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Are quanium states complete?

‘Einstein Attacks Quantum Theory. Scientist and Two Colleagues Find It Is

Not “Complere” Even Though “Correct.”" New York Times, May 4th, 1935.
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Are quantum states complete?

‘Einstein Attacks Quantum Theory. Scientist and Two Colleagues Find [t Is

Not “Complete™ Even Though “Correct.”” New York Times., May 4th, 1935.

The EPR Argument against Completeness

“Can quantum-mechanical description of reality be considered complete?”

A. Eintein, B. Podolosky, and N. Rosen, Physical Review 47, 777 (1935).

For EPR. a necessary condition for the completeness of a theory is:

(1) “Every element of physical reality must have a counterpart in the phys-

ical theory.”

This 1s not a sufficient condition for completeness: there may be other critenia

that must be satished.

For EPR. a sufficient condition for the physical reality of a quantity is:
(i1) “If, without in any way disturbing a system, we can predict with cer-
tainty (i.e., with probability equal to unity) the value of a physical quan-
tity, then there exists an element of physical reality corresponding to this

physical quantty.”™

010011 This is not a necessary condition: there may be other ways to identify whether

a physical quantity is real.
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Following from the fact that quantum mechanical states did not permit simul-
taneous specification of definite properties for non-commuting observables.
EPR deduced that: “either (1) the quantum-mechanical description of reality
given by the wave function is not complete, or (ii) when the operalors corre-
sponding ta two physical quantities do not commute the two quanfities cannal

have simultaneous reality.”

Both of these alternative inferences were appreciated already by von Neu-
mann, who explicitly endorsed (2) and rejected (1), presumably due to his ‘no
go’ theorem for hidden variables. The EPR argument concludes that (1) must

be endorsed and (2) rejected.

EPR considered a system of two particles initially interacting such that they
are produced in a joint eigenstate of their relative position and total linear
momentum. Here we will consider a simpler system involving a two spin-1/2

particles (devised by Bohm (1951)) which illustrates the same features.

Consider two particles arranged to interact such that they are described by the

singlet-state,
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This state has zero total angular momentum, so the spin of the first particle

(system Sp) 1S anti-correlated with the spin of the second particle (system Sa).

Assume that after the state preparation the two particles no longer interact.
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Both of these alternative inferences were appreciated already by von Neu-
mann, who explicitly endorsed (2) and rejected (1). presumably due to his ‘no
go’ thearem for hidden vaniables. The EPR argument concludes that (1) must

be endorsed and (2) rejected.

EPR considered a system of two particles initially interacting such that they
are produced in a joint eigenstate of their relative position and total linear
momentum. Here we will consider a simpler system involving a two spin-1/2

particles (devised by Bohm (1951)) which illustrates the same features.

Consider two particles arranged to interact such that they are described by the
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This state has zero total angular momenmum, so the spin of the first particle

(system S ) is anti-correlated with the spin of the second particle (system 53).

Assume that after the state preparation the rwo particles no longer interact.

Observe that if measurement of particle 1, along, say, the z-axis, yields +A /2
then measurement of particle 2 (along the same z-axis) must yield —//2, and
vice versa. Similarly, if we measure instead 5; for particle 1, then we can

predict with certainty the outcome of an S, measurement for particle 2.
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Hence we can predict with certainty the outcomes of measurements of either
S. or S. of the second particle ‘without in any way disturbing the second

system’.

In accordance with the EPR criterion of reality, there must therefore be ele-

ments of reality corresponding to both S and S. for the second particle.

Hence option (2) is negated. Since the two options are considered mutually
exclusive and jointly exhaustive possibilities, EPR were forced fo conclude
that the quantum-mechanical description of physical reality given by wave

functions is not complete.

Bohm emphasized that the EPR argument relied on the additional assump-
tions that (iii) each element of physical reality must have a precisely defined
counterpart in the mathematical theory [a stronger condition then the one EFK
acknowledged] and (iv) the world can correctly be analyzed in terms of dis-

tinct and separately existing ‘elements of reality’.

