Title: Interpretation of Quantum Theory: Lecture 8 Date: Jan 27, 2005 02:30 PM URL: http://pirsa.org/05010016 Abstract:

The probability problem

5

Normally probability enters physics through either

- 1) indeterminism (GRW)
- ignorance (de Broglie-Bohm; Statistical Mechanics)
 Everett has neither

To sharpen the point: suppose we measure many many copies of

 $|\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle$

The worlds where we get spin up a fraction approximately $|\alpha|^2$ of the time can be proved to have weight very close to one...

... but the worlds with the "wrong" statistics are still real!

What is probability?

6

Long-run frequency?

But:

- We never see the long run
- We use probability talk even about single events
- It's circular: long-run frequencies converge on the probability...

... probably

How do we use probability?

7

• Inference:

if we see lots of repeats of an experiment and get result x 43% of the time, we conclude that Pr(x) = 0.43

• Decision:

If we know something is highly probable, we'll bet on it; if we know doing x will make y (which is Bad) highly probably, we won't do x, etc.

Is that all there is to probability?

(no)

Subjectivism: probability as a measure of our beliefs

Suppose inference and decision *is* all there is to probability

i.e. "probability" is just a way of coding what agents believe and act

 \rightarrow Decision Theory

9

Suppose we have:

- A set S of states: that is, ways the world could turn out
- A set R of rewards: things we want (or actively don't want)

e.g. R could contain various cash prizes

Then a bet b is formally a function from S to R.

e.g. $S = \{Bush wins, Kerry wins\}$

b(Bush wins) = + \$10 b(Kerry wins) = - \$10

i.e. just represents a ten-dollar bet on the result of the election.

9

Suppose we have:

- A set S of states: that is, ways the world could turn out
- A set *R* of *rewards:* things we want (or actively don't want)
 e.g. *R* could contain various cash prizes

Then a bet b is formally a function from S to R.

e.g. $S = \{Bush wins, Kerry wins\}$

b(Bush wins) = + \$10 b(Kerry wins) = - \$10

i.e. just represents a ten-dollar bet on the result of the election.

The idea:

Suppose that some agent has a strategy for betting: that is for each pair of bets b_1 , b_2 he either

- a) prefers b_1 to b_2 : $b_1 > b_2$; or
- b) prefers b_2 to b_1 : $b_1 < b_2$; or
- c) is indifferent between b_1 and b_2 : $b_1 \sim b_2$

And suppose his strategy obeys certain principles of rationality: e.g.

If $b_1 > b_2$ and $b_2 > b_3$ then $b_1 > b_3$

If $b_1(s) > b_2(s)$ for all s in S, then $b_1 > b_2$

(for a full list, see (e.g.) L. Savage, Foundations of Statistics)

10

The idea:

Suppose that some agent has a strategy for betting: that is for each pair of bets b_1 , b_2 he either

- a) prefers b_1 to b_2 : $b_1 > b_2$; or
- b) prefers b_2 to b_1 : $b_1 < b_2$; or
- c) is indifferent between b_1 and b_2 : $b_1 \sim b_2$

And suppose his strategy obeys certain principles of rationality: e.g.

If $b_1 > b_2$ and $b_2 > b_3$ then $b_1 > b_3$

If $b_1(s) > b_2(s)$ for all s in S, then $b_1 > b_2$

(for a full list, see (e.g.) L. Savage, Foundations of Statistics)

10

The idea:

Suppose that some agent has a strategy for betting: that is for each pair of bets b_1 , b_2 he either

- a) prefers \boldsymbol{b}_1 to \boldsymbol{b}_2 : $\boldsymbol{b}_1 > \boldsymbol{b}_2$; or
- b) prefers b_2 to b_1 : $b_1 < b_2$; or
- c) is indifferent between b_1 and b_2 : $b_1 \sim b_2$

And suppose his strategy obeys certain principles of rationality: e.g.

If $b_1 > b_2$ and $b_2 > b_3$ then $b_1 > b_3$

If $b_1(s) > b_2(s)$ for all s in S, then $b_1 > b_2$

(for a full list, see (e.g.) L. Savage, Foundations of Statistics)

10

The idea:

Suppose that some agent has a strategy for betting: that is for each pair of bets b_1 , b_2 he either

- a) prefers \boldsymbol{b}_1 to \boldsymbol{b}_2 : $\boldsymbol{b}_1 > \boldsymbol{b}_2$; or
- b) prefers b_2 to b_1 : $b_1 < b_2$; or
- c) is indifferent between b_1 and b_2 : $b_1 \sim b_2$

And suppose his strategy obeys certain principles of rationality: e.g.

