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What does it mean to interpret a theory?
Operational vs Ontological Bridge-Principles

Operational Bridge-Principles

Operational bridge-principles are operational rules that relate elements of the

formalism to measurements that may be performed.

These rules provide the adequate information to use quantum theory in the

lab, 1.e., to explain experimental outcomes (observations).

Operational rules do not give insight into the nature of the underlying physical
reality of the systems described by quantum theory.

An important example of an operational bridge-principle in quantum theory
is the Born rule, which tells us the relative frequency (probability) with which
outcome k is observed given the same measurement repeated on an ensemble

of identically prepared systems:

Prob(k|g) = tr(p|dx) (@k!)
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Ontological Bridge-Principles

Ontological bridge-principles are a set of correspondence rules that relate el-

ements of the mathematical formalism to elements of physical reality.

Bohr’s “Copenhagen Interpretation” can be considered ontological, in spite of
his denial of the meaningfulness of making statements about an independent

reality,

“An independent reality in the ordinary physical sense can neither be as-

cribed to the phenomena nor to the agencies of observation.”

because he also insists that deducing additional information about what prop-

erties a system may have is impossible in principle.

The more complete analysis Einstein seeks “is in principle excluded.”
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The Orthodox (Dirac-von Neumann) Interpretation

1. Eigenvalue-eigenstate link:

An observable has a determinate value if and only if the state is an eigen-

state of that observable.

This is an ontological bridge-principle: it tells what properties a system pos-

sesses independent of observation.

The eigenvalue-eigenstate link implies that the quantum state provides a com-
plete description of a system’s objective physical properties, or put more

boldly, of the objective elements of physical reality.

The completeness assumption implies that the unavoidable non-vanishing dis-
persion of outcomes for some observables (as demanded by Robertson’s un-
certainty principle) is due to a fundamental randomness (or stochasticity) in

nature.

Note that von Neumann was well aware that the existence of additional “hid-

Jam ranrdinatees” nrovided another exnlanation for the non-vanishine disper-
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plete description of a system's objective physical properties, or put more

boldly, of the objective elements of physical reality.

The completeness assumption implies that the unavoidable non-vanishing dis-
persion of outcomes for some observables (as demanded by Robertson’s un-
certainty principle) is due to a fundamental randomness (or stochasticity) n

nature.

Note that von Neumann was well aware that the existence of additional “hid-
den coordinates” provided another explanation for the non-vanishing disper-
sion associated with quantum states. However, he rejected this possibility
because of an ‘impossibility proof” that he devised against the possibility
of dispersion-free assignments to all observables. However, von Neumann’s
proof was discredited much later by Bohm (1952), who constructed an ex-
plicit hidden variable model, and also by Bell (1966), who showed that one of
von Neumann’s assumptions was unreasonable in the sense that it could never

be satisfied by a dispersion-free state.
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2. The projection postulate:

After an ideal measurement of an observable, the system state Is trans-
formed into [i.e., must be updated to] the eigenstate associated with the

eigenvalue observed.

This postulate, also known as the collapse of the wavefunction, is oper-
ationally demanded for consistency with experiments involving sequential

(ideal) measurements.

The eigenvalue-eigenstate link implies that the ‘projection’ is a physical pro-

cess since it involves a transformation of the system’s physical properties.

In contrast. if we reject the eigenvalue-eigenstate link, and if we reject that
the quantum state is a complete description of a system’s physical properties,
then the ‘projection’ after measurement does not correspond to not a physical

process.

The projection is then just an ‘update rule’ involving a change to an abstract
theoretical construct, such as a (subjective) probability assignment, which

e a3l ae oy infOrmALION 15 obtained.
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After an ideal measurement of an observable, the system state is trans-
formed into [i.e., must be updated to] the eigenstate associated with the

eigenvalue observed.

This postulate, also known as the collapse of the wavefunction, is oper-
ationally demanded for consistency with experiments involving sequential

(1deal) measurements.

The eigenvalue-eigenstate link implies that the ‘projection’ is a physical pro-

cess since it involves a transformation of the system’s physical properties.

In contrast, if we reject the eigenvalue-eigenstate link, and if we reject that
the quantum state is a complete description of a system’s physical properties,
then the ‘projection’ after measurement does not correspond to not a physical

process.