Bohm (1951, pp. 622-623) somehow concluded from his analysis that hidden
variables were nonetheless impossible: “We can now use some of the results
of the analysis of the paradox of [EPR] to help prove that quantum theory
is inconsistent with the assumption of hidden causal variables ...[Arguing
from the apparent conflict with the uncertainty principle] ... We conclude that
no theory of mechanically determined hidden variables can lead to all of the

results of the guantum theory.”
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ments of reality corresponding to both S and S. for the second particle.

Hence option (2) is negated. Since the two options are considered mutually
exclusive and jointly exhaustive possibilities, EPR were forced to conclude
that the quantum-mechanical description of physical reality given by wave
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One year later. Bohm published his causal hidden varable interpretation
(1952): “A Suggested Interpretation of the Quantum Theory in Term of *Hid-

den” Variables”
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Hence option (2) is negated. Since the two options are considered mutually
exclusive and jointly exhaustive possibilities, EPR were forced ro conclude
that the quantum-mechanical description of physical reality given by wave

functions is not complere-

Bohm emphasized that the EPR argument relied on the additional assump-
tions that (iii) each element of physical reality must have a precisely defined
counterpart in the mathematical theory [a stronger condition then the one EPR
acknowledged] and (iv) the world can correctly be analyzed in terms of dis-

tinct and separately existing ‘elements of reality’.

Bohm (1951, pp. 622-623) somehow concluded from his analysis that hidden
variables were nonetheless impossible: “We can now use some of the results
of the analysis of the paradox of [EPR] to help prove that quantum theory
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from the apparent conflict with the uncertainty principle] . .. We conclude that
no theory of mechanically determined hidden variables can lead to all of the

results of the quantum theory.”
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(1952): “A Suggested Interpretation of the Quantum Theory in Term of “Hid-
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Additional observations:

If the collapse of the wave function is a physical process (as it is on the as-
sumption that the wave function is complete), then the collapse must be an in-
stantaneous change of physical properties throughout space. Recall from von
Neumann’s analysis of the Compton experiment that the process 1 transfor-
mation, with post-selection, is operationally demanded so that measurements
of commuting operators yield consistent outcomes, even if the measurements

are carried out ‘simultanecusly” in vastly separated spatial locations.

EPR did not linguistically distinguish, as we have, between the bare mathe-
matical formalism (the abstract theory), and the set of bridge principles that
specify correspondence rules between the elements of the mathematics and
the elements of physical reality (the interpretation the theory). EPR referred
to the combination of both the mathematical formalism and the orthodox in-
terpretation as ‘quantum theory.” So it is unclear if the argument for incom-
pleteness is meant to imply the mathematical formalism itself, or merely the

interpretive correspondence rules.
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Bohr's response to EPR:

“The finite interaction between object and measuring agencies conditioned by
the very existence of the quantum of action entails - because of the impossi-
bility of controlling the reaction of the object on the measuring instruments if
these are to serve their purpose - the necessity of a final renunciation of the
classical ideal of causality and a radical revision of our attitude towards the
problem of physical reality ... [While there is] no question of a mechanical
disturbance of the system under investigation ... there is essentially the ques-
tion of an influence on the very conditions which define the possible types of

predictions regarding the future behavior of the system.”

Bohr “Quantum Mechanics and Physical Reality” (1933)

“Recapitulating, the impossibility of subdividing the individual quantum ef-
fects and separating a behavior of the objects from their interaction with the
measuring instruments serving (o define the conditions under which the phe-
nomena appear implies and ambiguity in assigning conventional attributes (o
atomic objects which calls for a reconsideration of our attitude towards the
problem of physical explanation, in this novel situation, even the old question
of an ultimate determinacy of natural phenomena has lost its conceptual ba-
sis. and it is against this background that the viewpoint of complementarity
presents itself as a rational generalization of the very ideal of causality.”

Bohr (1948)
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The EPR arpument presumes (implicitly) a notion of separability, i.e., that
separately existing elements of reality may be attributed to each system. and
a notion of independence, i.e., that it is possible to arrange that the elements
of reality of one system can not be influenced by the elements of reality of
another system. The assumption of independence can seemingly be well mo-
fivated by the ‘locality’ guaranteed by special relativity. Einstein later charac-

terized this ‘locality” assumption as follows (1949):

“The real factual situation of the system Sz is independent of what is done

with the system S;, which is spatially separated from the former.”