If $b_1 > b_2$ and $b_2 > b_3$ then $b_1 > b_3$

If b_1 (s) > b_2 (s) for all s in S, then $b_1 > b_2$

(for a full list, see (e.g.) L. Savage, Foundations of Statistics)

Then (in the right circumstances) we can prove a *representation theorem*:

For any strategy that does obey these principles of rationality, there must exist

• A *unique* positive-valued function Pr on S satisfying

$$Pr(s) = 1$$

 A function U on R, unique up to affine transformations U → a U + b

such that $b_1 > b_2$ if and only if

$$\sum_{s \in S} P_{r}(s) \cup [b_{1}(s)] > \sum_{s \in S} P_{r}(s) \cup [b_{2}(s)]$$

Then (in the right circumstances) we can prove a *representation theorem*:

For any strategy that does obey these principles of rationality, there must exist

 A unique positive-valued function Pr on S satisfying

$$Pr(s) = 1$$

 A function U on R, unique up to affine transformations U → a U + b

such that $b_1 > b_2$ if and only if

$$\sum_{s \in S} P_{r}(s) \cup [b_{i}(s)] > \sum_{s \in S} P_{r}(s) \cup [b_{z}(s)]$$

Then (in the right circumstances) we can prove a *representation theorem*:

For any strategy that does obey these principles of rationality, there must exist

 A unique positive-valued function Pr on S satisfying

$$Pr(s) = |$$

 A function U on R, unique up to affine transformations U → a U + b

such that $b_1 > b_2$ if and only if

$$\sum_{s \in S} \Pr(s) \cup [b_1(s)] > \sum_{s \in S} \Pr(s) \cup [b_2(s)]$$

so...

a "rational agent" must act as if he ascribes probabilities to each event

12

is this sufficient?

NO

- Probabilities are *personal*: we can talk about "my probability for X" or "Joseph's probability for X", but not *the* probability for X
- But physics discovers *objective* probabilities: the probability of a uranium atom decaying is *not* a matter of opinion!

so...

a "rational agent" must act as if he ascribes probabilities to each event

is this sufficient?

NO

- Probabilities are *personal*: we can talk about "my probability for X" or "Joseph's probability for X", but not *the* probability for X
- But physics discovers *objective* probabilities: the probability of a uranium atom decaying is *not* a matter of opinion!

SO...

a "rational agent" must act as if he ascribes probabilities to each event

is this sufficient?

NO

- Probabilities are *personal*: we can talk about "my probability for X" or "Joseph's probability for X", but not *the* probability for X
- But physics discovers *objective* probabilities: the probability of a uranium atom decaying is *not* a matter of opinion!

13

We have:

- Subjective probability: a well defined, well motivated measure of our personal degree of belief... but which is *not* the probability of physics
- Objective probability: the observerindependent probability of physics... but what is it?

Link between them: the Principal Principle:

If a rational agent knows that the *objective* probability of X happening is P, he is rationally required to assign *subjective* probability of P to X happening.

13

We have:

- Subjective probability: a well defined, well motivated measure of our personal degree of belief... but which is *not* the probability of physics
- Objective probability: the observerindependent probability of physics... but what is it?

Link between them: the *Principal Principle*:

If a rational agent knows that the *objective* probability of X happening is P, he is rationally required to assign *subjective* probability of P to X happening.

13

We have:

- Subjective probability: a well defined, well motivated measure of our personal degree of belief... but which is *not* the probability of physics
- Objective probability: the observerindependent probability of physics... but what is it?

Link between them: the *Principal Principle*:

If a rational agent knows that the *objective* probability of X happening is P, he is rationally required to assign *subjective* probability of P to X happening.

What is "objective probability"?

14

It's that physical property – whatever it is – that makes the Principal Principle true.

Does this make objective probability a subjective, observer-dependent property?

... no

it's a physical thing – but the reason we *call* it "probability" is to do with what rational agents do.

But what could "objective probability" be?

i.e., why should the Principal Principle be true for any physical property?

Everett and the Principal Principle

15

Can we prove that *mod-squared amplitude* satisfies the Principal Principle in the Everett interpretation?

... that is, can we prove that

if an event has mod-squared amplitude P (relative to the agent's initial amplitude)

then the agent must assign subjective probability P to that event occurring

If we can...

then we will have proved that mod-squared amplitude is objective probability

13

We have:

- Subjective probability: a well defined, well motivated measure of our personal degree of belief... but which is *not* the probability of physics
- Objective probability: the observerindependent probability of physics... but what is it?

