Title: Codimension two braneworlds, Episode 2: The cosmological constant strikes back

Date: Feb 21, 2005 11:00 AM

URL: http://pirsa.org/05020025

Abstract:

Pirsa: 05020025

The cosmological constant problem

QFT tells us the vacuum has a huge energy. GR tells us everything gravitates.

- ★ Fine-tuning problem:
 - * Why is the observed CC so small (but not exactly zero)?
 - ★ Even if it were small, why should its value be stable to quantum corrections?
- ★ Coincidence problem:
 - ★ Why is its value so close to the matter density today?

We will be addressing only the first of these issues here.

Pirsa: 05020025 Page 2/82

The cosmological constant problem

Theorists never run out of ideas:

- ★ Quintessence?
- ★ K-essence?
- ★ Modified gravity?
- ★ Anthropic principle???
- ★ Extra dimensions, braneworlds?

★ ...

Pirsa: 05020025 Page 3/82

What's the big deal anyway?

★ Codimension 2 gives conical singularity

deficit angle is $\Delta \theta = \kappa^2 T$

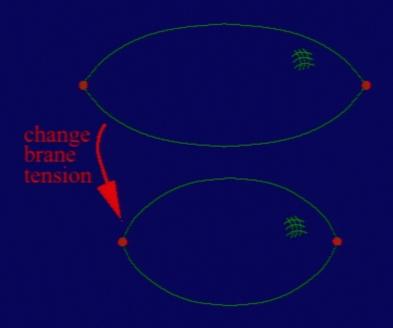
Suppose we find a static solution for braneworld with a given tension *T*:

$$ds^{2} = a^{2}(r)(-dt^{2} + d\vec{x}^{2}) + dr^{2} + b^{2}(r)d\theta^{2}$$

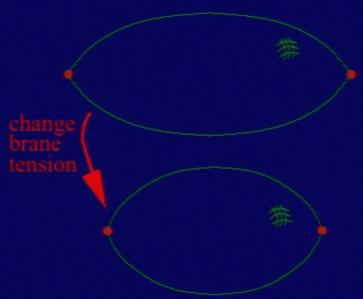
Can find new solution for tension T' by rescaling

$$b \to \frac{1 - T'/2\pi}{1 - T/2\pi} b$$

Pirsa: 05020025 Page 5/82



Pirsa: 05020025 Page 6/82



Static solution exists for any

tension!* Rubakov, Shapshnikov '84; Wetterich '85; Sundrum '99; Chen, Luty, Ponton '00; Carroll, Guica '03; Navarro '03

Pirsa: 05020025 Page 7/82

Actually...

★ In Einstein-Hilbert gravity,

$$H^2 = rac{1}{6M_6^4} \left(\Lambda_6 - rac{eta^2}{2}
ight)^2$$

where β^2 is the field strength from a bulk two-form.

Pirsa: 05020025 Page 8/82

6D Supergravity

The relevant part of the action:

$$S = \int dx^6 \sqrt{-g} \left[\frac{M_6^4}{2} \left(\mathcal{R} - \frac{1}{2} \partial_M \phi \partial^M \phi \right) - \frac{1}{4} e^{-\phi} F^2 - \frac{1}{2} h(\Phi)_{ab} \partial_M \Phi^a \partial^M \Phi^b - e^{\phi} v(\Phi) \right] + S_b,$$

Pirsa: 05020025 Page 9/82

6D Supergravity

The relevant part of the action:

$$S = \int dx^{6} \sqrt{-g} \left[\frac{M_{6}^{4}}{2} \left(\mathcal{R} - \frac{1}{2} \partial_{M} \phi \partial^{M} \phi \right) - \frac{1}{4} e^{-\phi} F^{2} \right.$$
$$\left. - \frac{1}{2} h(\Phi)_{ab} \partial_{M} \Phi^{a} \partial^{M} \Phi^{b} - e^{\phi} v(\Phi) \right] + S_{b},$$

If we have $\Phi^a = cst$ and $\phi = cst$, then this is just like the E-H action, with $v(\Phi)$ playing the role of the bulk CC. But... there is one more equation of motion for ϕ .

Pirsa: 05020025 Page 10/82

6D Supergravity

The relevant part of the action:

$$S = \int dx^6 \sqrt{-g} \left[\frac{M_6^4}{2} \left(\mathcal{R} - \frac{1}{2} \partial_M \phi \partial^M \phi \right) - \frac{1}{4} e^{-\phi} F^2 - \frac{1}{2} h(\Phi)_{ab} \partial_M \Phi^a \partial^M \Phi^b - e^{\phi} v(\Phi) \right] + S_b,$$

This equation enforces the tuning between the field strength and bulk CC needed for a static solution!

(Aghababaie, Burgess, Parameswaran, Quevedo '03)

Pirsa: 05020025 Page 11/82

Einstein-Hilbert gravity

In E-H gravity, we can see easily that static solutions depend of a fine tuning of the brane tensions. (Vinet, Cline '04; Garriga, Porrati '04)

Pirsa: 05020025 Page 12/82

Einstein-Hilbert gravity

In E-H gravity, we can see easily that static solutions depend of a fine tuning of the brane tensions. (Vinet, Cline '04; Garriga, Porrati '04)

Let's start with Λ_6 and F^2 tuned to give a static solution, for a given set of brane tensions.

Now let's change one of the tensions slightly...