This *Einstein locality” assumption was putioa direct test by John Bell (1964)
who devised a celebrated inequality that any local. realistic theory must sat-

isfy, as we will see in a moment.

Incompleteness and hidden variables:

The conclusion that quantum mechanics is incomplete suggests that the quan-
tum mechanical description may be supplemented by additional parameters.

or ‘hidden variables’, in order to recover a (more) complete description.

As noted earlier, the possibility of hidden varables was considered and re-
jected by von Neumann. who produced an ‘impossibility proof” based on a

number of assumptions.

First. the hidden variables assignments were required to completely specify

T
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another system. The assumption of independence can seemingly be well mo-
tivated by the ‘locality’ guaranteed by special relativity. Einstein later charac-
terized this ‘locality” assumption as follows (1949):

“The real factual situation of the system S, is independent of whatis done

with the system S,, which is spatially separated from the former.”

This ‘Einstein locality’ assumption was put o a direct test by John Bell (1964)
who devised a celebrated inequality that any local, realistic theory must sat-

isfy, as we will see in a moment.

Incompleteness and hidden variables:

The conclusion that quantum mechanics is incomplete suggesis that the quan-
mum mechanical description may be supplemented by additional parameters,

or ‘hidden variables’, in order to recover a (more) complete description.

As noted earlier, the possibility of hidden variables was considered and re-
jected by von Neumann, who produced an ‘impossibility proof™ based on a

number of assumptions.

First. the hidden variables assignments were required (o completely specify
experimental outcomes (i.e., to produce dispersion-free states) for all Hermi-

tian Operators;

Second. the unique hidden value assignment o each operator was required (o

be one of the operator’s eigenvalues;
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with the system S;, which is spatially separated from the former.”

This ‘Einstein locality’ assumption was put to a direct test by John Bell (1964)
who devised a celebrated inequality that any local, realistic theory must sat-

isfy, as we will see in a moment.

Incompleteness and hidden variables:

The conclusion that quantum mechanics is incomplete suggests that the quan-
turn mechanical description may be supplemented by additional parameters,

or ‘hidden variables’, in order to recover a (more) complete description.

As noted earlier. the possibility of hidden vanables was considered and re-
jected by von Neumann. who produced an ‘impossibility proof’ based on a

number of assumptions.

First. the hidden variables assignments were required to completely specify
experimental outcomes (i.e., to produce dispersion-free states) for all Hermi-

tian operators;

Second. the unique hidden value assignment (o each operator was required (o

be one of the operator’s eigenvalues;
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Third, for any Hermitian operator C = aA + bB defined by a linear combina-
tion of arbitrary (e.g., non-commuting) Hermitian operators, the hidden value
assignment for C was required to satisfy the same lincar combination of the

hidden value assignments for the operators Aand B.

However. the third assumption is incompatible with the first and second as-

sumptions. Consider the Pauli operator defined by,

-

)~

-

On = (o = 3

T4
The eigenvalues of all three Pauli operators are +1, but clearly, the eigenvalues
of ., can not be expressed as any of the linear combinations,

(1

1)

wdl| |

W

von Neumann’s third assumption is generally considered unjustified (even
“silly™ - by Mermin (1993)), since it imposes constraints on the hidden value
assignments for incompatible experimental arrangements. His assumption ap-
pears o be inspired by the fact that this relation holds for quantum mechanical
expectation values ((C) = (A) + (B)) and maybe also the fact that it is ex-
pected in a trivial hidden variable model in which measurements of spin reveal

the components of a pre-existing angular momentum vector.