The projection is then just an ‘update rule’ involving a change to an abstract
theoretical construct, such as a (subjective) probability assignment, which

must be updated when new information is obtained.
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Projection Postulate with and without Post-Selection:

Consider the ideal measurement of a non-degenerate observable R =

> Aelow) (Oxl-

[f the measurement outcome is ignored, then the following transformation,

p(t) — £'(t) = (Gklp(t)|de) |de) (k- (1)

k

is required to describe the state after measurement.

If. on the other hand, the outcome is recorded, then consistency with subse-

quent measurements demands the following transformation:

p(t) — p'(t) = |6x) (Dxl- @)
Can we model the projection postulate describing an ideal measurement using
a unitary transformation?
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Projection Postulate with and without Post-Selection:

Consider the ideal measurement of a non-degenerate observable A =

> Aklok) (dkl-

If the measurement outcome is ignored. then the following transformation,
p(t) — p'(t) = Z (Dklp(t)|Pk) |Dk) (k- (1)
k

is required to describe the state after measurement.

If, on the other hand, the outcome is recorded, then consistency with subse-

quent measurements demands the following transformation:

p(t) — p'(t) = |ox) (Dk|- (2)

Can we model the projection postulate describing an ideal measurement using

a unitary transformation?

While the transformation (1) may be modeled by a unitary acting on the sys-
tem combined with an additional system when the additional system is ig-
nored, the transformation (2) may not be modeled in this way and thus must

be an independent process.
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If the measurement outcome 1s ignored, then the following transformation,
p(t) — p'(t) =D _ (ele(t)|ox) |Gr) (k- (1)
k

1s required to describe the state after measurement.

If, on the other hand, the outcome 1s recorded, then consistency with subse-

quent measurements demands the following transformation:

p(t) — p'(t) = |or) (ol (2)

Can we model the projection postulate describing an 1deal measurement using

a unitary transformation?

While the transformation (1) may be modeled by a unitary acting on the sys-
tem combined with an additional system when the additional system is ig-
nored, the transformation (2) may not be modeled in this way and thus must

be an independent process.
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Proof that projection (under post-selection) is not a unitary process

Conceptually it is clear that unitary evolution evolves any given state (o a
fixed final state. This is deterministic (in the sense of reproducible). In con-
trast, collapse is fundamentally stochastic: applying the same measurement
to the same preparation produces different (apparently random) final states

(depending on the outcome).

Is it possible that the final state outcome is not random but dependent on the
quantum state associated with some additional degrees of freedom, and the

whole process may be described by a unitary transformation?

Consider an atom described by a pure state corresponding to a coherent su-
perposition of moving along two distinct trajectories. We arrange so that both
trajectories pass through a detector such that a macroscopic pointer is moved
to the ‘left’ if the atom is on the ‘up’ trajectory and to the ‘night’ 1f the atom
is on the “down’ trajectory. We want to model the measurement process with
a unitary transformation and for complete generality we extend the quantum
system to include additional degrees of freedom denoted by a state |y). If we

demand faithful measurements this means that we must have, for any |x),

[U|up) @ |ready) @ [x) = [up) @ |left) @ Ix)
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[s it possible that the final state outcome is not random but dependent on the
quantumn state associated with some additional degrees of freedom, and the

whole process may be described by a unitary transformation?

Consider an atom described by a pure state corresponding to a coherent su-
perposition of moving along two distinct trajectories. We arrange so that both
trajectories pass through a detector such that a macroscopic pointer is moved
to the ‘left’ if the atom is on the ‘up’ trajectory and to the ‘right’ if the atom
is on the ‘down’ trajectory. We want to model the measurement process with
a unitary transformation and for complete generality we extend the quantum
system to include additional degrees of freedom denoted by a state |x). If we

demand faithful measurements this means that we must have, for any |x),

Ulup) @ |ready) @ |x) = lup) @ |left) @

X)
[/|down) @ |ready) @ |[x) = |down) @ [right) & Ix")

where |’) and |x”) are allowed to be independent of |x)-

Now if we prepare a coherent superposition over atomic trajectories, and allow
for both possible outcomes, then by linearity it follows that, for any yx,
U(a|up) + Bldown)) & [ready) @ [x) = alup) @ [left) @ [X')