Link between them: the Principal Principle:

If a rational agent knows that the *objective* probability of X happening is P, he is rationally required to assign *subjective* probability of P to X happening.

13

We have:

- Subjective probability: a well defined, well motivated measure of our personal degree of belief... but which is *not* the probability of physics
- Objective probability: the observerindependent probability of physics... but what is it?

Link between them: the Principal Principle:

If a rational agent knows that the *objective* probability of X happening is P, he is rationally required to assign *subjective* probability of P to X happening.

The counting rule

16

It seems impossible to prove this result, because there seem to be so many alternative rules we could choose.

Most importantly there seems to be a much *better rule:* the "counting rule".

Counting rule: if there are n branches, ignore the amplitudes and give each branch probability 1/n.

BUT the counting rule is

- Incoherent
- Not well defined

In general: much harder to find "alternative rules" than it looks

How the proof works

7

- Prove that if two events have the same weight (i.e. same mod-squared amplitude) then agents are rationally required to give them the same probability (the *equivalence rule*)
- 2. Prove that if the equivalence rule is true, agents are rationally required to give probability P to an event with weight P

How the proof works

7

- Prove that if two events have the same weight (i.e. same mod-squared amplitude) then agents are rationally required to give them the same probability (the *equivalence rule*)
- 2. Prove that if the equivalence rule is true, agents are rationally required to give probability P to an event with weight P

How the proof works

17

- Prove that if two events have the same weight (i.e. same mod-squared amplitude) then agents are rationally required to give them the same probability (the *equivalence rule*)
- 2. Prove that if the equivalence rule is true, agents are rationally required to give probability P to an event with weight P

18

Step 1: prepare spin-half particle in superposition of up and down

$$\begin{array}{c} (\alpha |\uparrow\rangle + \beta |\downarrow\rangle) \otimes | "device ready" \rangle \otimes | "agent waiting \\ \text{Step 2: measure particle spin} \\ \uparrow\rangle \otimes | "device ready" \rangle \longrightarrow | "spin up" \rangle \\ \downarrow\rangle \otimes | "device ready" \rangle \longrightarrow | "spin down" \rangle \end{array}$$

Step 3: Pay a reward iff the result is "spin up" ["spin up" > ⊗ |"agent waiting" > → |"spin up" > ⊗ |"agent gets \$10" > ["spindagen" > ⊗ |"agent waiting" > → |"spin down" > ⊗ |"agent gets nothing" >

Step 4: Throw away the measurement result

Page 44/75

18

Step 1: prepare spin-half particle in superposition of up and down

$$\frac{(\alpha|\uparrow\rangle+\beta|\downarrow\rangle)\otimes|\text{"device ready}^{\circ}\otimes|\text{"agent waiting}^{\circ}}{\text{Step 2: measure particle spin}}$$

$$\frac{(\alpha|\uparrow\rangle+\beta|\downarrow\rangle)\otimes|\text{"device ready}^{\circ}\otimes|\text{"agent waiting}^{\circ}\otimes|\text{"agent waiting}^{\circ}\otimes|\text{$$

device i enoug

8

Step 3: Pay a reward iff the result is "spin up" |"spin up" > ⊗ |"agent waiting" > → |"spin up" > ⊗ |"agent gets \$10" > |"spindagen" > ⊗ |"agent waiting" > → |"spin down" > ⊗ |"agent gets nothing" >

Step 4: Throw away the measurement result

Page 45/75

18

Step 1: prepare spin-half particle in superposition of up and down

 $\begin{array}{c} \left(\left| \uparrow \right\rangle + \beta \left| \downarrow \right\rangle \right) \otimes \left| \text{"device ready"} \right\rangle \otimes \left| \text{"agart waiting"} \right\rangle \\ \text{Step 2: measure particle spin} \\ \left| \uparrow \right\rangle \otimes \left| \text{"device ready"} \right\rangle \longrightarrow \left| \text{"spin up"} \right\rangle \\ \left| \downarrow \right\rangle \otimes \left| \text{"device ready"} \right\rangle \longrightarrow \left| \text{"spin down"} \right\rangle \\ \left| \downarrow \right\rangle \otimes \left| \text{"device ready"} \right\rangle \longrightarrow \left| \text{"spin down"} \right\rangle \\ \end{array}$