Pirsa: 05020025 Page 13/82

Einstein-Hilbert gravity

In E-H gravity, we can see easily that static solutions depend of a fine tuning of the brane tensions. (Vinet, Cline '04; Garriga, Porrati '04)

Let's start with Λ_6 and F^2 tuned to give a static solution, for a given set of brane tensions.

Now let's change one of the tensions slightly...

★ The deficit angle changes at that brane, so the volume of the internal space changes.

Pirsa: 05020025 Page 14/82

Six dimensional supergravity

Garriga, Porrati '04 claim that the same reasoning shows that self-tuning fails is supergravity too.

Pirsa: 05020025 Page 15/82

Six dimensional supergravity

Garriga, Porrati '04 claim that the same reasoning shows that self-tuning fails is supergravity too.

But wait... What happens to the enforced tuning $\Lambda_6 = \frac{\beta^2}{2}$???

$$V(\sigma_1,\sigma_2) = e^{-\sigma_2} \left(ke^{-2\sigma_1} - 2Ke^{-\sigma_1} + 2\Lambda_6\right)$$

- ★ Static dilaton, radion $\Rightarrow V = 0, \partial V/\partial \sigma_i = 0$.
- \star If we change the constants k and K, $\sigma_2 \to \infty$

Pirsa: 05020025 Page 16/82

Why am I still talking?

Pirsa: 05020025 Page 17/82

Why am I still talking?

★ Gibbons, Güven, Pope '03 found all solutions to 6d supergravity with an axially symmetric static internal space, a static dilaton, a bulk two-form and a maximally symmetric external space.

Pirsa: 05020025 Page 18/82

Why am I still talking?

- ★ Gibbons, Güven, Pope '03 found all solutions to 6d supergravity with an axially symmetric static internal space, a static dilaton, a bulk two-form and a maximally symmetric external space.
- ★ They showed that the only solutions are ones where the external space is static.

Pirsa: 05020025 Page 19/82

General solution

$$egin{array}{lll} ds^2 &=& W^2 dx^\mu dx_\mu + a^2 W^8 dr^2 + a^2 d heta^2, \ e^\phi &=& W^4 e^{2\lambda_3 r} \ W^4 &=& rac{q\lambda_2}{4g\lambda_1} rac{\cosh\lambda_1 (r-r_1)}{\cosh\lambda_2 (r-r_2)} \ a^{-4} &=& rac{gq^3}{\lambda_1^3 \lambda_2} e^{-2\lambda_3 r} \cosh^3\lambda_1 (r-r_1) \cosh\lambda_2 (r-r_2) \ \lambda_2^2 &=& \lambda_1^2 + \lambda_3^2. \end{array}$$

Gibbons, Güven, Pope '03

Pirsa: 05020025 Page 20/82

General solution

$$egin{array}{lll} ds^2 &=& W^2 dx^\mu dx_\mu + a^2 W^8 dr^2 + a^2 d heta^2, \ e^\phi &=& W^4 e^{2\lambda_3 r} \ W^4 &=& rac{q\lambda_2}{4g\lambda_1} rac{\cosh\lambda_1 (r-r_1)}{\cosh\lambda_2 (r-r_2)} \ a^{-4} &=& rac{gq^3}{\lambda_1^3 \lambda_2} e^{-2\lambda_3 r} \cosh^3\lambda_1 (r-r_1) \cosh\lambda_2 (r-r_2) \ \lambda_2^2 &=& \lambda_1^2 + \lambda_3^2. \end{array}$$

Gibbons, Güven, Pope '03

When $\lambda_3 \neq 0$, the singularities at the branes are not conical, i.e. $ds_2^2 \sim dr^2 + kr^{2-k_1}d\theta^2$.

Burgess et. al. '04

The hope

Starting from a static solution with conical singularities how does the system react to perturbing the tensions?

Pirsa: 05020025 Page 22/82

Questions we'd like to answer

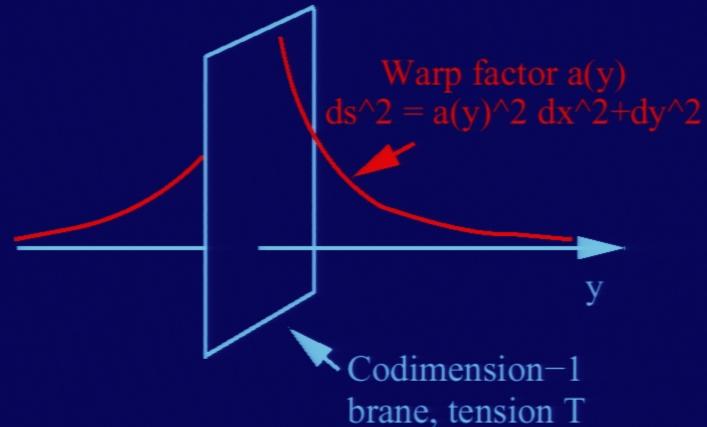
Pirsa: 05020025 Page 23/82

Questions we'd like to answer

- ★ What happens if we put more general matter on the brane? (i.e. $\rho \neq -p$)
- ★ Do we recover FRW cosmology?

Pirsa: 05020025 Page 24/82





the discontinuities in g_{00}' and g_{ii}' allow us to have branes with arbitrary equations of state $(\rho \neq -p)$.

