.




Thick branes

Simple regularization scheme: replace §-function brane by
a step function.

* Reduces to the expected 4-function solution in the zero
thickness IImit;




Thick branes

Simple regularization scheme: replace §-function brane by
a step function.

* Allows freedom to detune the deficit angle and brane
tension




Thick branes

We can treat the matter as a perturbation to the 3-brane
tension

sg = —0(r —ro(t))(73 + p(1))

! = 8(r —ro(t))(—73 +B(2)).

Treat the time dependence in the thickness as a
perturbation

O(r —rog — Ary(t)) = 0(r —ry) — 8(r — rO)Arp(t) + ...




Thick branes

We can treat the matter as a perturbation to the 3-brane

tension
= —0(r — ro(t))(73 + p(1))

e

¥ ]
|
o
‘-‘1
|
|
p_—
i O
e’
|
)
|
g~
—
oae
~

SO

n
I
I
o
o
e |
I
-~
-
~
I
.,
L I
e
--.1
I
--1
=
|



Thick branes

To greatly simplify the calculations, we will expand around a
braneless background (73 = 0) but we will leave in the 1D
o-function term that encodes the time varying thickness.




Thick branes

We can treat the matter as a perturbation to the 3-brane

tension
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Thick branes

To greatly simplify the calculations, we will expand around a
braneless background (73 = 0) but we will leave in the 1D
d-function term that encodes the time varying thickness.




Thick branes

We can treat the matter as a perturbation to the 3-brane

tension
o= =08(r —ro(t))(ms + p(t))
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Thick branes

To greatly simplify the calculations, we will expand around a
braneless background (73 = 0) but we will leave in the 1D
d-function term that encodes the time varying thickness.




Thick branes

To greatly simplify the calculations, we will expand around a
braneless background (73 = 0) but we will leave in the 1D
d-function term that encodes the time varying thickness.
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Thick branes

To greatly simplify the calculations, we will expand around a
braneless background (73 = 0) but we will leave in the 1D
d-function term that encodes the time varying thickness.

Ly




Perturbative ansatz

ds’ = n’dt° 4+ a’dZ> + b’dr’ 4 df® + 2Edrdt

n(r,t) e ot a(r,t) = ap(t)e”

P 3 £ - BT, g f : £ i
bir,t) = bolt)e : c{r,f) = eplt)e
E(r,t) = E(r,t); Ag(r,t) = A, (r)+ A, (r,1)

e’ = ¢p(t)e




Background

For simplicity, we will choose a
background:




Background

For simplicity, we will choose a
background:

Choosing the solution makes the equations much
simpler to solve, and does not take away from the generality
of the conclusions.



Background

For simplicity, we will choose a
background:

solutions require both branes to have same
tension. This is not general, but our perturbations will allow

us to relax this.



Background

For simplicity, we will choose a
background:

As we have already seen, the static solution is singled out
In 6D supergravity.



Background

No(r) = Ao(r) = By(r) =0

(r) = ¢

sin(kr)

k

r) = &%

bo(t) = coft)
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Gauge invariant variables

The following variable are invariant under
t —t+ At(r,t),r = r+ Ar(r,t):
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O(p) equations of motion
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O(p) equations of motion
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O(p) equations of motion
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Simplifying assumptions

% No dynamics for gs(r, t) in the EOM’s, choose:




O(p) equations of motion

p5 — Cyps =0
U'—Y — Be®?e™*\" X =0
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Gauge invariant variables

The following variable are invariant under
t —t+ At(r,t),r = r+ Ar(r,t):
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Simplifying assumptions

% No dynamics for gs(r, t) in the EOM’s, choose:




Simplifying assumptions

% No dynamics for gs(r, t) in the EOM’s, choose:

De(r,t) = 6(r —rp)e™ """ Ps(t) + 0(r. — r)e” " Pus(t)

¥
F 2

* Assume that p(r,t), p(r, 1), p«(7, 1) and p.(r,t) are
functions of time only.




Simplifying assumptions

% No dynamics for gs(r, t) in the EOM’s, choose:

De(r,t) = 60(r —rp)e” " Ps(t) + 0(r — T)e” " Pus(t)

* Assume that p(r,t), p(r, 1), p«(7, 1) and p.(r,t) are
functions of time only.

With these assumptions, perturbed EOM's are
straightforward (if somewhat tedious) to solve.