Step 3: Pay a reward iff the result is "spin up" |"spin up" > ⊗ |"agent waiting" > → |"spin up" > ⊗ |"agent gets \$10" > |"spin dagen" > ⊗ |"agent waiting" > → |"spin down" > ⊗ |"agent gets nothing" >

Step 4: Throw away the measurement result

$$|"spin up" \rangle \longrightarrow | Junk_i \rangle \in set of such states|"spin down" \rangle \longrightarrow | Junk_i \rangle \in set of such stateswhere i and is are unknown$$

18

Step 1: prepare spin-half particle in superposition of up and down

 $\begin{array}{c} \left(\alpha \left| \uparrow \right\rangle + \beta \left| \downarrow \right\rangle \right) \otimes \left| \text{"device ready"} \right\rangle \otimes \left| \text{"agad waiting"} \right\rangle \\ \text{Step 2: measure particle spin} \\ \left| \uparrow \right\rangle \otimes \left| \text{"device ready"} \right\rangle \longrightarrow \left| \text{"spin up"} \right\rangle \\ \left| \downarrow \right\rangle \otimes \left| \text{"device ready"} \right\rangle \longrightarrow \left| \text{"spin down"} \right\rangle \\ \left| \downarrow \right\rangle \otimes \left| \text{"device ready"} \right\rangle \longrightarrow \left| \text{"spin down"} \right\rangle$

Step 3: Pay a reward iff the result is "spin up" ["spin up" > ⊗ | "agent waiting" > → | "spin up" > ⊗ | "agent gets \$10" > ["spin days" > ⊗ | "agent waiting" > → | "spin down" > ⊗ | "agent gets nothing" >

Step 4: Throw away the measurement result

18

Step 1: prepare spin-half particle in superposition of up and down

 $\begin{array}{c} \left(\alpha \left| \uparrow \right\rangle + \beta \left| \downarrow \right\rangle \right) \otimes \left| \text{"device ready"} \right\rangle \otimes \left| \text{"agart waiting"} \right\rangle \\ \text{Step 2: measure particle spin} \\ \left| \uparrow \right\rangle \otimes \left| \text{"device ready"} \right\rangle \longrightarrow \left| \text{"spin up"} \right\rangle \\ \left| \downarrow \right\rangle \otimes \left| \text{"device ready"} \right\rangle \longrightarrow \left| \text{"spin down"} \right\rangle \\ \left| \downarrow \right\rangle \otimes \left| \text{"device ready"} \right\rangle \longrightarrow \left| \text{"spin down"} \right\rangle$

Step 3: Pay a reward iff the result is "spin up" |"spin up" > ⊗ |"agent waiting" > → |"spin up" > ⊗ |"agent gets \$10" > |"spin down" > ⊗ |"agent waiting" > → |"spin down" > ⊗ |"agent gets nothing" >

Step 4: Throw away the measurement result

$$\frac{Before delation}{state is} \qquad 19$$
state is
$$\frac{|\Psi_{up}^{o}(\alpha, \beta)\rangle = \alpha |["spin up"] \otimes |["agentized $10"\rangle \\ + \beta |["spin down"] \otimes |["agentized $10"\rangle \\ + \beta |["spin down"] \otimes |["agentized $10"\rangle \\ + \beta |["spin down"] \otimes |["agentized $10"\rangle \\ + \beta |["suck;] \otimes |["agentized $10"\rangle \\ + \beta |[Junk;] \otimes |["agentized $10"\rangle \\ + \beta |["agentized $10"\rangle \\ + \beta |[Junk;] \otimes |["agentized $10"\rangle \\ + \beta |["agentized $1$$

$$\frac{Before delation}{state is}$$

$$I = \alpha ["spin up" > @["agent geth $10">}{+ \beta} ["spin down" > @["agent geth $10">}{+ \beta} ["spin down" > @["agent geth acthing">}$$

$$A = \alpha ["spin down" > @["agent geth $10">}{+ \beta} ["spin down" > @["agent geth acthing">}$$

$$A = \alpha [Junk; > @["agent geth $10">}{+ \beta} [Junk$$

$$\frac{Before deletion}{state is}$$

$$I = \frac{Before deletion}{(M_{up}^{o}(\alpha, \beta))} = \frac{|S|^{2}spin up}{|S|^{2}spin up} |S|^{2}spin dawn' > 0|^{2}spin daw$$