If we drop the third assumption then hidden variable models can be. and in-
deed have been, constructed - see Bell (1966) for the complete analysis and a

simple example. The most celebrated example is the de Broglie-Bohm hidden

) =i - B
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of o, can not be expressed as any of the linear combinations,

(1 +1)
‘UE
von Neumann's third assumption is generally considered unjustified (even
“silly"” - by Mermin (1993)), since it imposes constraints on the hidden value
assignments for incompatible expenimental arrangements. His assumption ap-
pears to be inspired by the fact that this relation holds for quantum mechanical
expectation values ((C) = (A4) + (B)) and maybe also the fact that it is ex-
pected in a trivial hidden variable model in which measurements of spin reveal

the. components of a pre-existing angular momentum vector:

If we drop the third assumption then hidden vanable models can be, and -
deed have been, constructed - see Bell (1966) for the complete analysis and a
simple example. The most celebrated example is the de Broglie-Bohm hidden
variable model (1927/1952), which has an explicit non-local character. This
feamre of the de Broglie-Bohm model interpretation and the role of locality in
the EPR-Bohm argument led Bell to ask: is non-locality a necessary feature
of any hidden variable theory reproducing the predictions of quantum theory?

The answer is yes (Bell (1964)).
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Bell’s Theorem:

Bell considered a restriction on the correlations that can be exhibited between
two systems in the EPR-Bohm set-up allowing for the fact that the outcomes

could be determined by an arbitrary class of (deterministic) hidden variables.

Consider two spatially separated spin systems each subjected to measurement
along directions a and b respectively. The results of the measurements, de-
noted /A and B. can depend on arbitrary parameters (hidden variables) col-
lectively denoted A, and can take on the values |A] < 1 and |B| < 1. The
ourcome can of course depend on the local setting, but, by assuming Ein-
stein locality, is not allowed to depend on the setting of the distant instrument.
Hence A = A(a.A) and B = B(b, A) are allowed but A = A(a.b. A) and

B = B(a.b, \) are excluded by the locality assumption.

The uncontrolled parameters are subject to an arbitrary probability density
p(A), where,
plA) = 0, -[;J{,\}dl =1

and hence we can define correlations of the form:
Cla,b) = /-A{u..\rﬂ{b, M plN)dA

Each detector is allowed to have two independently selected settings {a,a'}

and {b,b'}. From these assumptions we can deduce Bell's inequality:

|C(a,b) — Cla.b)| +|C(a’, b))+ C(a',b)| <2
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Bell’s Theorem:
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two systems in the EPR-Bohm set-up allowing for the fact that the outcomes

could be determined by an arbitrary class of (deterministic) hidden variables.

Consider two spatially separated spin systems each subjected to measurement
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Bell considered a restriction on the correlations that can be exhibited between
two systems in the EPR-Bohm set-up allowing for the fact that the outcomes

could be determined by an arbitrary class of (deterministic) hidden variables.

Consider two spatially separated spin systems each subjected to measurement
along directions a and b respectively. The results of the measurements, de-
noted A and B, can depend on arbitrary parameters (hidden variables) col-
lectively denoted A, and can take on the values |A] €< 1and |B| < 1. The
outcome can of course depend on the local setting, but, by assuming Ein-
stein locality, is not allowed to depend on the setting of the distant instrument.
Hence 4 = A(a.\) and B = B(b,\) are allowed but A = Ala,b,\) and

B = B(a.b, A) are excluded by the locality assumption.

The uncontrolled parameters are subject to an arbitrary probability density
p( ), where,
p(A) = 0, fpl__.\]d,\ =1,

and hence we can define correlations of the form:
Cla,b) = f.—l{u.l}ﬂ#b, A)p(A)dX

Each detector is allowed to have two independently selected settings {a,a’}

and {b, b'}. From these assumptions we can deduce Bell's inequality:

|C(a,b) — C(a, b')| + |C(a',b") + C(a’,b)| <2
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along directions a and b respectively. The results of the measurements, de-
noted A and B, can depend on arbitrary parameters (hidden variables) col-
lectively denoted A, and can take on the values |4| < 1 and |B| < 1. The
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and hence we can define correlations of the form:
Cla,b) = f:l:_u, X B(b, A)p(A)dX

Each detector is allowed to have two independently selected settings {a,a'}

and {b, '}. From these assumptions we can deduce Bell's inequality:
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A quantum mechanical system satisfying Bell's assumption consists of two

spin-1/2 particles (or generic two-level systems) in the singlet state,

—)B — |—i1a@|T})B)-




010011
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C(a.b) = (2/h)* (|a-Ss @ b-Sgl).
Define cosd, , = a - b, then,
C(a.b) = —cosf,p

Choosing a, b, a’, b’ 1o be four co-planar vectors with a and b parallel and

= Ha b+ = O . then the Bell inequality demands,
“. + 3 L::.JSI:rJ-j = CU.‘:E{'.E:L‘H <2

but this 1s violated for a wide range of ¢.