Pirsa: 05020025 Page 25/82

Since in 2D

$$\nabla^2(\ln(r)) = \frac{\delta(r)}{2\pi r},$$

Pirsa: 05020025 Page 26/82

Since in 2D

$$\nabla^2(\ln(r)) = \frac{\delta(r)}{2\pi r},$$

For codimension-2 branes, the 2D delta function in $T_{\mu\nu}$

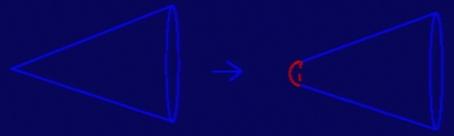
must match with terms like $\nabla^2(\ln(g_{\mu\nu}))$ in $G_{\mu\nu}$.

Pirsa: 05020025 Page 27/82

Simple regularization scheme: replace δ -function brane by a step function.

Pirsa: 05020025 Page 28/82

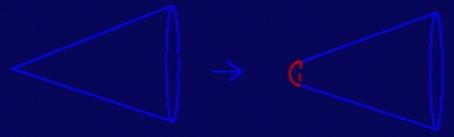
Simple regularization scheme: replace δ -function brane by a step function.



★ Reduces to the expected &-function solution in the zero thickness limit;

Pirsa: 05020025 Page 29/82

Simple regularization scheme: replace δ -function brane by a step function.



★ Allows freedom to detune the deficit angle and brane tension

Pirsa: 05020025 Page 30/82

We can treat the matter as a perturbation to the 3-brane tension

$$s_0^0 = -\theta(r - r_0(t))(\tau_3 + \rho(t))$$

$$s_i^i = \theta(r - r_0(t))(-\tau_3 + p(t)).$$

Treat the time dependence in the thickness as a perturbation

$$\theta(r - r_0 - \Delta r_0(t)) \approx \theta(r - r_0) - \delta(r - r_0) \Delta r_0(t) + \dots$$

Pirsa: 05020025 Page 31/82

We can treat the matter as a perturbation to the 3-brane tension

$$s_0^0 = -\theta(r - r_0(t))(\tau_3 + \rho(t))$$

$$s_i^i = \theta(r - r_0(t))(-\tau_3 + p(t)).$$

SO

$$s_0^0 = -\theta(r - r_0)\tau_3 + (-\theta(r - r_0)\rho(t) + \tau_3\delta(r - r_0)\Delta r_0(t)) + \dots$$

To *greatly* simplify the calculations, we will expand around a braneless background ($\tau_3 = 0$) but we will leave in the 1D δ -function term that encodes the time varying thickness.

Pirsa: 05020025 Page 33/82

We can treat the matter as a perturbation to the 3-brane tension

$$s_0^0 = -\theta(r - r_0(t))(au_3 +
ho(t))$$

$$s_i^i = \theta(r - r_0(t))(-\tau_3 + p(t)).$$

SO

$$s_0^0 = -\theta(r - r_0)\tau_3 + (-\theta(r - r_0)\rho(t) + \tau_3\delta(r - r_0)\Delta r_0(t) + \dots$$

To *greatly* simplify the calculations, we will expand around a braneless background ($\tau_3 = 0$) but we will leave in the 1D δ -function term that encodes the time varying thickness.

Pirsa: 05020025 Page 35/82

We can treat the matter as a perturbation to the 3-brane tension

$$s_0^0 = - heta(r - r_0(t))(au_3 +
ho(t))$$

$$s_i^i = \theta(r - r_0(t))(-\tau_3 + p(t)).$$

SO

$$s_0^0 = -\theta(r - r_0)\tau_3 + (-\theta(r - r_0)\rho(t) + \tau_3\delta(r - r_0)\Delta r_0(t)) + \dots$$

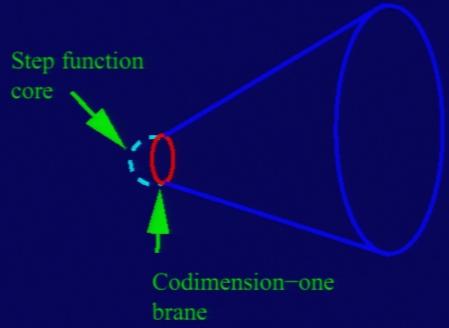
Thick branes

To *greatly* simplify the calculations, we will expand around a braneless background ($\tau_3 = 0$) but we will leave in the 1D δ -function term that encodes the time varying thickness.

Pirsa: 05020025 Page 37/82

Thick branes

To *greatly* simplify the calculations, we will expand around a braneless background ($\tau_3 = 0$) but we will leave in the 1D δ -function term that encodes the time varying thickness.

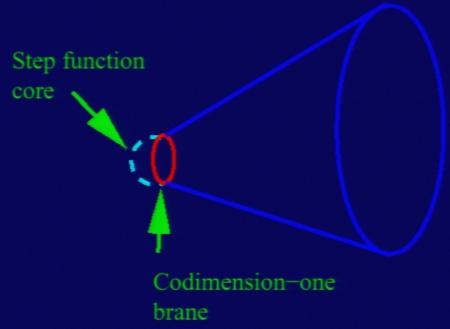


(Kanno, Soda '04; Navarro, Santiago '04)

Pirsa: 05020025 Page 38/82

Thick branes

To *greatly* simplify the calculations, we will expand around a braneless background ($\tau_3 = 0$) but we will leave in the 1D δ -function term that encodes the time varying thickness.