$$\frac{Before deletion}{state is} \qquad 19$$
state is
$$I + U_{up}^{o}(\alpha, \beta) = \alpha ["spin up" > 0] ["aged get for">}{+ \beta ["spin down" > 0] ["aged get adding">}{+ \beta ["spin down" > 0] ["aged get for > 10">}{+ \beta ["spin down" > 0] ["spi$$

$$\frac{Before deletion}{state is}$$
state is
$$\frac{|\Psi_{up}^{o}(\alpha, \beta)\rangle = \alpha |["spin up"] > 0 |["agent gets $10">}{+ \beta |["spin down"] > 0 |["agent gets adding"]}$$
Actar deletion
$$\frac{Actar deletion}{|\Psi_{up}^{i,i}(\alpha, \beta)\rangle} = \alpha |[Juck;] > 0 |["agent gets $10">}{+ \beta |["spin down"] > 0 |["agent gets $10">}{+ \beta |[Juck]] > 0 |["agent gets $10">}{+ \beta |[[Juck]] > 0 |["agent gets $1$$

$$\frac{\text{Before deletion}}{\text{state is}} \qquad 19$$
state is
$$\frac{|\Psi_{up}^{o}(\alpha,\beta)\rangle = \alpha |["spin up"\rangle \otimes |["agent gets $10"\rangle + \beta |["spin down"\rangle \otimes |["agent gets activity"]}$$
Actor deletion
$$\frac{\text{Actor deletion}}{|\Psi_{up}^{i,i}(\alpha,\beta)\rangle} = \alpha |[Juck;] \otimes |["agent gets $10"\rangle + \beta |[Juck;] \otimes |["agent gets $10"\rangle + \beta |[Juck;] \otimes |["agent gets $10"\rangle + \beta |[Juck;] \otimes |["agent gets nothing"]}$$
Let set of these states be $S^{up}(\alpha,\beta)$
Actor to the states of these states be $S^{up}(\alpha,\beta)$

Abel on "spindown"
... basically the same!
Before deletion state is

$$(\forall down (\alpha, \beta)) = \alpha("spinup") \otimes ("agent gets nothing")
+\beta("spin down") \otimes ("agent gets nothing")
After deletion
state is
 $(\forall down (\alpha, \beta)) = \alpha(Junk) \otimes ("agent gets nothing")
+\beta(Junk) \otimes ("agent gets nothing")
+\beta(Junk) \otimes ("agent gets nothing")
Set of theme states in $S^{down}(\alpha, \beta)$
NOTE $S^{down}(\alpha, \beta) = S^{*p}(\beta, \alpha)$$$$

Page 57/75

A bet on "spindown"
A bet on "spindown"
basically the same!
Before deletion state is

$$[\Psi_{down}^{e}(\alpha, \beta)] = \alpha["spinup"] \otimes ["agent gets nothing")
 $+\beta["spin down"] \otimes ["agent gets nothing")
+\beta["spin down"] \otimes ["agent gets $10")
After deletion
state is
 $[\Psi_{down}^{i}(\alpha, \beta)] = \alpha[Junk] \otimes ["agent gets nothing")
+\beta[Junk] \otimes ["agent gets nothing")
+\beta[Junk] \otimes ["agent gets nothing")
Set g there states in Sdown(\alpha, \beta)
NOTE Sdown(\alpha, \beta) = S40(\beta, \alpha)$$$$

Page 59/7

Page 60/75

A bet on "spindown"
A bet on "spindown"

basically the same!
Before deletion state is

$$|\Psi_{down}^{*}(\alpha,\beta)\rangle = \alpha |["spinup"] \otimes ["agent gets nothing")$$

 $+\beta |["spin down"] \otimes ["agent gets nothing")$
After deletion
state is
 $|\Psi_{dpun}^{*}(\alpha,\beta)\rangle = \alpha |[Junk]] \otimes ["agent gets nothing")$
 $+\beta |[Junk]] \otimes ["agent gets nothing")$
Set of these states is $S^{down}(\alpha,\beta)$
 $Set of these states is $S^{down}(\alpha,\beta) = S^{*p}(\beta,\alpha)$
 $NOTE S^{down}(\alpha,\beta) = S^{*p}(\beta,\alpha)$$