Eftective four dimensional quantities
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Eftective four dimensional quantities

— M, =2:ﬂ.'/ co(t) e """ Mgdr
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Non-conical solutions?

e p—

>GP I = s_howed that with the_metric
ds” = n(r)-dz'dz, + dr- + c(r)"db-

1 Fa W LY ‘.' r 4 r f
A3 = =T} (2?1(?‘,‘: ‘o(r) +4n(r)’n(r) ) -
2 5 . % F % i % 4 L *




Non-conical solutions?

= P — p—

SGP 03 sﬂhowed that with the metric
ds* = n(r)’dz"dz, + dr* + c(r)*db’

| o i
Az = 56{‘?“"} (2n(r) o(r) + 4n(r) n{jr}’) .
In our perturbative language, A3 = 0 at the level of the

background. But the above can be written perturbatively as

A3 = %e; (261 (r) + W(r)) .




Non-conical solutions?

62; = o€ (2¢1(r) + W(r)) .
Substituting our bulk solutions into this expression and
assuming staticity (i.e. ag(f) = 1,¢(tf) = 1,p = —p and
ps = —ps), We find that
1

O3 = (1 — cos(kry)) (Ps(t) — Pes(t)).
12k M2\ o Uer o

= Our solutions do include A3 # 0.




Non-conical solutions?

dA3 = %e"' ' (20.(r) + W (r)).

Substituting our bulk solutions into this expression and
assuming staticity (i.e. ag(f) = 1,¢(t) =1,p = —p and
ps = —ps), We find that

— 1 ';
T 12k M2

O3 1 — cos(kry))’ (Ps(t) — Pus(t)) .

Y

= Our solutions do include A3 # 0.
Dependence on extra dimensional part of brane
stress-energy tensor, consistent with Burgess et.al. 04
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Friedmann equations

In braneworld models, the Friedmann equations come in
through the imposition of appropriate boundary conditions.




Friedmann equations

In braneworld models, the Friedmann equations come in
through the imposition of appropriate boundary conditions.

* All functions smooth at the poles r = 0, 7 /k;

* All functions (but not their radial derivatives!)
continuous across core/bulk bounaary, except where
warranted by 1D é-function.




Friedmann equations




Friedmann equations
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Interpretation

* H- ~ f(p, p«);




Interpretation

* Q, is related to the flux;

X Ps =P = 0= A3 =0, results look Ilke BD theory for
w = 1/2. Ruled out (consistent with Garriga, Porrati '04);

V(o1,02) =e 7 (ke™™ —2Ke 7" + 2As)




Friedmann equations
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Interpretation

* Q, is related to the flux;

X Ps = Pus = 0= A3 =0, results look like BD theory for
w = 1/2. Ruled out (consistent with Garriga, Porrati '04);

Vie1,00) =€ (ke™" —2Ke™" +2As)




Friedmann equations
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Interpretation

* O, is related to the flux;

X Ps = Pes = 0= A3 =0, results look like BD theory for
w = 1/2. Ruled out (consistent with Garriga, Porrati '04);

V(o1,00) =e™" (ke —2Ke™ +2As)

* S = [d'oy=g (s (R - £8,00°C—V(O)| +£..)
with ¢y(t) = v/, V(¢) = —32" sin(kr;)GQ, /k and
G/((t) = G.(t)

* Ok, but what about self-tuning???
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* rather than going to runaway solution, system would
evolve to static solution with non-conical singularities;



Self-tuning?

Remember what the hope was:

% starting from static solution with conical singularities,
perturb brane stress energy;

% rather than going to runaway solution, system would
evolve to static solution with non-conical singularities;

* we saw that 63 ~ P — P.s

% can P;’s evolve so as to keep solution static?



Absence of self-tuning

Furthermore P;’'s do not appear in

8nG4(t), (4 167~ sin(kr)
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Absence of self-tuning

However P;'s allow us to keep internal space static, albeit
not in a natural way by forcing the RHS of

_+(_) +
) ¥

to vanish.
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* Codimension-two branes = unconventional relation
between H- and vacuum energy;
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Conclusions

* Codimension-two branes = unconventional relation
between H- and vacuum energy;

* Implicit relation between expansion and vacuum energy
= no self-tuning;

% Effective description apparently dependent on details of
brane structure;

* Possibility of getting stabilized internal space/dilaton;

% Fine-tuning still needed, but SLEDs might still help
explain smallness of quantum corrections;

* Not mentionned here, but could breaking axial

symmetry help? (Redi 04
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