(Kanno, Soda '04; Navarro, Santiago '04)

Pirsa: 05020025 Page 39/82

Perturbative ansatz

$$ds^2 = n^2dt^2 + a^2d\vec{x}^2 + b^2dr^2 + c^2d\theta^2 + 2Edrdt$$

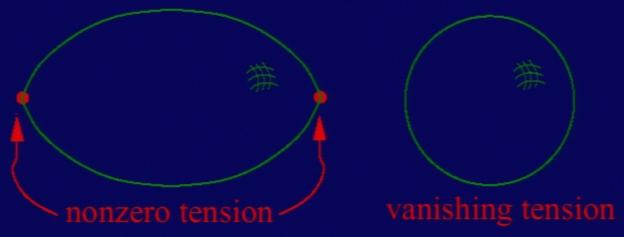
$$egin{array}{lll} n(r,t) &=& e^{N_0(r)+N_1(r,t)}; & a(r,t)=a_0(t)e^{A_0(r)+A_1(r,t)}; \ b(r,t) &=& b_0(t)e^{B_0(r)+B_1(r,t)}; & c(r,t)=c_0(t)e^{C_0(r)+C_1(r,t)}; \ E(r,t) &=& E_1(r,t); & A_{ heta}(r,t)=A_{ heta}^{(0)}(r)+A_{ heta}^{(1)}(r,t) \ e^{\phi(r,t)} &=& arphi_0(t)e^{\phi_0(r)+\phi_1(r,t)} \end{array}$$

Pirsa: 05020025 Page 40/82

For simplicity, we will choose a braneless, static, unwarped background:

Pirsa: 05020025 Page 41/82

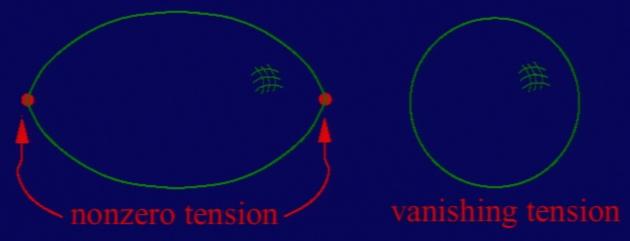
For simplicity, we will choose a braneless, static, unwarped background:



Choosing the braneless solution makes the equations much simpler to solve, and does not take away from the generality of the conclusions.

Pirsa: 05020025 Page 42/82

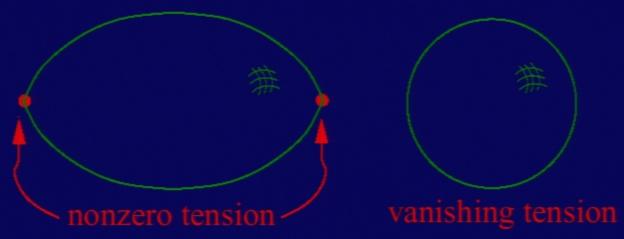
For simplicity, we will choose a braneless, static, unwarped background:



Unwarped solutions require both branes to have same tension. This is not general, but our perturbations will allow us to relax this.

Pirsa: 05020025 Page 43/82

For simplicity, we will choose a braneless, static, unwarped background:



As we have already seen, the static solution is singled out in 6D supergravity.

Pirsa: 05020025 Page 44/82

$$egin{array}{lcl} N_0(r) &=& A_0(r) = B_0(r) = 0 \ \phi_0(r) &=& \phi_0 \ e^{C_0(r)} &=& rac{\sin(kr)}{k} \ A_{ heta}^{(0)^I}(r) &=& -eta e^{\phi_0} e^{C_0(r)} \ b_0(t) &=& c_0(t) \ arphi_0(t) &=& rac{eta}{\sqrt{2v(\Phi_0)}c_0(t)^2} \ eta^2 &=& rac{k^4 M_6^8}{2v(\Phi_0)} \end{array}$$

Pirea: 05020025

Gauge invariant variables

The following variable are invariant under $t \to t + \Delta t(r, t), r \to r + \Delta r(r, t)$:

$$egin{array}{lll} egin{array}{lll} egin{arra$$

Pirsa: 05020025 Page 46/82

$$\begin{split} W' - C_0'W &= c_0(t)^2 \frac{\tilde{p}_6}{M_6^4} \\ \frac{Z' + C_0'Z}{c_0(t)^2} &= 2 \left[\frac{\ddot{a}_0}{a_0} - \left(\frac{\dot{a}_0}{a_0} \right)^2 - \frac{\dot{a}_0}{a_0} \frac{\dot{c}_0}{c_0} + 2 \left(\frac{\dot{c}_0}{c_0} \right)^2 + \frac{\ddot{c}_0}{c_0} \right] \\ &+ \frac{1}{M_6^4} (\tilde{\rho} + \tilde{p}) \\ Y' - C_0'Y - e^{\phi_0} \beta e^{C_0(r)} \left(W - \phi_1' \right) &= 0 \\ \frac{C_0'W}{c_0(t)^2} + \frac{\sqrt{2v(\Phi_0)}e^{-C_0(r)}}{c_0(t)^2 M_6^4} Y + \beta \frac{\sqrt{2v(\Phi_0)}e^{\phi_0}}{c_0(t)^2 M_6^4} \phi_1 \\ &= 3 \left[\frac{\ddot{a}_0}{a_0} + \left(\frac{\dot{a}_0}{a_0} \right)^2 \right] + \frac{\ddot{c}_0}{c_0} + 2 \left(\frac{\dot{c}_0}{c_0} \right)^2 + \frac{1}{M_6^4} \tilde{p}_5 \end{split}$$