Page 61/75

A bet on "spindown"
A bet on "spindown"

$$A bet on "spindown"$$

 $B before delation state is$
 $|\Psi_{down}^{*}(\alpha,\beta)\rangle = \alpha ("spinup") \otimes ("agent gets nothing")$
 $+\beta ("spin down") \otimes ("agent gets nothing")$
 $A totate is$
 $|\Psi_{down}^{*}(\alpha,\beta)\rangle = \alpha (Junk;) \otimes ("agent gets nothing")$
 $+\beta (Junk;) \otimes ("agent gets nothing")$
 $+\beta (Junk;) \otimes ("agent gets nothing")$
 $Set g (totat states is $S^{down}(\alpha,\beta)$
 $NOTE S^{down}(\alpha,\beta) = S^{*}(\beta,\alpha)$$

Page 62/75

$$A bet on "spindown"$$

$$A bet on "spindown"$$

$$basically the same!$$

$$Began deletion state is
$$[\Psi_{down}^{*}(\alpha,\beta)] = \alpha ("spinup") \otimes ("agent gets nothing")$$

$$+\beta ("spin down") \otimes ("agent gets nothing")$$

$$A state is
$$[\Psi_{dpun}^{*}(\alpha,\beta)] = \alpha (Junk,) \otimes ("agent gets nothing")$$

$$+\beta (Junk,) \otimes ("agent gets nothing")$$

$$Set g (base states is S^{down}(\alpha,\beta))$$

$$NOTE \qquad S^{down}(\alpha,\beta) = S^{*}(\beta,\alpha)$$$$$$

A bet on "spindown"
A bet on "spindown"

$$A bet on "spindown"$$

 $B eyen deletion state is
 $P down (m, p) = \alpha ("spinup") \otimes ("agent gets nothing")
+ B ("spin down") \otimes ("agent gets 10")
After deletion
state is
 $P down (m, p) = \alpha (Juck,) \otimes ("agent gets nothing")
+ B (Juck,) \otimes ("agent gets nothing")
+ B (Juck,) \otimes ("agent gets nothing")
Set g there states is $S^{down}(m, p)$
NOTE $S^{down}(m, p) = S^{op}(p, m)$$$$

Page 65/75

After delation
state in

$$|\neg \psi_{dpun}^{i,i}(\alpha,\beta)\rangle = \alpha |Junk_i\rangle \otimes |"agent gets nothing"
+ \beta |Junk_i\rangle \otimes |"agent gets $10"
Set of these states in Sdawn (\alpha, \beta)
NOTE Sdawn (\alpha, \beta) = S^{up}(\beta, \alpha)$$

state in

$$|\Psi_{dynn}^{iris}(\alpha, \beta)\rangle = \alpha |Junk;\rangle \otimes |I_{agad}^{ir} gets nothing?$$

 $+\beta |Junk;\rangle \otimes |I_{agad}^{ir} gets $10"?$
Set of these states in $S^{down}(\alpha, \beta)$
 $NOTE = S^{down}(\alpha, \beta) = S^{40}(\beta, \alpha)$
 $MOTE = S^{down}(\alpha, \beta) = S^{40}(\beta, \alpha)$
Action delation
 $|\Psi_{\mu}^{iris}(\alpha, \beta)\rangle = \alpha |Junk;\rangle \otimes |I_{agad}^{ir} gets $10"?$
 $+\beta |Junk;\rangle \otimes |I_{agad}^{ir} gets nothing"?$
Let set of these states be $S^{40}(\alpha, \beta)$
Action to between digget ensure precesses, so between states in $S^{40}(\beta, \beta)$
 $Action in:$
 $higgered$ between digget ensure precesses, so between states in $S^{40}(\beta, \beta)$

Nonlocality in the Everett Interpretation

21

The Bell inequalities do not apply to the Everett Interpretation.

(They assume that a measurement has a definite outcome)

Is the Everett interpretation local?

... yes and no

Two sorts of nonlocality

22

Nonlocal interactions – i.e action at a distance

I do something *here* and it affects the state of a system *there* instantly (conflict with relativity)

Interactions in the Everett interpretation are local

Nonlocal states

If A and B are spacetime regions then the state of A u B is not given by the states of A and B separately

States in the Everett interpretation are **non-local** (entanglement)

State nonlocality does not conflict with relativity

Conclusion

23

Strengths of the Everett interpretation

- It is a *pure interpretation* of quantum mechanics – no need to modify the formalism or equations
- As such it is *Lorentz-covariant* at the fundamental level
- It is completely *realist* it gives no special role to observers/measurements etc in its formulation

Questions / Problems

- Will decoherence deliver the sort of structures we need to see emergent worlds?
- Even if it does, is this the right way to think about worlds / cats / people / minds?
- Does the decision-theoretic argument satisfactorily explain the role of probability?
- Is it too incredible to be believable?