Exercise 1 (Assignment 2): Derive Bell's inequality. Calculate C{a,b) for
the singlet state. Plot |1 + 2 cos{@) — cos(2¢)| to show the range and degree

of violation of Bell's inequality.

Observations:

The kind of locality that is violated by quantum mechanics is called weak lo-
caliry because the violation does not permit ‘super-luminal signaling.” That
15, only a random sequence of outcomes are obtained at either location and
the non-local correlations (on their own) can not be used to commumnicate in-
formation to the distant party. In contrast, a theory violating strong locality
would allow the possibility of super-luminal signaling, e.g., rigid body me-

chanics.

Bell's argument relies also on an assumption of determinism: the outcomes
are determined by the hidden vanable 4 = A(a, A) and B = B(b, A). How-

ever, Clauser, Hormne, Shimony, and Holt (1969), and Clauser and Home




010011

= g h' — U’ h+ WICL] LG LYCLI JI.I.'..-HU-LI.I.H\ L

|1 + 2cos(@) — cos(2¢)| < 2

but this is violated for a wide range of &.

Exercise 1 (Assignment 2): Derive Bell's inequality. Calculate C(a,b) for
the singlet state. Plot |1 + 2 cos(¢@) — cos(2¢)| to show the range and degree

of violation of Bell's inequality.

Observations:

The kind of locality that is violated by quantum mechanics is called weak lo-
cality because the violation does not permit ‘super-luminal signaling.” That
is, only a random sequence of outcomes are obtained at either location and
the non-local correlations (on their own) can not be used (o communicate in-
formation to the distant party. In contrast. a theory violating strong locality
would allow the possibility of super-luminal signaling, e.g.. rigid body me-

chanics.

Bell's argument relies also on an assumption of determinism: the outcomes
are determined by the hidden variable 4 = A(a, A) and B = B(b, A). How-
ever. Clauser. Horme, Shimony, and Holt (1969), and Clauser and Home
(1974) developed inequalities (that assume local hidden variables and which
are violated by quantum mechanics) that do not also rely on the determin-
ism assumption - only a probabilistic dependence on the hidden variables is

presumed.
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are violated by quantum mechanics) that do not also rely on the determin-
ism assumption - only a probabilistic dependence on the hidden vanables is

presumed.
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It is worth noting that Bell-type inequalities presume that the detector settings
at the two separated locations may be sclected independently, for example, by
the ‘free will' of the experimenters, or by some sufficiently pseudo-random
function. Ulamately, in a fully deterministic conception of the world, all
events could be traced back to a common Cause, and are never truly inde-

pendent

Are hidden variables non-local or is quantum mechanics non-local?

Bell-type inequalities tell us that any hidden variable models reproducing
quantum theory must be non-local. However, if we reject hidden variable
models. and assume instead that the quantum state is a complete description of
a system’s physical properties. then the EPR analysis shows (implicitly) that
because quantum states must be updated (collapsed) mon-locally, it follows
thar physical properties of the world are exhibiting non-locality. So whether
one accepts or rejects that quantum states are a complete description, one is
forced to accept non-localify.Some authors (Stapp, 1985, 1988) even conclude
that sequences of experimental outcomes which violate Bell-type inequalities
imply that non-locality is a feature of the world, rather than just a feature of
quantum mechanics. In this sense the violation of Bell's inequalities should
not be viewed as a reason to reject hidden variables, but as a required con-

straint on hidden vanable models.

e e W et s st ae ha e heen demon-
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the ‘free will® of the experimenters, or by some sufficiently pseudo-random
function. Ultimately, in a fully deterministic conception of the world. all
events could be traced back to a common cause, and are never truly inde-

pendent

Are hidden variables non-local or is quantum mechanics non-local?