$$egin{aligned} & ilde{p}_{5}^{\prime} - C_{0}^{\prime} ilde{p}_{6} = 0 \ & U^{\prime} - \dot{Y} - eta e^{\phi_{0}} e^{C_{0}(r)} \dot{X} = 0 \ & ilde{p}_{r}^{t} = -c_{0}(t)^{2} ilde{p}_{t}^{r} \ & 3 rac{\dot{a}_{0}}{a_{0}} Z - C_{0}^{\prime} \dot{X} + rac{3}{4} (\dot{Z} - \dot{W}) = rac{c_{0}(t)^{2}}{M_{6}^{4}} ilde{p}_{t}^{r} - rac{\sqrt{2v(\Phi_{0})} e^{-C_{0}(r)}}{M_{6}^{4}} U \ & - rac{\dot{c}_{0}}{c_{0}} (W + 2\phi_{1}^{\prime}) \ & \dot{ ilde{
ho}} + 3 rac{\dot{a}_{0}}{a_{0}} (ilde{
ho} + ilde{p}) + rac{\dot{c}_{0}}{c_{0}} (2 ilde{
ho} + 2 ilde{p}_{5} + ilde{p}_{6}) = ilde{p}_{t}^{r\prime} + C_{0}^{\prime} ilde{p}_{t}^{r} \end{aligned}$$

Pirsa: 05020025 Page 48/82

$$\frac{\phi_1'' + C_0'\phi_1' + C_0'W}{3c_0(t)^2} = \left[\frac{\ddot{a}_0}{a_0} + \left(\frac{\dot{a}_0}{a_0}\right)^2 - \frac{1}{3}\frac{\ddot{c}_0}{c_0} - \frac{\dot{a}_0}{a_0}\frac{\dot{c}_0}{c_0} + \frac{\tilde{p}_5}{3M_6^4}\right]$$

$$\frac{C'_0 X'}{c_0(t)^2} - \frac{2X\beta\sqrt{2v(\Phi_0)}e^{\phi_0}}{M_6^4c_0(t)^2} + \frac{3C'_0 W}{2c_0(t)^2} - \frac{\sqrt{2v(\Phi_0)}e^{-C_0(r)}}{c_0(t)^2 M_6^4}Y$$

$$= -\frac{1}{4M_6^4}(\tilde{\rho} - 3\tilde{p} + 3\tilde{p}_6)$$

$$+\frac{3}{2} \left[\frac{\ddot{a}_0}{a_0} + \left(\frac{\dot{a}_0}{a_0}\right)^2 + \frac{\ddot{c}_0}{c_0} + 3\frac{\dot{a}_0}{a_0}\frac{\dot{c}_0}{c_0} + \frac{4}{3}\left(\frac{\dot{c}_0}{c_0}\right)^2 \right]$$

Pirsa: 05020025

 \bigstar No dynamics for $\tilde{p}_6(r,t)$ in the EOM's, choose:

Pirsa: 05020025 Page 50/82

$$egin{aligned} & ilde{p}_{5}^{\prime} - C_{0}^{\prime} ilde{p}_{6} = 0 \ & U^{\prime} - \dot{Y} - eta e^{\phi_{0}} e^{C_{0}(r)} \dot{X} = 0 \ & ilde{p}_{r}^{t} = -c_{0}(t)^{2} ilde{p}_{t}^{r} \ & 3 rac{\dot{a}_{0}}{a_{0}} Z - C_{0}^{\prime} \dot{X} + rac{3}{4} (\dot{Z} - \dot{W}) = rac{c_{0}(t)^{2}}{M_{6}^{4}} ilde{p}_{t}^{r} - rac{\sqrt{2v(\Phi_{0})} e^{-C_{0}(r)}}{M_{6}^{4}} U \ & - rac{\dot{c}_{0}}{c_{0}} (W + 2\phi_{1}^{\prime}) \ & \dot{ ilde{
ho}} + 3 rac{\dot{a}_{0}}{a_{0}} (ilde{
ho} + ilde{p}) + rac{\dot{c}_{0}}{c_{0}} (2 ilde{
ho} + 2 ilde{p}_{5} + ilde{p}_{6}) = ilde{p}_{t}^{r\prime} + C_{0}^{\prime} ilde{p}_{t}^{r} \end{aligned}$$

Pirsa: 05020025 Page 51/82

Gauge invariant variables

The following variable are invariant under $t \to t + \Delta t(r, t), r \to r + \Delta r(r, t)$:

$$egin{array}{lll} egin{array}{lll} egin{array} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{ll$$

Pirsa: 05020025 Page 52/82

 \bigstar No dynamics for $\tilde{p}_6(r,t)$ in the EOM's, choose:

Pirsa: 05020025 Page 53/82

 \bigstar No dynamics for $\tilde{p}_6(r,t)$ in the EOM's, choose:

$$\tilde{p}_6(r,t) = \theta(r-r_0)e^{2C_0(r)}\mathcal{P}_6(t) + \theta(r_*-r_0)e^{2C_0(r)}\mathcal{P}_{*6}(t)$$

 \star Assume that $\rho(r,t), p(r,t), \rho_*(r,t)$ and $p_*(r,t)$ are functions of time only.