+3|down) @ |right) @ |x")

o St L e e e e e e e




10007

e e i e e —

trajectories pass through a detector such that a macroscopic pointer is moved
to the ‘left’ if the atom is on the ‘up’ trajectory and to the ‘right’ if the atom
is on the ‘down’ trajectory. We want to model the measurement process with
a unitary transformation and for complete generality we extend the quantum
system to include additional degrees of freedom denoted by a state lx). If we

demand faithful measurements this means that we must have, for any X)s

Y

Ulup) @ |ready) @ |x) = |up) @ |left) @ [X)

Iy,

Uldown) ® |ready) @ |x) = |down) ® |right) @ |x)

o

where | ') and |x") are allowed to be independent of | x).

Now if we prepare a coherent superposition over atomic trajectories, and allow

for both possible outcomes, then by linearity it follows that, for any Y,

U(alup) + Bldown)) @ |ready) @ |x) = alup) @ |left) @ |X)

My

+/4|down) @ |right) @ |[x")

so it is impossible that after the interaction the state is driven to one or the
other outcome. Hence the transformation (2) can not be modeled by a unitary

transformation.
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Proof that projection (without post-selection) can be represented by a uni-

tary process

If we describe only the state of the system and pointer, then we must take
a partial trace over the ancillary degrees of freedom represent by |x). This

partial trace produces the following state (after measurement),

p = |a|® lup){up| + |B]* |down)(down| +

iy

af® (x"|x) lup}{down| + a3 (x'|x") |down)(up|

If the ancillary states are orthogonal (x'|x”) = 0, then we recover the pro-
jection postulate describing the final state when the outcome is ignored or

unknown:
p= |a|* lup)(up| + |3]* |down)(down].

Hence the projection transformation (1) (without post-selection) can indeed

be modeled by a unitary transformation.

This important process is called “decoherence” It shows us that the non-
classical features of a coherent superposition, such as interference, are elimi-

nated if the system or apparatus is allowed to interact with ancillary degrees
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If the ancillary states are orthogonal (x'|x”) = 0, then we recover the pro-
jection postulate describing the final state when the outcome is ignored or

unknown:

p=|a|* lup)(up| + |38|* |down)(down|.

Hence the projection transformation (1) (without post-selection) can indeed

be modeled by a unitary transformation.

This important process is called “decoherence.” It shows us that the non-
classical features of a coherent superposition, such as interference, are elimi-
nated if the system or apparatus 1s allowed to interact with ancillary degrees

of freedom which are either ignored or unknown.

Consider the ancillary states to describe microscopic degrees of freedom as-
sociated with ever-present “environment” systems, such as dust particles, or
the cosmic microwave background. These environment systems are unavoid-
ably interacting with systems such as a macroscopic measurement apparatus,
since they can never be fully isolated. Moreover, it is reasonable to infer that
their states will become orthogonal after interacting with (reflecting off of) the

macroscopically pointer states.
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Does decoherence solve the measurement problem?

Can we interpret the final mixed state as an ordinary classical mixture of the

two possible pointer positions?

A first problem with this approach is the ““ambiguity of mixtures” (discussed
last week). While the state describing the final pointer state may be interpreted
as a classical mixture of the two possible pointer positions, this is a non-unique
decomposition of the mixed state. Itis possible also to re-express the state as
a mixture of two very non-classical states that have nothing to do with well-

defined pointer positions. This is called the “preferred basis problem”.

A second problem is that the “total system’ is still in a pure state (coherent
entangled superposition). The state for the combined system clearly does not
allow the assignment of definite position properties for elements of the com-
bined system (consisting of the pointer and the atom and the ancillary degrees
of freedom ). Is it self-consistent to deny definite properties for the combined

system while asserting definite properties for a subsystem?

Can we conclude that there is no longera conflict between the orthodox inter-
pretation and the existence of definite position property for the Macroscopic

pointer?
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defined pointer positions. This is called the “preferred basis problem .

