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"Proof” that there is no Quantum Chaos:

Let [¥,(0)) and [¥(0)) be two
initially close states, such that
(¢, (0)|¥(0)) =1 - €.
Unitary time evolution implies
(e (ENeAE)) =1 — €
The states do not diverge!




"Proof” that there is no Classical Chaos:

Let f,(q,p,0) and f.(q,p,0) be
two initially close classical
phase space distributions.

Denote {f (D)If (1)} =

,[J’r1(QJp:t) fE(QJth) dCI dp
Liouville's egn. implies tha
o

{f.(DIF (D)} = {F,.(O)If 0)}

The states do not diverge!










"Proof” that there is no Classical Chaos:

ey 7:4.P.9) and f.(q.p.0) be
two initially close classical
phase space distributions.
Denote {f](t)lfz(t)} 3

[If:(a,p,t) f(q,p,t) dg dp.
L Touville’'s egn. implies that
{f. (DI ()} = {1.(0)[f(0)}.

The states do not diverge!




The classical limit of a quantum state is
not a single classical orbit, but rather

an_ensemble of classical orbits.

Classical limit:
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Ehrenfest's Theorem

let H=p2/2m + V(Q). Then
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Corrections to Eherenfest's Theorem
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Classical Ensemble, Liouville equation:
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The centroid of a classical ensemble need

not follow a classical trajectory.




Two regimes of quantum-classical correspondence.

(2 Ehrenfest regime:
- The widths of the quantum and classical probability
distributions are small compared to the scale of the
system.
- The centroid of the quantum state, and also of the
classical ensemble, approximately follow a classical

trajectory. (Ehrenfest's Theorem)

) Liouville regime:
- The quantum and classsical probability distmbutions
are approximately equal.

- The states need not be narrow: Ehrenfest's theorem

does not apply.

- Some modest coarse graining of the guantum

probability distribution may be needed in order to

reveal the underlying classical background.

The breakdown of Ehrenfest correspondence does not ;;_.

signal the end of classical behavior.
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The Logic of Inductive Inference

(E.T. Jaynes, A.T. Cox, H. Jefireys)
Probability is assigned to propositions.

P(AIC) is the probability that A is true,
given the information C.

Ensemble and Frequency Prngen_sity e
(Kolmogorav, Bemouilli, - a form of causality
von Mises, de Moivre) wezker than determinism.
(K.R. Popper)

Probability identified with |

a limit frequency

in an ordered seguence
— (Frequency theary). P(AIC) is the propensity for A to

occur under the condition C.

L

Probability is ascribed to events.

Probability identified with

a measure on a set

(which need not be ordered)
— (Ensemble theory).

|

Subjective and Personal probabilities.
(de Finnetti, L.J. Savage, I.J. Goad)

- Incomplete knowiedge.
- Degrees of reasonable belief.




Reference for the Theory of Inductive Inference

(proposed as the master theary):

E. T. Jaynes - "Probability Theory: The Logic of Science”,

(Cambridge University Press, Ss=Bw published soewn);
Zooc3F

Probability is a logical relation among propositions that is

weaker than entailment.
It is an objective relation, and should not be confused with

degrees of Belief.

The propositions may have any particular content.

- Specialize to propositions about repeated experiments:
—> ensemble-frequency theory.

Specialize to propositions about personzl belief:
--> subjective probability.

Specialize to propositions about indeterministic or

unpredictable events:
-—> propensity theory.




The Axioms of Probability:

R.T. Cox, The Algebra of Probable Inference, (Johns Hopkins
University Press, Baltimore MD, 1961). — [hard to obtain?]

A.T. Cox, Probability, Frequency, and Reasonzable Expectation -
Amer. J. Phys. 14, 1-13 (1348).
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Remark:
The nation of randomness plays no fund

probability theory.
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Remark
These axioms are not arbitrary

(i) The probzbility of A on some given evidence determines the
probability of “not A™ on the same evIidence
(ii) The probzbility on given evidence thal DoLn A and B are true
is determined by their separate probabilities, one on the given
E.x_,r'||::..--|.ﬁ:. E'HI:‘. e athes on PR avidence :'- = The acs) --‘:" o
SNCce, the other on that evidence 1< the assumptio
that the first is true
(iii) If a complex proposition can DE composed in more than one
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then all waus of computing its probabilicy must fead to the
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Remark:
These axioms are not arbitrary.

They are determined by conditions of plausibility and
cansistency (R.T. Cox)

(i) The probability of A on some given evidence determines the

probability of "not A™ on the same eviden

(ii) The probability on given evidence tha

is determined by their separate probzabilities, one on the given

_ - PR, - N .= . ] e~ s e - -
. and the ather an thac evigence plus the assumptian

(iii) If 2 complex proposition can be campased 1IN Mare tnan one

ex A&BI&C A&(BE&C
then all waus of computing its probability must lead to the
salme answer
Remark
Anyone who proposss an in equivalent 2iternative to Cox's axioms
(ex- negative probabilities) has an obligation to explain fow anc
whu he departs from these conditions of plausibility 2nd
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Remark:
These axioms are not arbitrary

(i) The probability of A on some given evidence determines the
praobability of "not A™ on the same evidence.

(ii) The probability on given evidence that both A and D are true
s determined by their separate probabilities, one on the given
avidence and the other on that evidence plus the assumptian
- —— - -~ a ——— — - -
that the SL 15 e

iii) If 2 complex proposition can be composed In MOre than ane
EN

= ALBI&C AL(B&L
then all waus of computing its probability must lead to the
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Very important remark!

All probabilities are conditional.

L T Yt

Use of the single-varible notation P(A),
instead of P(AIC),
is permissible only if:

_ the conditional information C is obvious from the
context,
_ and is unchanging throughout the prcolem.




Which interpretations of probability
are relevant to QM?

ensemble-frequency - Yes

propensity — Yes

subjective — No




interpretation

The propensity
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SrTUW D nIEannigrur statements 200Ut individuz
= 15 In 2ccord with the ensemble—-frequency Interpretation whean

Zpplied to repeated experiments

The propensity interpretation is more natura
considers fime-dependent states, and time-dependen

probzabilities.
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STTUW S ITEd TNy Ul STITENTENTS 300Ut Individual events
IS In 2accaord with the ensemble-freguency interoretztio

=

applied to repeated experiments

The prapensily interpretation is more natural when one

considers fime-dependent states, and time-dependent
probzabilities.
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| have never seen a coherent exposition of quantum
mechanics based on a subjective interpretation of
quantum probabilities as representing knowledge!