Pirsa: 05020025

 \bigstar No dynamics for $\tilde{p}_6(r,t)$ in the EOM's, choose:

$$\tilde{p}_6(r,t) = \theta(r-r_0)e^{2C_0(r)}\mathcal{P}_6(t) + \theta(r_*-r_0)e^{2C_0(r)}\mathcal{P}_{*6}(t)$$

\star Assume that $\rho(r,t), p(r,t), \rho_*(r,t)$ and $p_*(r,t)$ are functions of time only.

With these assumptions, perturbed EOM's are straightforward (if somewhat tedious) to solve.

Pirsa: 05020025 Page 55/82

Effective four dimensional quantities

$$\rho^{(4)}(t) = 2\pi \int_0^{r_0} c_0(t)^2 e^{C_0(r)} \rho(t) dr + 2\pi c_0(t)^2 e^{C_0(r_0)} \mathcal{F}_0(t)$$

$$p^{(4)}(t) = 2\pi \int_0^{r_0} c_0(t)^2 e^{C_0(r)} p(t) dr - 2\pi c_0(t)^2 e^{C_0(r_0)} \mathcal{F}_0(t)$$

$$ho_*^{(4)}(t) = 2\pi \int_{\pi/k-r_0}^{\pi/k} c_0(t)^2 e^{C_0(r)}
ho_*(t) dr + 2\pi c_0(t)^2 e^{C_0(r_*)} \mathcal{F}_*(t)$$

$$p_{*}^{(4)}(t) = 2\pi \int_{\pi/k-r_0}^{\pi/k} c_0(t)^2 e^{C_0(r)} p_{*}(t) dr - 2\pi c_0(t)^2 e^{C_0(r_{*})} \mathcal{F}_{*}(t).$$

Pirsa: 05020025 Page 56/82

Effective four dimensional quantities

$$\frac{1}{8\pi G_4(t)} = M_4^2 = 2\pi \int_0^{\pi/k} c_0(t)^2 e^{C_0(r)} M_6^4 dr$$

$$\Rightarrow G_4(t) = \frac{k^2}{32\pi^2 M_6^4 c_0(t)^2}.$$

Pirsa: 05020025 Page 57/82

GGP '03 showed that with the metric

$$ds^2 = n(r)^2 dx^{\mu} dx_{\mu} + dr^2 + c(r)^2 d\theta^2$$

$$\lambda_3 = \frac{1}{2}c(r)\left(2n(r)^4\phi(r)' + 4n(r)^3n(r)'\right).$$

Pirsa: 05020025 Page 58/82

GGP '03 showed that with the metric

$$ds^2 = n(r)^2 dx^{\mu} dx_{\mu} + dr^2 + c(r)^2 d\theta^2$$

$$\lambda_3 = \frac{1}{2}c(r)\left(2n(r)^4\phi(r)' + 4n(r)^3n(r)'\right).$$

In our perturbative language, $\lambda_3 = 0$ at the level of the background. But the above can be written perturbatively as

$$\delta \lambda_3 = \frac{1}{2} e^{C_0(r)} \left(2\phi_1(r)' + W(r) \right).$$

Pirsa: 05020025 Page 59/82

$$\delta \lambda_3 = rac{1}{2} e^{C_0(r)} \left(2\phi_1(r)' + W(r) \right).$$

Substituting our bulk solutions into this expression and assuming staticity (i.e. $a_0(t) \equiv 1, c_0(t) \equiv 1, \rho = -p$ and $\rho_* = -p_*$), we find that

$$\delta \lambda_3 = \frac{1}{12k^4M_6^4} \left(1 - \cos(kr_0)\right)^3 \left(\mathcal{P}_6(t) - \mathcal{P}_{*6}(t)\right).$$

 \Rightarrow Our solutions do include $\lambda_3 \neq 0$.

Pirsa: 05020025

$$\delta \lambda_3 = rac{1}{2} e^{C_0(r)} \left(2\phi_1(r)' + W(r)
ight).$$

Substituting our bulk solutions into this expression and assuming staticity (i.e. $a_0(t) \equiv 1, c_0(t) \equiv 1, \rho = -p$ and $\rho_* = -p_*$), we find that

$$\delta \lambda_3 = \frac{1}{12k^4M_6^4} (1 - \cos(kr_0))^3 (\mathcal{P}_6(t) - \mathcal{P}_{*6}(t)).$$

 \Rightarrow Our solutions d o include $\lambda_3 \neq 0$. Dependence on extra dimensional part of brane stress-energy tensor, consistent with Burgess et.al. '04; Navarro, Santiago '04.

Pires: 05020025

In braneworld models, the Friedmann equations come in through the imposition of appropriate boundary conditions.

Pirsa: 05020025 Page 62/82

In braneworld models, the Friedmann equations come in through the imposition of appropriate boundary conditions.

- \star All functions smooth at the poles $r = 0, \pi/k$;
- ★ All functions (but not their radial derivatives!) continuous across core/bulk boundary, except where warranted by 1D δ-function.