A second problem is that the “total system’ is still in a pure state (coherent
entangled superposition). The state for the combined system clearly does not
allow the assignment of definite position properties for elements of the com-
bined system (consisting of the pointer and the atom and the ancillary degrees
of freedom ). Is it self-consistent to deny definite properties for the combined

system while asserting definite properties for a subsystem?

Can we conclude that there is no longer a conflict between the orthodox inter-
pretation and the existence of definite position property for the macroscopic

pointer?

Recall that the eigenvalue-eigenstate link of the orthodox interpretation tells
us that definite properties for the positions of the atom and pointer should be

assigned if and only if the combined state is a factorable state of the form,
|¥) = |up) @ |left).

A mixed state obtained by partial tracing over the environment (or over the
environment and the atom) is not in this form and therefore can not be assigned

a definite property.




Hence, even if decoherence effects are taken into account, the orthodox inter-

pretation still needs the projection postulate to explain the existence of macro-

scopic facts.
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Contemporary Interpretations

A consistent description of macroscopic facts requires either expanding upon

or rejecting the interpretative postulates of the orthodox interpretation.

‘Dynamical collapse’ interpretations specify the exact conditions under which
collapse occurs by adding a non-linear term to the Schrodinger equation.
Strictly speaking these interpretations are actual modifications of the mathe-
matical formalism and not just interpretations in the sense of specifying onto-
logical bridge-principles. P. Pearle will describe spontaneous collapse models

to us in March.

The many-worlds interpretation developed by Everett (1957) rejects the pro-
jection postulate and imagines reality dividing into alternate but equally valid

branches. This interpretation will be described to us next week by D. Wallace.

In many contemporary interpretations the effects of decoherence play a pivotal

role in defining the ontology.
One example is the “existential interpretation” advocated by W. Zurek
(1993), which is a variation of the many-worlds interpretation.

Another example is the “decoherent/consistent histories™ interpretation,

e 21D PeEithe (1024) and extended by Gell-Mann and Hartle




matical formalism and not just interpretations in the sense of specifying onto-
logical bridge-principles. P. Pearle will describe spontaneous collapse models

to us in March.

The many-worlds interpretation developed by Everett (1957) rejects the pro-
jection postulate and imagines reality dividing into alternate but equally valid

branches. This interpretation will be described to us next week by D. Wallace.

In many contemporary interpretations the effects of decoherence play a pivotal

role in defining the ontology.

One example is the “existential interpretation™ advocated by W. Zurek

(1993), which is a variation of the many-worlds interpretation.

Another example is the “decoherent/consistent histories” interpretation,
developed by R. Griffiths (1984) and extended by Gell-Mann and Hartle
(1990), which will be described to us by R. Griffiths in March.

Last but not least we have interpretations which reject the assumption that

quantum states provide a complete specification of system’s properties.

On the one hand there is the statistical interpretation, developed by Bal-

lentine (1970), which, following Einstein, merely reject the completeness
10007
assumption and emphasizes the statistical/epistemic nature of the quan-
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branches. This interpretation will be described to us next week by D. Wallace.

In many contemporary interpretations the effects of decoherence play a pivotal

role in defining the ontology.

One example is the “existential interpretation™ advocated by W. Zurek

(1993), which is a variation of the many-worlds interpretation.

Another example is the “decoherent/consistent histories™ interpretation,
developed by R. Griffiths (1984) and extended by Gell-Mann and Hartle
(1990), which will be described to us by R. Griffiths in March.

Last but not least we have interpretations which reject the assumption that

quantum states provide a complete specification of system’s properties.

On the one hand there is the statistical interpretation. developed by Bal-
lentine (1970), which, following Einstein, merely reject the completeness
assumption and emphasizes the statistical/epistemic nature of the quan-
tum state. This perspective will be explained by Ballentine in February,

and further developed by myself and Rob Spekkens in March.
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On the other hand there are interpretations which seek to explicitly iden-
tify the additional *hidden van ables’ needed for a complete specification
of the system’'s properties. The most important example of this kind of in-
terpretation is the de Broglie-Bohm ( 1927/1952) pilot wave theory, which
will be introduced to us by S. Goldstein in February, and further elabo-

rated by A. Valentini in March.

On Thursday we will spend our last introductory lecture discussing the con-

straints on hidden variables.
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