Bell-type inequalities tell us that any hidden variable models reproducing
quantum theory must be non-local. However. if we reject hidden vaniable
models. and assume instead that the quantum stale is a complete description of
a system’s physical properties, then the EPR analysis shows (implicitly) that
because quanfum states must be updated (collapsed) non-locally, it follows
that physical properties of the world are exhibiting non-locality. So whether
one accepls or rejects that quanium siares are @ complete description, one is
forced to accept non-localiry. Some authors (Stapp. 1985, 1988) even conclude
that sequences of experimental outcomes which violate Bell-type inequalities
imply that non-locality is a feature of the world, rather than just a feature of
quantum mechanics. In this sense the violation of Bell’s inequalities should
not be viewed as a reason to reject hidden variables, but as a required con-

straint on hidden variable models.

The quantum mechanical violation of Bell-type inequalities has been deman-
strated experimentally, in a number of distinct experiments. Some of the most
important early experiments were performed by Alain Aspect and co-workers
(1981,1982). Aspect will be giving us lectures on Bell-type inequalities and

e ania] tests on March 15th and 17th.
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Are hidden variables non-local or is quantum mechanics non-local?

Bell-type inequalities tell us that any hidden variable models reproducing
quantum theory must be non-local. However, if we reject hidden variable
models. and assume instead that the quantum state is a complete description of
a system's physical properties, then the EPR analysis shows (implicitly) that
because guantum states must be updated (collapsed) non-locally, it follows
that physical properties of the world are exhibiting non-locality. So whether
one accepts or rejects that quantum states are d complete description, one is
forced 1o accept non-locality.Some authors (Stapp. 1985, 1988) even conclude
that sequences of experimental outcomes which violate Bell-type inequalities
imply that non-locality is a feature of the world. rather than just a feature of
quantum mechanics. In this sense the violation of Bell’s inequalities should
not be viewed as a reason (o reject hidden variables, but as a required con-

straint on hidden variable models.

The guantum mechanical violation of Bell-type inequalities has been demon-
strated experimentally, in a number of distinct experiments. Some of the most
imporiant early experiments were performed by Alain Aspectand co-workers
(1981,1982). Aspect will be giving us lectures on Bell-type inequalities and

the experimental tests on March 15th and 17th.




010011

Hidden Variable Assignments and the Contextuality Constraint

Consider again the idea that quantum statistics arise from incomplete knowl-
edge of pre-existing values for all observables. On this assumption, for any
observable 4 we wish (o assign some pre-existing value vy (A) € R, where
the subscript reminds us that the assignment will in general depend on the

preparation.

What kinds of requirements should the value assignments satisfy?

Earlier we rejected von Neumann's requirement that the value assignments
individually satisfy the same relations as the statistical averages (give some

preparation).

A more innocent requirement is that any function of the value assigned to a
commuting operators {4, B, C ... } should be equal to the value of the func-

tion of the operators
Flug(A), v (B). vu(C),--..) =vg(f(A, B,C,...)).
This requirement implies the properties:
(i) vo(A+ B) =uy(A4)+uvy(B) if [A,B]=0
(ii) wvg(AB) =vy(A)vy(B) if [A,B]=0
(iii) wgl(l) = 1.

Dasall thae crnactral deramaccitionn: SF a3 nonedsoesnarastes shearuvablas
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Consider again the idea that quantum statistics arise from incomplete knowl-
edge of pre-existing values for all observables. On this assumption, for any
observable A we wish to assign some pre-existing value vy(A) € R. where
the subscript reminds us that the assignment will in general depend on the

preparation.

What kinds of requirements should the value assignments satisfy?

Earlier we rejected von Neumann's requirement that the value assignments
individually satisfy the same relations as the statistical averages (give some

preparation).

A more innocent requirement is that any function of the value assigned (o a
commuting operators {A, B, C ...} should be equal to the value of the func-

tion of the operators
Flve(A), vu(B),v(C), - .. ) = ve(f(A. B,C....)).
This requirement implies the properties:
(i) ve(A+ B) =vy(4) +vy(B) if [4 B] =0
(ii) ve(AB)=uy(A)ve(B) if [A Bl =0
(1) we(l) =1.

e Recall the spectral decomposition of a non-degenerate observable:

= _ : o s
4 % Y. P where the nroiector Pe = | ) (05| satisfies Py = Fk.
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preparation.
What kinds of requircments should the value assignments satisfy?