Pirsa: 05020025 Page 63/82

$$egin{aligned} \left(rac{\dot{a}_0}{a_0}
ight)^2 &=& rac{8\pi G_4(t)}{3}(
ho^{(4)}+
ho_*^{(4)}) - rac{16\pi^2\sin(kr_0)}{3k}G_4(t)\mathcal{Q}_1 \ &+& rac{1}{3}\left(rac{\dot{c}_0}{c_0}
ight)^2 - 2rac{\dot{a}_0}{a_0}rac{\dot{c}_0}{c_0} \ &=& -4\pi G_4(t)(
ho^{(4)}+
ho^{(4)}+
ho_*^{(4)}+
ho_*^{(4)}+
ho_*^{(4)}) - rac{\ddot{c}_0}{c_0} \ &-& 2\left(rac{\dot{c}_0}{c_0}
ight)^2 + rac{\dot{a}_0}{a_0}rac{\dot{c}_0}{c_0} \end{aligned}$$

Pirsa: 05020025 Page 64/82

$$\dot{
ho}^{(4)} = -3rac{\dot{a}_0}{a_0}(
ho^{(4)} + p^{(4)}) - rac{2\pi(1 - \cos(kr_0))^3c_0(t)\dot{c}_0(t)}{3k^4}\mathcal{P}_6 \ \dot{
ho}^{(4)}_* = -3rac{\dot{a}_0}{a_0}(
ho^{(4)}_* + p^{(4)}_*) - rac{2\pi(1 - \cos(kr_0))^3c_0(t)\dot{c}_0(t)}{3k^4}\mathcal{P}_{*6}$$

$$egin{array}{lll} rac{\ddot{c}_0}{c_0} + \left(rac{\dot{c}_0}{c_0}
ight)^2 & + & 3rac{\dot{a}_0}{a_0}rac{\dot{c}_0}{c_0} = \pi G_4(t)\left(
ho^{(4)} - 3p^{(4)} +
ho_*^{(4)} - 3p_*^{(4)}
ight) \ & + & rac{2\pi^2c_0(t)^2(1-\cos(kr_0))^3}{3k^4}G_4(t)\left(\mathcal{P}_6 + \mathcal{P}_{*6}
ight) \ & - & rac{8\pi^2\sin(kr_0)}{k}G_4(t)\mathcal{Q}_1. \end{array}$$

Pirsa: 05020025 Page 65/82

Interpretation

$$\bigstar H^2 \sim f(\rho, \rho_*);$$

Pirsa: 05020025 Page 66/82

Interpretation

- $\star H^2 \sim f(\rho, \rho_*);$
- $\star Q_1$ is related to the flux;
- ★ $\mathcal{P}_6 = \mathcal{P}_{*6} = 0 \Rightarrow \lambda_3 = 0$, results look like BD theory for $\omega = 1/2$. Ruled out (consistent with Garriga, Porrati '04);

$$V(\sigma_1, \sigma_2) = e^{-\sigma_2} \left(k e^{-2\sigma_1} - 2K e^{-\sigma_1} + 2\Lambda_6 \right)$$

Pirsa: 05020025 Page 67/82

$$\dot{
ho}^{(4)} = -3rac{\dot{a}_0}{a_0}(
ho^{(4)} + p^{(4)}) - rac{2\pi(1 - \cos(kr_0))^3c_0(t)\dot{c}_0(t)}{3k^4}\mathcal{P}_6 \ \dot{
ho}^{(4)}_* = -3rac{\dot{a}_0}{a_0}(
ho^{(4)}_* + p^{(4)}_*) - rac{2\pi(1 - \cos(kr_0))^3c_0(t)\dot{c}_0(t)}{3k^4}\mathcal{P}_{*6}$$

$$egin{array}{lll} rac{\ddot{c}_0}{c_0} + \left(rac{\dot{c}_0}{c_0}
ight)^2 & + & 3rac{\dot{a}_0}{a_0}rac{\dot{c}_0}{c_0} = \pi G_4(t)\left(
ho^{(4)} - 3p^{(4)} +
ho_*^{(4)} - 3p_*^{(4)}
ight) \ & + & rac{2\pi^2c_0(t)^2(1-\cos(kr_0))^3}{3k^4}G_4(t)\left(\mathcal{P}_6 + \mathcal{P}_{*6}
ight) \ & - & rac{8\pi^2\sin(kr_0)}{k}G_4(t)\mathcal{Q}_1. \end{array}$$

Pirsa: 05020025 Page 68/82

Interpretation

- $\star H^2 \sim f(\rho, \rho_*);$
- \star Q_1 is related to the flux;
- ★ $\mathcal{P}_6 = \mathcal{P}_{*6} = 0 \Rightarrow \lambda_3 = 0$, results look like BD theory for $\omega = 1/2$. Ruled out (consistent with Garriga, Porrati '04);

$$V(\sigma_1, \sigma_2) = e^{-\sigma_2} \left(k e^{-2\sigma_1} - 2K e^{-\sigma_1} + 2\Lambda_6 \right)$$

Pirsa: 05020025 Page 69/82

$$\dot{
ho}^{(4)} = -3rac{\dot{a}_0}{a_0}(
ho^{(4)} + p^{(4)}) - rac{2\pi(1 - \cos(kr_0))^3c_0(t)\dot{c}_0(t)}{3k^4}\mathcal{P}_6$$
 $\dot{
ho}^{(4)}_* = -3rac{\dot{a}_0}{a_0}(
ho^{(4)}_* + p^{(4)}_*) - rac{2\pi(1 - \cos(kr_0))^3c_0(t)\dot{c}_0(t)}{3k^4}\mathcal{P}_{*6}$

$$egin{array}{lll} rac{\ddot{c}_0}{c_0} + \left(rac{\dot{c}_0}{c_0}
ight)^2 & + & 3rac{\dot{a}_0}{a_0}rac{\dot{c}_0}{c_0} = \pi G_4(t)\left(
ho^{(4)} - 3p^{(4)} +
ho_*^{(4)} - 3p_*^{(4)}
ight) \ & + & rac{2\pi^2c_0(t)^2(1-\cos(kr_0))^3}{3k^4}G_4(t)\left(\mathcal{P}_6 + \mathcal{P}_{*6}
ight) \ & - & rac{8\pi^2\sin(kr_0)}{k}G_4(t)\mathcal{Q}_1. \end{array}$$