Earlier we rejected von Neumann's requirement that the value assignments
individually satisfy the same relations as the statistical averages (give some

preparation).

A more innocent requirement is that any function of the value assigned to a
commuting operators {A, B, C ...} should be equal to the value of the func-

tion of the operators

flve(A), vu(B), vu(C), --.) = vu(f(A, B,C,...)).
This requirement implies the properties:

(i) ve(A+ B) =vy(4) +vy(B) if [4,B] =0

(i) wy(AB) =vy(A)ve(B) if [A,B]=0
(iii) we(l) =1.

Recall the spectral decomposition of a non-degenerate observable:
3 — A P; where the projector P, = |&5) (0] satisfies FE = P;.
These properties allow us to deduce that projectors must be assigned values

according lo:
ve(Pe) € {]., U}.
Also note that the value assignment to a general Hermitian operator must be

one of its eigenvalues:

ve(A) € {Ae}
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Earlier we rejected von Neumann's requirement that the value assignments
individually satisfy the same relations as the statistical averages (give some

preparation).

A more innocent requirement is that any function of the value assigned to a
commuting operators {A, B, C ...} should be equal to the value of the func-

tion of the operators

Flua(A). vu(B). v4(C), -..) = v flA, BiG ... )
This requirement implies the properties:

(i) ve(A+ B) =vy(Ad) +vu(B) if [4, B] =0

(ii) we(AB) =vu(A)vy(B) if [4, B] =0
(i) we(l)=1.

Recall the spectral decomposition of a non-degenerate observable:
A— Jk;;f-"k where the projector Pk = | &) (0| satisfies ﬁ’; — F’;;.
These properties allow us to deduce that projectors must be assigned values

according to:

vl Pe) € {1,0}.

Also note that the value assignment to a general Hermitian operator must be

one of its eigenvalues:
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.
Bell-Kochen-Specker theorem: If the Hilbert space dimension i1s greater
than two, a consistent value assignment constrained by these properties is not

possible.

This result was obtained by Bell (1966) and, independently, by Kochen and
Specker (1967). Bell's proof assumed value assignments to a continuum of
projectors, whereas the Kochen-Specker theorem required only a finite set
(actually, 117 of them). The approach of the KS-proof was to consider sets
of commuting triads which share a single vector in common, e.g., although

[4, B] = [B,C] =0, it does not follow that [4, C] # 0.

A simpler proof, requiring a 4-dimensional Hilbert space is due to Mermin

(1993).

The consequence of the Bell-KS-type theorems is expressed by saying that
value assignments to quantum mechanical observables are conrextual. This
means that the value assigned to any observable must depend on the specifi-
cation of which other commuting observables are being assigned values along

with it
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Bell’s (self-)Criticism

“[we have] tacitly assumed that the measurement of an observable must yield
the same value independently of what other measurements must be made si-
multaneously”” Since some observables in each set (row or column in Mer-
min’s proof, triads in the KS proof) do not commute with the additional ob-
servables in the other, the measurements of each complete set are incom-
patible. “These different possibilities require different experimental arrange-
ments: there is no a priori reason to believe that the results ...should be the

same.”

Bell (1966)

Bohr's Prescience

*“[The] measuring instruments ...serve (0 define the conditions under which

the phenomena appear.”

Bohr (1949)




Assigned Reading for Next Week’s Lectures:
Many Worlds Interpretation by D. Wallace:

“Everett and Structure’”, quant-ph/0107144.

“Quantum Probability from Subjective Uncertainty”, quant-ph/0312157.

Anyone particularly keen (all of you right?) should also look at:

Lev Vaidman's encyclopedia article “The Many-Worlds Interpretation of
Quantum Mechanics”, Stanford Encyclopedia of Philosophy, available at

http://www.tau.ac.il/ vaidman/mwi/mwZ2.htmlL

Adrian Kent, “Against many-worlds interpretations”, gr-qc/9703089

If you want a better understanding of decoherence read:

W. Zurek, quant-ph/030607Z.
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