Pirsa: 05020025 Page 70/82

Interpretation

- $\bigstar H^2 \sim f(\rho, \rho_*);$
- $\star Q_1$ is related to the flux;
- ★ $\mathcal{P}_6 = \mathcal{P}_{*6} = 0 \Rightarrow \lambda_3 = 0$, results look like BD theory for $\omega = 1/2$. Ruled out (consistent with Garriga, Porrati '04);

$$V(\sigma_1,\sigma_2) = e^{-\sigma_2} \left(k e^{-2\sigma_1} - 2K e^{-\sigma_1} + 2\Lambda_6 \right)$$

- \star $S=\int d^4x\sqrt{-g}\left(rac{1}{16\pi G}\left[\zeta\mathcal{R}-rac{1}{2\zeta}\partial_\mu\zeta\partial^\mu\zeta-V(\zeta)
 ight]+\mathcal{L}_m
 ight)$ with $c_0(t)=\sqrt{\zeta},\ V(\zeta)=-32\pi^2\sin(kr_0)ar{G}\mathcal{Q}_1/k$ and $ar{G}/\zeta(t)=G_4(t)$
- ★ Ok, but what about self-tuning???

Remember what the hope was:

Pirsa: 05020025 Page 72/82

Remember what the hope was:

★ starting from static solution with conical singularities, perturb brane stress energy;

Pirsa: 05020025 Page 73/82

Remember what the hope was:

- starting from static solution with conical singularities, perturb brane stress energy;
- ★ rather than going to runaway solution, system would evolve to static solution with non-conical singularities;

Pirsa: 05020025 Page 74/82

Remember what the hope was:

- starting from static solution with conical singularities, perturb brane stress energy;
- ★ rather than going to runaway solution, system would evolve to static solution with non-conical singularities;
- \star we saw that $\delta \lambda_3 \sim \mathcal{P}_6 \mathcal{P}_{\star 6}$
- ★ can P₆'s evolve so as to keep solution static?

Pirsa: 05020025 Page 75/82

Absence of self-tuning

Furthermore \mathcal{P}_6 's do not appear in

$$egin{align} \left(rac{\dot{a}_0}{a_0}
ight)^2 &=& rac{8\pi G_4(t)}{3}(
ho^{(4)}+
ho_*^{(4)})-rac{16\pi^2\sin(kr_0)}{3k}G_4(t)\mathcal{Q}_1 \ &+& rac{1}{3}\left(rac{\dot{c}_0}{c_0}
ight)^2-2rac{\dot{a}_0}{a_0}rac{\dot{c}_0}{c_0} \ \end{aligned}$$

Pirsa: 05020025 Page 76/82

Absence of self-tuning

However \mathcal{P}_6 's allow us to keep internal space static, albeit not in a natural way by forcing the RHS of

$$egin{array}{lll} rac{\ddot{c}_0}{c_0} + \left(rac{\dot{c}_0}{c_0}
ight)^2 & + & 3rac{\dot{a}_0}{a_0}rac{\dot{c}_0}{c_0} = \pi G_4(t)\left(
ho^{(4)} - 3p^{(4)} +
ho_*^{(4)} - 3p_*^{(4)}
ight) \\ & + & rac{2\pi^2c_0(t)^2(1-\cos(kr_0))^3}{3k^4}G_4(t)\left(\mathcal{P}_6 + \mathcal{P}_{*6}
ight) \\ & - & rac{8\pi^2\sin(kr_0)}{k}G_4(t)\mathcal{Q}_1. \end{array}$$

to vanish.

Pirsa: 05020025 Page 77/82

★ Codimension-two branes \Rightarrow unconventional relation between H^2 and vacuum energy;

Pirsa: 05020025 Page 78/82

- ★ Codimension-two branes ⇒ unconventional relation between H² and vacuum energy;
- ★ Implicit relation between expansion and vacuum energy ⇒ no self-tuning;
- ★ Effective description apparently dependent on details of brane structure;

Pirsa: 05020025 Page 79/82

- ★ Codimension-two branes ⇒ unconventional relation between H² and vacuum energy;
- ★ Implicit relation between expansion and vacuum energy ⇒ no self-tuning;
- ★ Effective description apparently dependent on details of brane structure;
- ★ Possibility of getting stabilized internal space/dilaton;

Pirsa: 05020025 Page 80/82

- ★ Codimension-two branes ⇒ unconventional relation between H² and vacuum energy;
- ★ Implicit relation between expansion and vacuum energy ⇒ no self-tuning;
- ★ Effective description apparently dependent on details of brane structure;
- ★ Possibility of getting stabilized internal space/dilaton;
- ★ Fine-tuning still needed, but SLEDs might still help explain smallness of quantum corrections;
- ★ Not mentionned here, but could breaking axial symmetry help? (Redi '04)

Pirsa: 05020025 Page 81/82

No Signal

VGA-1

Pirsa: 05020025 Page 82/82